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Preface

These notes for the Arizona Winter School 2024 have three parts. Sections 1–6 contain
material with which I hope most students are already somewhat familiar, or which could in
any case be studied prior to the AWS. This doesn’t mean that this is ‘easy’ material; but in
order to get to more interesting topics, I have to assume some familiarity with the notions
and results discussed in these sections. Of course, I’d be more than happy to explain and
discuss this material during the working sessions.

Sections 7–11 of these notes directly correspond to the topics that I intend to discuss in
my lectures. I have chosen to focus on results about Chow groups of abelian varieties, and
especially those results that can be formulated (but not necessarily proven) without using
the language of Chow motives. The first topic is Fourier duality and the so-called Beauville
decomposition; the main results about this are due to Mukai [34] and Beauville [4], [5].
Next we shall discuss the action of the Lie algebra sl2 on CH(X)Q, which appears in the
literature in several forms; the main results go back to work of Mukai and Polishchuk, and
in the form presented here to work of Künnemann. In Section 10 we discuss some results
about 0-cycles; these results work with integral coefficients, but as we shall see, a large
part of CH0(X) is already a Q-vector space, at least over an algebraically closed base field.
The last topic of my lectures, which corresponds to Section 11 of these notes, concerns an
attempt to say something about how big (or small) Chow groups are. This is a topic about
which many questions remain open (for instance, the precise nature of the torsion in Chow
groups seems not yet fully understood), but at least there are some clear statements that
tell us that, over a sufficiently big base field, Chow groups tend to be very large.

The third part of these notes, Sections 12 and 13, are about Chow motives; this is aimed
mostly at students who want to work on one of the projects. I will set up my lectures in
such a manner that you can follow them without ever looking at these sections. However,
for several more advanced results about Chow groups, some knowledge of Chow motives
seems indispensable, and as this is a very rich theory which remains full of mysteries, I can
only encourage you to explore this.

A thorough treatment of these topics would require a sizeable volume, and much of what
is in these notes is no more than a summary of the most important facts, though for some
of the main results full proofs are given. These notes contain no new results, and nothing of
what I present is due to me. The short sections entitled ‘Further reading’ give some pointers
to the literature. While in many cases I have included references to the original papers, I
apologise in advance if I have not given enough credit to someone’s contributions.

I thank the organizers of the AWS 2024 for the invitation to be one of the lecturers and
for their help and support. I look forward to what I’m sure is going to be a great event!

Ben Moonen

b.moonen@science.ru.nl
Radboud University Nijmegen, IMAPP, Nijmegen, The Netherlands
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PART 1

Basic notions





1. Abelian varieties

Throughout this section, k denotes a field.

1.1 Definition. (1) An abelian variety over k is a connected k-group scheme X such that
the structural morphism X → Spec(k) is smooth and proper.

(2) If X and Y are abelian varieties over k then by a homomorphism of abelian varieties
f : X → Y we mean a homomorphism of k-group schemes.

1.2. Basic facts. We list a couple of standard properties of abelian varieties. Let X/k be
an abelian variety.

• The group structure on X is commutative. In particular, if T is any k-scheme, the
group of T -valued points X(T ) is abelian. We shall use additive notation; this means
we have an origin e = eX ∈ X(k), and if P , Q ∈ X(T ) then we write P +Q for their
sum and −P for the inverse of P . If n ≥ 0 is a integer then nP means P + · · ·+P (n
terms) and (−n)P = −(nP ). We write [n] : X → X for the homomorphism given by
P 7→ nP . For P ∈ X(k) we call the morphism tP : X → X given by Q 7→ P +Q the
translation by P .

• An abelian variety X over k is projective, i.e., there exist an embedding of X into a
projective space over k. (This does not extend to abelian schemes: if S is a scheme,
there is the notion of an abelian scheme over S, but such abelian schemes are not, in
general, projective S-schemes.)

• Let X and Y be abelian varieties over k. If f : X → Y is a morphism of k-schemes
such that f(eX) = eY then f is a homomorphism. Every morphism of k-schemes
f : X → Y can be written as a composition t◦h, where t : Y → Y is a translation and
h : X → Y is a homomorphism.

• The endomorphisms End(X) of X (i.e., the homomorphisms from X to itself) form a
ring, with addition given by the rule (f + g)

(
P
)
= f(P )+ g(P ) and with composition

of endomorphisms as multiplication. This ring End(X) is free of finite rank as a Z-
module. We write End0(X) = End(X)⊗Q, which is a finite dimensional Q-algebra.

1.3. Isogenies. Let X and Y be abelian varieties over k. Let f : X → Y be a homomor-
phism. Then the following conditions are equivalent:
(a) dim(X) = dim(Y ) and f is surjective;
(b) dim(X) = dim(Y ) and Ker(f) is a finite group scheme;
(c) f is finite flat and surjective.
If these conditions are satisfied, the rank of the group scheme Ker(f) equals the degree of
the function field extension f∗ : k(Y ) ↪→ k(X).

1.4 Definition. A homomorphism f : X → Y is called an isogeny if the equivalent con-
ditions in 1.3 are satisfied. If f is an isogeny, we define its degree by deg(f) =

[
k(X) :

k(Y )
]
= rk

(
Ker(f)

)
.

Two abelian varieties X and Y are said to be isogenous, notation X ∼ Y , if there exists
an isogeny X → Y .
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1.5. Basic facts (continued).

• If f : X → Y is an isogeny and k is algebraically closed, the map f : X(k)→ Y (k) on
k-valued points is surjective.

• Let X be an abelian variety of dimension g. If n is an integer, n ̸= 0, the multiplication
by n map [n]X : X → X, given by P 7→ nP is an isogeny of degree n2g.

• Being isogenous is an equivalence relation: if there exists an isogeny f : X → Y of
degree d, there exists an isogeny g : Y → X such that g ◦ f = [d]X and f ◦ g = [d]Y .
In this case, End0(X) and End0(Y ) are isomorphic Q-algebras.

• An abelian variety X is said to be simple if X has no abelian subvarieties other than
0 and X itself. This is equivalent to the condition that End0(X) is a division algebra.
Note that this notion is relative to the base field: if k ⊂ L is a field extension and X

is a simple abelian variety over k, the abelian variety XL over L may not be simple.
However, if k is separably closed, the property of being simple is preserved under
arbitrary field extensions.

• Let X be an abelian variety. Then there exist simple abelian varieties Y1, . . . , Yt, no
two of which are isogenous, and positive integers m1, . . . ,mt, such that

X ∼ Y m1
1 × · · · × Y mt

t .

Up to isogeny and a renumbering, the factors Yj that occur, as well as their multiplic-
ities, are uniquely determined.

2. Line bundles on abelian varieties

We start with two general results from algebraic geometry that give criteria for when a line
bundle on a product of varieties is trivial. These criteria lie at the basis of several important
results about abelian varieties.

As a general convention, if k is a base field then by a variety over k we shall mean a
reduced and irreducible k-scheme that is separated and of finite type over k.

2.1 See-saw Principle. Let X and Y be varieties over a field k such that X is complete
and geometrically integral. Let prY : X × Y → Y be the projection map. Let L be a line
bundle such that L |X×{y} ∼= OXk(y)

for every y ∈ Y , where k(y) denotes the residue field
of y. Then there exists a line bundle M on Y such that L ∼= pr∗Y M . If additionally there
exists a point x ∈ X such that L |{x}×Y

∼= OYk(x)
then L ∼= OX×Y .

2.2 Theorem. Let X, Y , Z be smooth complete varieties over k with base points x ∈ X(k),
y ∈ Y (k) and z ∈ Z(k). If L is a line bundle on X × Y ×Z whose restrictions to the three
faces

{x} × Y × Z , X × {y} × Z , X × Y × {z}

are all trivial then L ∼= OX×Y×Z .
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Now assume X is an abelian variety with origin e, and take Y = Z = X. In the following
result, write pri : X

3 → X (for i = 1, 2, 3) for the projection map (x1, x2, x3) 7→ xi, write
mij for the map (x1, x2, x3) 7→ xi + xj , and let m123 : X

3 → X be the summation map
(x1, x2, x3) 7→ x1 + x2 + x3.

2.3 Theorem of the Cube. Let X be an abelian variety over a field k. Let L be a line
bundle on X. Then the line bundle

Θ(L ) = m∗
123L ⊗m∗

12L
−1 ⊗m∗

13L
−1 ⊗m∗

23L
−1 ⊗ pr∗1L ⊗ pr∗2L ⊗ pr∗3L

on X ×X ×X is trivial.

We could also write
Θ(L ) =

⊗
J⊂{1,2,3}

m∗
J(L )(−1)1+#J

,

where mJ : X
3 → X is the map (x1, x2, x3) 7→

∑
j∈J xj . (Note that m∅ is the zero map, so

m∗
∅L is trivial.)

2.4 Corollary. Let L be a line bundle on an abelian variety X.
(1) If Y is any k-scheme and f , g, h : Y → X are morphisms then

(f + g + h)∗L ⊗ f∗L ⊗ g∗L ⊗ h∗L ∼= (f + g)∗L ⊗ (f + h)∗L ⊗ (g + h)∗L

as line bundles on Y .
(2) If x, y ∈ X(k) then t∗x+yL ⊗L ∼= t∗xL ⊗ t∗yL . (Theorem of the Square)
(3) If n ∈ Z then

[n]∗L ∼= L n(n+1)/2 ⊗
(
[−1]∗L

)n(n−1)/2
.

Proof. For (1), take the pullback of Θ(L ) along the morphism (f, g, h) : Y → X3. For (2),
take f = idX , and let g and h be the constant maps X → X with images x and y. For (3),
first take f = [n]X , g = idX and h = −idX , which gives the relation

[n]∗L 2 ⊗ [n+ 1]∗L −1 ⊗ [n− 1]∗L −1 ∼= (L ⊗ [−1]∗L )−1 .

Now proceed by upward and downward induction on n, starting from the cases n = −1, 0, 1.

2.5. Corollary 2.4(3) says something that will be important for us. Namely,

• if L is a symmetric line bundle, by which we mean that [−1]∗L ∼= L , then

[n]∗L ∼= L n2
;

so in this case the effect of [n]∗ is quadratic;
• if L is an antisymmetric line bundle, by which we mean that [−1]∗L ∼= L −1, then

[n]∗L ∼= L n ;

so in this case the effect of [n]∗ is linear.
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Moreover, for an arbitrary line bundle L we can write

L 2 =
(
L ⊗ [−1]∗L

)
⊗
(
L ⊗ [−1]∗L −1

)
, (2.5.1)

in which the first factor is symmetric and the second factor is an antisymmetric line bundle.
We shall later interpret these statements as a first instance of the Beauville decomposi-

tion of the Chow group of X; see in particular Example 8.9.

3. Picard varieties

We continue our study of line bundles, now from the perspective of moduli. As we shall
see later, every abelian variety arises as (a component of) a moduli space of line bundles on
some other variety.

3.1. Let Y be a scheme over a field k. Suppose T is a k-scheme and L is a line bundle on
Y × T . For every point t ∈ T (k), we get a line bundle Lt on Y . In this way we may think
of L as a family of line bundles on Y , parametrized by T .

The question that arises is whether there exists a moduli scheme of line bundles. Con-
cretely, one can ask if there exists a k-scheme P and a line bundle P on Y × P , which is
universal in the sense that for every other k-scheme T and line bundle L on Y × T , there
exists a unique morphism ϕ : T → P over k such that L ∼= (idY × ϕ)∗P as line bundles on
Y × T . For technical reasons, this is too optimistic and we have to phrase the problem in
a slightly different manner. We restrict ourselves to the situation where Y is an irreducible
smooth projective k-scheme that has a k-rational point ε ∈ Y (k). If T is a k-scheme, we
denote by εT : T → Y × T the section given on points by t 7→ (ε, t).

3.2 Definition. Let T be a k-scheme. If L is a line bundle on Y ×T then by a rigidification
of L along {ε} × T we mean an isomorphism α : ε∗TL

∼−−→ OT . A pair (L , α) of a line
bundle and a rigidification is called a rigidified line bundle (with respect to the base point ε).

Let prT : Y × T → T be the projection morphism. We claim that if L is an arbitrary
line bundle on Y × T then we have a canonical rigidification of the line bundle L ′ =

L ⊗pr∗T ε
∗
TL −1. Indeed, because prT ◦εT = idT , we have a natural isomorphism ε∗TL ′ ∼−−→

ε∗TL ⊗ε∗TL −1 = OT . If Y is an irreducible variety then to work with rigidified line bundles
is in fact the same as working with line bundles modulo pullbacks of line bundles from the
base scheme, see Theorem 3.4(2) below.

3.3. We denote by PicY/k,ε(T ) the group of isomorphism classes of rigidified line bundles
on Y × T . The group structure is given by the tensor product: if (L , α) and (M , β) are
rigidified line bundles on Y × T , we define their product to be the pair (L ⊗M , α ⊗ β),
where α⊗ β is the rigidification given by the composition

ε∗T (L ⊗M ) = ε∗T (L )⊗ ε∗T (M )
∼−−−−→

α⊗β
OT ⊗OT

OT
∼−−−→
can

OT .

The group PicY/k,ε(T ) is abelian, and T 7→ PicY/k,ε(T ) is a contravariant functor from the
category Schk of k-schemes to the category Ab of abelian groups.

6



3.4 Theorem. Let Y be an irreducible smooth projective k-scheme with base point ε ∈ Y (k).

(1) The functor PicY/k,ε : Sch
op
k → Ab is representable. This means that there exists a

k-group scheme PicY/k,ε and a line bundle P on Y × PicY/k,ε with rigidification αP

along {ε}×PicY/k,ε that has the following universal property: for every k-scheme T and
rigidified line bundle (L , α) on Y ×T , there exists a unique morphism ϕ : T → PicY/k,ε
over k such that (L , α) ∼= (idY × ϕ)∗(P, αP) as rigidified line bundles on Y × T .

(2) If T is a k-scheme, we have a short exact sequence

0 −→ Pic(T )
pr∗T−−−→ Pic(Y ×k T )

r−−→ PicY/k,ε(T ) −→ 0 ,

where r is the map that sends a line bundle L on Y × T to L ⊗ pr∗T ε
∗
TL −1 with its

canonical rigidification. The map PicY/k,ε(T )→ Pic(Y ×k T ) that forgets the rigidifca-
tion is a section of r.

(3) The connected components of PicY/k,ε are irreducible projective k-schemes. If char(k) =
0, these components are smooth over k.

For a detailed discussion, we refer to [13], Chapter 8. Note that over fields of character-
istic p, the components of PicY/k,ε are not necessarily reduced.

The scheme PicY/k,ε is called the Picard scheme of Y . We have presented here the
version via rigidified line bundles that requires the existence of a k-rational base point; in
full generality the Picard scheme is defined as the fppf sheafification of the naive Picard
functor, but in the situation considered above, the result is the same.

3.5 Example. Let C/k be a smooth projective (irreducible) curve of genus g. Assume C

has a k-rational point ε ∈ C(k). (This assumption is made only to simplify the exposition
and is not essential.) We define the Jacobian of C to be the identity component Pic0C/k,ε,
and we use the notation Jac(C) for it. It can be shown that Jac(C) is smooth over k and
is therefore an abelian variety. Its dimension equals g.

The previous example is of great importance; while not all abelian varieties are Jacobians
of curves, it can be shown that every abelian variety over an algebraically closed field is at
least a quotient of a Jacobian. Throughout the development of the theory, the link between
curves and abelian varieties has played an important role.

As we shall see in Theorem 4.6, every abelian variety is the Pic0 of some smooth pro-
jective variety.

3.6. Let Y and Z be irreducible smooth projective k-schemes and let f : Y → Z be a
morphism. Assume we have a k-rational point εY ∈ Y (k), and let εZ = f(εY ). We have
a universal line bundle PZ on Z × PicZ/k,εZ with rigidification α along {εZ} × PicZ/k,εZ .
The pullback (f × id)∗PZ is a line bundle on Y ×PicZ/k,εZ with rigidification along {εY }×
PicZ/k,εZ . By the universal property of the universal rigidified line bundle PY , there exists
a unique k-morphism

P (f) : PicZ/k,εZ → PicY/k,εY
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such that
(f × id)∗PZ

∼=
(
id× P (f)

)∗
PY

as rigidified line bundles on Y ×PicZ/k,εZ . The morphism P (f) is in fact a homomorphism
of group schemes. We normally use the notation f∗ for it. (Note that, by construction, if M

is a rigidified line bundle on Z that corresponds to a point u ∈ PicZ/k,εZ (k), the image point
f∗(u) ∈ PicY/k,εY (k) corresponds to the rigidified line bundle f∗(M ). So the notation f∗ is
natural.)

In this way we see that a morphism f : Y → Z with f(εY ) = εZ gives rise to a homo-
morphism f∗ : PicZ/k,εZ → PicY/k,εY . Note that f ⇝ f∗ is contravariant: (g ◦ f)∗ = f∗ ◦ g∗.

4. Duality of abelian varieties

4.1 Theorem. Let X/k be an abelian variety with origin e ∈ X(k). Then PicX/k,e is
smooth over k and the identity component Xt = Pic0X/k,e is an abelian variety of the same
dimension as X.

In what follows, we simply write PicX/k instead of PicX/k,e.

4.2 Definition. Let X/k be an abelian variety. Then Xt = Pic0X/k is called the dual abelian
variety. The rigidified line bundle (P, αP) on X ×Xt as in Theorem 3.4(1) is called the
Poincaré bundle.

Note that we use the term Poincaré bundle both for the universal (rigidified) line bundle
on X×PicX/k,e and for its restriction to X×Xt = X×Pic0X/k. By Theorem 3.4(2) we have
PicX/k(k) = Pic(X), and Xt(k) is the subgroup Pic0(X) ⊂ Pic(X) of line bundles that lie
in the identity component of PicX/k; such line bundles are said to be algebraically trivial.

We shall use the symbol e both for the origin of X and for the origin of the dual abelian
variety Xt. This should not lead to confusion.

4.3. If f : X → Y is a homomorphism of abelian varieties, we are in the situation of 3.6, with
the origins eX and eY as base points. As explained there, f gives rise to a homomorphism
f∗ : PicY/k → PicX/k. This homomorphism maps the identity component Y t = Pic0Y/k to
the identity component Xt = Pic0X/k, and thus gives a homomorphism

f t : Y t → Xt

of the dual abelian varieties, called the dual of the homomorphism f . Now consider the
diagram

X × Y t

Y × Y t X ×Xt

f×id id×f t

By construction, f t has the property that

(f × idY )
∗PY

∼= (idX × f t)∗PX (4.3.1)

as rigidified line bundles on X × Y t, and this identity characterizes f t.
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4.4. Basic properties.
(1) If g : Y → Z is a second homomorphism of abelian varieties, (g ◦ f)t = f t ◦ gt.
(2) The construction of dual homomorphisms is compatible with the addition: if f1,

f2 : X → Y are homomorphisms, (f1 + f2)
t = f t

1 + f t
2.

Note that this last assertion is not at all obvious, and in fact, it is only true on the
identity components of the Picard schemes. To explain this in more detail, recall that the
homomorphisms fi induce homomorphisms of group schemes f∗

i : PicY/k,e → PicX/k,e. The
remark, then, is that for these pullback homomorphisms it is not true that (f1+f2)

∗ equals
f∗
1 + f∗

2 . We see this for instance from Corollary 2.4(3), as [1 + 1]∗L = [2]∗L is in general
not isomorphic to L 2.

4.5. Duality. Let PX be the Poincaré line bundle on X×Xt, which comes equipped with
a rigidification α along {e}×Xt. There exists a unique rigidification α′ of PX along X×{e}
such that the two rigidifications are the same on (e, e). Let σ : X ×Xt → Xt ×X be the
morphism that exchanges the two factors. Then (σ∗PX , α′) is a rigidified line bundle on
Xt × X. We can think of it as a family of line bundles on Xt parametrized by X. By
definition of the double dual abelian variety Xtt = (Xt)t, we have a Poincaré bundle PXt

on Xt × Xtt, and its universal property gives us a unique homomorphism κX : X → Xtt

such that σ∗PX
∼= (idXt , κX)∗PXt as rigidified line bundles on Xt ×X.

4.6 Theorem.
(1) The homomorphism κX : X → Xtt is an isomorphism of abelian varieties.
(2) Let f : X → Y be a homomorphism of abelian varieties. Under the identifications

κX : X
∼−−→ Xtt and κY : Y

∼−−→ Y tt we have f tt = f .

The interpretation of this is that the functor X 7→ Xt really gives a duality theory. In
what follows we always identify X and Xtt via the canonical isomorphism κX .

4.7. It turns out that the dual of an abelian variety X is always isogenous (but in general
not isomorphic!) to X. To see this, we use the following construction.

Let L be a line bundle on an abelian variety X. For every point x ∈ X(k) we
have the translation tx : X → X, and the class of the line bundle t∗xL ⊗ L −1 lies in
Xt(k) = Pic0X/k(k). (This is not obvious but it will follow from the arguments below.)
By the Theorem of the Square (see Corollary 2.4), the map x 7→ [t∗xL ⊗ L −1] defines a
homomorphism ϕL : X(k) → Xt(k). We claim that it in fact defines a homomorphism of
abelian varieties ϕL : X → Xt. One way to prove this is to extend the construction as just
described to T -valued points, for arbitrary k-schemes T . Another, perhaps simpler, way to
proceed is to consider the line bundle

Λ(L ) := m∗L ⊗ pr∗1L
−1 ⊗ pr∗2L

−1

on X ×X, where m : X ×X → X is the group law. (This bundle is sometimes called the
Mumford line bundle given by L .) Note that the restrictions of Λ(L ) to {e} ×X and to
X × {e} are canonically isomorphic to OX . If we view the first factor X as our abelian
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variety and the second factor X as a parameter space, then by definition of PicX/k there
exists a unique morphism of k-schemes ϕL : X → PicX/k such that

Λ(L ) ∼= (idX × ϕL )∗P

as rigidified line bundles. (See Theorem 3.4(1).) Because the restriction of Λ(L ) to X×{e}
is trivial, ϕL (e) is the origin of PicX/k, and since X is connected it follows that ϕL factors
through the identity component Xt = Pic0X/k. The conclusion is that we have a morphism

ϕL : X → Xt ,

which by the facts stated in 1.2 is a homomorphism of abelian varieties. Note that the
restriction of Λ(L ) to X × {x} is the line bundle t∗xL ⊗L −1, so ϕL is indeed the homo-
morphism given by x 7→ [t∗xL ⊗L −1].

4.8. Basic facts. Let X be an abelian variety over k.
(1) If L is a line bundle on X, the homomorphism ϕL : X → Xt is self-dual, in the sense

that ϕt
L = ϕL . (Here we use the canonical identification Xtt = X.) The reason for

this is simply that the line bundle Λ(L ) on X ×X is symmetric with respect to the
exchange of the two factors.

(2) Writing Homsym(X,Xt) ⊂ Hom(X,Xt) for the subgroup of self-dual homomorphisms,
we have a short exact sequence of abelian groups

0 −→ Xt(k) −→ PicX/k(k)
ϕ−−→ Homsym(X,Xt) .

In other words, the kernel of the map L 7→ ϕL is given by the line bundles L

that are algebraically trivial. If the base field k is algebraically closed then the map
ϕ : PicX/k(k)→ Homsym(X,Xt) is surjective.

(3) Let P be the Poincaré bundle on X ×Xt. If L is a symmetric line bundle on X (i.e.,
a line bundle with [−1]∗L ∼= L ) then (idX , ϕL )∗P ∼= L 2.

4.9. Using these facts, we arrive at several different ways to characterize the line bundles L

on X that are algebraically trivial. Namely, if L is a line bundle on an abelian variety X,
the following properties are equivalent:
(a) The class [L ] ∈ PicX/k(k) lies in the identity component Pic0X/k = Xt, i.e., L is

algebraically trivial.
(b) The associated homomorphism ϕL : X → Xt is zero.
(c) We have Λ(L ) ∼= OX×X .
(d) We have [−1]∗XL ∼= L −1.
(e) For all n ∈ Z we have [n]∗XL ∼= L n.
To see this: (a) ⇔ (b) is contained in the above fact (2). The equivalence (b) ⇔ (c) follows
from the See-saw Principle 2.1, because ϕL = 0 just says that all line bundles Λ(L )|X×{x}
are trivial. For (c) ⇔ (d) one uses that ϕ[−1]∗L = ϕL (exercise!) whereas ϕL −1 = −ϕL .
Finally, (d) ⇔ (e) follows from Corollary 2.4(3).
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The implication (a) ⇒ (e) gives as conclusion that(
[n]X

)t
= [n]Xt

for all n ∈ Z.
The group

NS(X) = Pic(X)/Pic0(X)

is called the Néron–Severi group of X. For an arbitrary line bundle L on X we can write
Corollary 2.4(3) as

[n]∗XL ∼= L n2 ⊗
(
L −1 ⊗ [−1]∗L

)n(n−1)
2 ,

and because L −1 ⊗ [−1]∗L is algebraically trivial, we see that [n]∗X acts as multiplication
by n2 on NS(X). Thus we have a short exact sequence

0 −→ Pic0(X) −→ Pic(X) −→ NS(X) −→ 0

with [n]∗X acting as multiplication by n on the first term and as multiplication by n2 on
the last term. If we tensor this sequence with Q (in fact, Z

[
1
2

]
suffices) then the sequence

naturally splits; we shall return to this in Example 8.9.

4.10 Corollary. Let P be the Poincaré bundle on X ×Xt. Then for every n ∈ Z we have

([n]X , id)∗P ∼= Pn ∼= (id, [n]Xt)∗P . (4.10.1)

Proof. By construction, all line bundles P|X×{ξ}, for ξ ∈ Xt, are algebraically trivial. By
using (a) ⇔ (e) from 4.9 it follows that (id, [n]Xt)∗P and Pn have the same restrictions
to all X × {ξ}. As they both restrict to the trivial line bundle on {e} ×Xt, it follows from
the See-saw Principle 2.1 that they are isomorphic. By duality (exchanging the roles of X
and Xt) it follows that also ([n]X , id)∗P ∼= Pn.

As we have just seen, if a line bundle L on an abelian variety X is algebraically trivial
then ϕL is the zero homomorphism. On the other hand, if we take an ample line bundle L

(which always exists, because an abelian variety over a field is projective) then ϕL turns
out to be an isogeny. When working over an aritrary base field, it makes sense to consider
a slightly larger class of homomorphisms X → Xt that can be characterized in several
equivalent ways, as follows.

4.11 Proposition. Let X/k be an abelian variety. Let P be the Poincaré bundle on X×Xt

and let λ : X → Xt be a homomorphism. Then the following properties are equivalent:
(a) λ is a self-dual isogeny and the line bundle (idX , λ)∗P on X is ample;
(b) there exists a field extension k ⊂ K and an ample line bundle L on XK such that

λK = ϕL ;
(c) there exists a finite separable field extension k ⊂ K and an ample line bundle L on XK

such that λK = ϕL .
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Note that, for a self-dual homomorphism λ : X → Xt, there always exists a line bun-
dle M on X such that ϕM = 2λ, namely the bundle M = (idX , λ)∗P. However, over an
arbitrary base field there does not, in general, exist an L such that λ = ϕL . The propo-
sition says that such a bundle L does exist after a finite separable extension of the base
field.

The isogenies X → Xt as in the proposition have some important positivity properties,
and they merit a special name:

4.12 Definition. A homomorphism λ : X → Xt is called a polarization of X if it satisfies
the equivalent conditions of Proposition 4.11.

In particular, over k = k̄ the isogenies are precisely the homomorphisms of the form
ϕL : X → Xt for L an ample line bundle on X. Note, however, that ϕL only depends on
the connected component of PicX/k that contains [L ], so different ample bundles can give
the same isogeny.

4.13 Remark. A line bundle L on X is said to be nondegenerate if ϕL : X → Xt is
an isogeny. By the above, every ample line bundle is nondegenerate, but ampleness is a
much stronger notion. For instance, if X is a simple abelian variety, it follows from the
exact sequence of 4.8(2) that every line bundle that is not algebraically trivial is in fact
nondegenerate.

We conclude this section with an important technical result about the cohomology of
the Poincaré bundle that we will later use in our discussion of Fourier duality.

4.14 Theorem. Let X be a g-dimensional abelian variety over a field k. Let P be the
Poincaré bundle on X × Xt, and let pr1 : X × Xt → X be the first projection. Let
e : Spec(k)→ X be the origin of X. Then

Rnpr1,∗P
∼=

{
e∗(k) for n = g;

0 otherwise.

Consequently, Hg(X ×Xt,P) ∼= k and Hn(X ×Xt,P) = 0 for all n ̸= g.

Note: by e∗(k) we mean the skyscraper sheaf at the origin with fibre k.

4.15. Further reading. A great deal about abelian varieties can be learned from Mum-
ford’s book [36]. Note, however, that in this book results are proven only over algebraically
closed fields; further, Mumford’s discussion of the dual abelian variety is unsatisfactory, in
that he directly constructs the dual and does not really explain that it is the identity com-
ponent of the Picard scheme, which for many purposes gives a much more natural picture.

There are several sets of notes on abelian varieties available. Some chapters of an
unfinished book manuscript by Van der Geer and the author of these notes can be found at
www.math.ru.nl/∼bmoonen/research.html. There are notes by (Brian) Conrad and notes
by Milne, available on their respective websites. A detailed discussion of Picard schemes
can be found in [13], Chapter 8.
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5. Chow groups

Recall that if k is a field then by a variety over k we mean a reduced and irreducible k-
scheme that is separated and of finite type over k. Note that this notion of a variety is not
stable under extension of scalars; so if X/k is a variety and k ⊂ k′ is a field extension, the
k′-scheme Xk′ that is obtained from X by extension of scalars is not, in general, a variety
over k′, as it may be non-reduced or reducible. Similarly, the product X×kY of two varieties
is not a variety, in general. These problems do not occur if k is algebraically closed. (See
[50], Lemmas 020I and 05P3.)

If X is a scheme over k then by a subvariety of X we mean a closed subscheme Z ⊂ X

that itself is a variety over k.
Even though we are mainly interested in Chow groups of varieties, it is useful to work

in greater generality when setting up the basic notions.

5.1 Definition. Let X be k-scheme of finite type. Then we define Zj(X) to be the free
abelian group on the set of subvarieties Z ⊂ X of dimension j. If all components of X have
dimension d then we define Z j(X) = Zd−j(X).

Note that in order to talk about the codimension of a cycle, we should assume X is
equidimensional. (Consider the scheme X ⊂ A3 given by the equations xy = xz = 0; then
what is the codimension of the origin O = (0, 0, 0) in X ?) In geometry, the grading by
codimension (the ‘cohomological grading’) plays an important role, because for a smooth
variety X the intersection product makes CH∗(X) into a graded ring (see below). However,
to develop the general theory, allowing fairly general schemes X, one usually works with
the grading by the dimension of cycles. (Note, for instance, that in the Stacks Project [50],
the grading by codimension is not introduced until Section 0FE2.)

5.2. Rational equivalence. The groups Zj(X) are big and do not have much structure.
We obtain more interesting groups by dividing out suitable equivalence relations on algebraic
cycles, for which there are several choices. The most relevant for us is rational equivalence
(notation ∼rat); we here follow [21], Chapter 1.

The definition of rational equivalence relies on the fact that if Y is a variety with function
field k(Y ), and if V ⊂ Y is a subvariety of codimension 1, we can define a homomorphism

ordV : k(Y )∗ → Z

such that ordV (f) measures the order of vanishing of f along V . The local ring OY,V of Y
along V is a 1-dimensional domain with fraction field k(Y ), and for 0 ̸= f ∈ OY,V we
have ordV (f) = length

(
OY,V /(f)

)
, the length of OY,V /(f) as an OY,V -module. (If V is

not contained in the singular locus of Y then OY,V is a dvr and ordV is the corresponding
discrete valuation.) For a given f ∈ k(Y )∗ there are only finitely many subvarieties V ⊂ Y

of codimension 1 such that ordV (f) ̸= 0, which allows to define div(f) =
∑

V ordV (f) · [V ].
Let now X be a k-scheme of finite type. For simplicity we assume that all irreducible

components of X have dimension d. Two cycles α, β ∈ Zj(X) with j < d are defined to
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be rationally equivalent if there exist (j + 1)-dimensional subvarieties Y1, . . . , Yt of X and
rational functions fm ∈ k(Ym)∗ (m = 1, . . . , t) such that

β − α = div(f1) + · · ·+ div(ft)

as cycles on X. Two cycles of dimension d are rationally equivalent if and only if they are
equal. (Note that Zd(X) is the free abelian group on the set of irreducible components
of X.) We refer to [21], Chapter 1 for the basic properties of this notion.

As explained in ibid. Section 1.6, we can also take a more geometric approach. For this,
suppose we have a subvariety V ⊂ X × P1 of dimension (j + 1) for which the projection
map V → P1 is dominant. For P ∈ P1(k), the scheme-theoretic fibre f−1{P} defines a j-
dimensional cycle V (P ) on X (cf. 5.5 below), and we may think of the V (P ) as a family of
j-dimensional cycles on X parametrized by P1. Rational equivalence on Zj(X) is then the
equivalence relation that is generated by the relations V (P ) ∼ V (Q) for any V ⊂ X × P1

as above and any P , Q ∈ P1(k). In fact, the name rational equivalence comes from the
fact that we allow cycles to move in a family parametrized by a rational (connected) curve.
Varying on this idea, we define algebraic equivalence of cycles in the same way, except that
we now allow families that are parametrized by an arbitrary connected base curve. See
Definition 7.5 for a more precise version.

5.3 Definition. Let X/k be an equidimensional k-scheme of finite type. Then we define

CHi(X) = Z i(X)/∼rat , CHj(X) = Zj(X)/∼rat .

These are called the Chow group of codimension i cycles, resp. of j-dimensional cycles.
Further, we define

CH(X) =

dim(X)⊕
i=0

CHi(X) =

dim(X)⊕
j=0

CHj(X) .

Finally, we define

CH(X)Q = CH(X)⊗Z Q ,

(and CHi(X)Q = CHi(X)⊗Q, etc).

If we want to indicate that we consider CH(X) with its grading by codimension (resp.
dimension) of cycles, we use the notation CH∗(X), resp. CH∗(X).

5.4 Example. Assume X is a smooth variety over k. Then CH1(X) is just the usual divisor
class group. By the correspondence between line bundles and divisor classes we have an
isomorphism

c1 : Pic(X)
∼−−→ CH1(X) .

(We shall return to this in Section 6.)
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5.5. If Z ⊂ X is a subvariety, say of codimension i, we denote by [Z] its class in CHi(X).
More generally, if Z ⊂ X is any closed subscheme, not necessarily reduced or irreducible,
let Z1, . . . , Zt be its irreducible components, and let OZ,Zj be the corresponding local rings.
(The Zj correspond to the generic points ηj of the scheme Z, and then OZ,Zj is the stalk
of OZ at ηj .) Then each OZ,Zj is a artinian local ring, and we define the cycle class of Z
in CH(X) by the rule

[Z] =
t∑

j=1

lengthOZ,Zj
(OZ,Zj ) · [Zj ] .

5.6. Remark. We shall be mostly interested in Chow groups of abelian varieties, which
are very interesting objects that are rich in structure. At the same time, these Chow groups
are extremely subtle and complicated objects; they can be very big and may have a lot of
torsion. Their structure strongly depends on the type of field over which we work. There
are many things that we do not yet know about such Chow groups, and many things that
we do know have been established only fairly recently, using sophisticated techniques.

In these notes, I focus on Chow groups of smooth projective k-varieties. This will suffice
for the purposes of my lectures, though many facts about Chow groups are valid much
more generally. Fulton’s book [21] is the canonical reference for this, but much of what
is discussed there concerns situations that are more difficult to handle than what we shall
need. For a somewhat gentler introduction to intersection theory, also [22] is recommended.
For an introduction from a much more geometric perspective, see [18].

What follows is a brief summary of some of the main structures on Chow groups that
we shall use. (Appendix A of [23] also contains a very useful summary.) The technical
details and proofs of the main properties go far beyond what we can summarize in a couple
of paragraphs; for this you will need to consult the literature.

5.7. Push-forward. If f : X → Y is a proper morphism of k-varieties, it induces a homo-
morphism f∗ : CH(X) → CH(Y ) that preserves the grading by dimension of cycles. Con-
cretely, f∗ can be described as follows. If Z ⊂ X is a subvariety, f(Z) ⊂ Y is again a closed
subvariety (because f is proper). If the map f : Z → f(Z) is generically finite of degree d

then we define f∗[Z] = d ·
[
f(Z)

]
. If f : Z → f(Z) is not generically finite, f∗[Z] = 0. The

map f∗ is obtained by extending this linearly, i.e., f∗
(∑

mi[Zi]
)
=

∑
mif∗[Zi]. One has

to prove that this operation on cycles gives rise to a well-defined operation on Chow groups;
we refer to [21], Section 1.4 for this, and for further discussion of the basic properties of f∗.
If g : Y → Z is a second proper morphism then (g ◦ f)∗ = g∗ ◦ f∗.

5.8. Pullback and Gysin homomorphisms. Most of the work in intersection theory
goes into defining suitable pullback operations, and proving that these have good properties.

The simplest situation to consider is that of a flat morphism f : X → Y of some fixed
relative dimension, say n. In that case we have a pullback operation f∗ : Zj(Y )→ Zj+n(X)

already on the level of cycles, given by the rule f∗(Z) = [f−1(Z)] for a subvariety Z ⊂ Y ,
where by f−1(Z) we mean the scheme-theoretic inverse image. This operation respects ratio-
nal equivalence ([21], Theorem 1.7) and therefore induces maps f∗ : CHj(Y )→ CHj+n(X).
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The second situation to consider is that of a regular embedding f : X ↪→ Y of some fixed
codimension d. (A regular embedding X → Y of codimension d is a closed immersion such
that the ideal sheaf of X in Y is locally generated by a regular sequence of length d.) In
this situation, we have well-defined homomorphisms f∗ : CHj(Y ) → CHj−d(X), called the
Gysin homomorphism. The construction is much more involved than in the case of a flat
pullback; we refer to [21], Chapter 6 for the details. In fact, the pullback operation that we
obtain is more general: still with the same assumptions on f , whenever we have a Cartesian
diagram

X ′ Y ′

X Y

f ′

g h

f

(5.8.1)

we obtain a well-defined homomorphism f ! : CHj(Y
′) → CHj−d(X

′). Note that this really
increases the generality, as the morphism f ′ may no longer be a regular embedding. It is
customary to use the notation f∗ for the pullback map CHj(Y )→ CHj−d(X) obtained from
a regular embedding and to use the notation f ! in the more general setting provided by a
diagram (5.8.1). If f ′ is again a regular embedding of codimension d (which is automatic if
h is flat) then f ! : CHj(Y

′) → CHj−d(X
′) is the same as (f ′)∗. (Caution: if f ′ is a regular

embedding of codimension < d then f ! is not the same as (f ′)∗; see the Excess Intersection
Formula of [21], Theorem 6.3. This also explains the need of a separate notation f !.)

The two previous cases can be combined to define Gysin maps f∗ for morphisms f : X →
Y that admit a factorization

X P

Y
f

i

p

with i a regular embedding of codimension d for some d ≥ 0 and p smooth of relative
dimension n+d for some n ∈ Z. Such morphisms are called lci morphisms, where lci stands
for ‘local complete intersection’. (In fact, this is not quite correct: an lci morphism is a
morphism that locally on Y admits such a factorization. For our purposes it suffices to
consider, as in [21], lci morphisms that globally admit a factorization as above.) In this
case, we define f∗ : CHj(Y ) → CHj+n(X) by the rule f∗ = i∗ ◦ p∗. The main point of this
definition is that the map f∗ thus obtained is independent of the choice of the factorization
f = p ◦ i. Again, the construction gives even more: if we have a Cartesian diagram (5.8.1)
with f an lci morphism then we obtain Gysin homomorphisms f ! : CHj(Y

′)→ CHj+n(X
′).

If in this diagram either h is flat or f is a flat lci morphism then f ′ is an lci morphism (see
[50], Lemmas 069I, 069K and 01UI) and f ! = (f ′)∗.

If f : X → Y and g : Y → Z are two lci morphisms then so is g◦f , and (g◦f)∗ = f∗ ◦g∗.
Note that if X and Y are smooth over k, every morphism f : X → Y is lci: consider the
factorization

X
(id,f)−−−−→ X × Y

prY−−−→ Y .
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5.9. Behaviour in Cartesian squares. Consider a Cartesian square as in (5.8.1)such
that f is an lci morphism. If h (and therefore also g) is a proper morphism then for every
α ∈ CH(W ) we have the relation f∗h∗(α) = g∗f

!(α). If either h is flat or f is a flat lci
morphism then f !(α) = f ′,∗(α) and we have the relation f∗h∗(α) = g∗f

′,∗(α).

5.10. Exterior products. Let X and Y be smooth varieties over k. If A ⊂ X and B ⊂ Y

are closed subschemes, then A × B ⊂ X × Y is again a closed subscheme, and the class
[A×B] ∈ CH(X × Y ) only depends on α = [A] ∈ CH(X) and β = [B] ∈ CH(Y ). We write
α× β for the class [A×B]. Extending this bilinearly, we obtain a map

CH(X)× CH(Y )→ CH(X × Y ) , (α, β) 7→ α× β ,

and α × β is called the exterior product of α and β. If α ∈ CHi(X) and β ∈ CHj(Y ) then
α× β ∈ CHi+j(X × Y ).

5.11. Intersection product. Let X be a smooth k-variety. Then CH∗(X) comes equipped
with a natural structure of a commutative graded ring. The multiplication is called the in-
tersection product; as the name suggests, it is closely related to intersections of algebraic
cycles. If A, B ⊂ X are subvarieties that intersect transversally, we have

[A] · [B] = [A ∩B] ,

where A ∩ B = A×X B is the scheme-theoretic intersection of A and B, which is a closed
subscheme of X.

To give a simple example, if A and B are subvarieties of X then A ×X = pr∗1(A) and
X × B = pr∗2(B) intersect transversally and the exterior product [A] × [B] of their classes
is the intersection product (A×X) · (X ×B).

Of course, cycles do not always intersect transversally (just think of the case A = B !).
One strategy to define the intersection product in general is based on the moving lemma. If
A and B do not intersect transversally, we could try to replace them by equivalent cycles A′

and B′ (i.e., we move A and B within their equivalence classes) in such a manner that A′

and B′ do intersect transversally. This strategy works, but it requires some work to prove
that the intersection product that is obtained is independent of choices. The definition of
the intersection product that is given in [21] uses another strategy and exploits the existence
of Gysin homomorphisms. Namely, the assumption that X is smooth over k implies that
the diagonal morphism ∆: X → X ×k X is an lci morphism (see the final remark in 5.8),
and this allows to define the intersection product of α ∈ CHi(X) and β ∈ CHj(X) by

α · β = ∆∗(α× β) .

The fundamental class [X] ∈ CH0(X) is the identity element for the intersection product.

5.12. Projection formula. If f : X → Y is a proper morphism of smooth k-varieties, we
have the projection formula

f∗
(
α · f∗(β)

)
= f∗(α) · β

for all α ∈ CH(X) and β ∈ CH(Y ).
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5.13. Behaviour under change of base field. If k ⊂ L is a field extension and X/k is
a smooth projective variety, we have a natural homomorphism i : CH(X)→ CH(XL). The
kernel of this homomorphism is torsion. (See for example [11], Appendix to Chap. 1; the
argument given there works in general.) If k is algebraically closed then it follows from a
result of Lecomte (see [31], Théorème 3.11) that the map i is in fact injective. The map i

is in general very far from surjective; we shal return to this in Section 11.

After this general introduction to Chow groups, we now turn to something that is special
for abelian varieties. As a general rule, every morphism of (smooth projective) varieties could
give interesting structures or relations on Chow groups via the associated push-forwards
and pullback operations. For instance, the group law on an abelian variety X, which is
a morphism m : X × X → X, gives rise to a second ring structure on CH(X), defined as
follows.

5.14 Definition. Let X/k be an abelian variety. Then we define the Pontryagin product

⋆ : CH(X)× CH(X)→ CH(X)

by the rule
α ⋆ β = m∗(α× β) .

The geometric intuition is that if α is the class of a subvariety Y ⊂ X and β is the
class of a subvariety Z ⊂ X then α ⋆ β should be r times the class of the subvariety
W =

{
y+ z

∣∣ y ∈ Y, z ∈ Z
}
, where r is the generic degree of the addition map Y ×Z →W .

If this last map is not generically finite, α ⋆ β = 0; this happens for instance as soon as
dim(Y ) + dim(Z) > dim(X).

5.15 Proposition. The Pontryagin product makes CH(X) = ⊕i CHi(X) into a commuta-
tive graded ring with respect to the grading by dimension of cycles. The class [eX ] ∈ CH0(X)

of the origin is the unit element for the Pontryagin product. If f : X → Y is a homo-
morphism of abelian varieties, f∗ : CH(X) → CH(Y ) is a homomorphism of rings for the
Pontryagin rings structures.

5.16. Further reading. As already mentioned, Fulton’s book [21] is the standard refer-
ence for intersection theory, with [22] as a somewhat lighter alternative. Another source is
Chapter 0AZ6 of the Stacks Project [50].

6. Chern characters and Grothendieck–Riemann–Roch

If the notions discussed in this section are new for you, skip the details upon first reading.

As before, k denotes a field.

6.1 Definition. Let L be a line bundle on a smooth k-variety X. Then we define c1(L ) ∈
CH1(X), the first Chern class of L , as the corresponding divisor class, i.e., c1(L ) = [D]
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for any divisor D such that L ∼= OX(D). Further, we define the Chern character ch(L ) ∈
CH(X)Q by

ch(L ) = exp
(
c1(L )

)
= 1 + c1(L ) +

c1(L )2

2!
+

c1(L )3

3!
+ · · ·

Note that c1(L )m ∈ CHm(X)Q, so that the sum defining ch(L ) is actually finite.

6.2. Grothendieck groups. Suppose C is a small exact category, i.e., an additive category
in which we have a well-behaved notion of exact sequences. In almost all cases, we shall
actually be dealing with an abelian category. The Grothendieck group K(C) is defined as

K(C) = Z(Obj(C))/∼ ,

where Z(Obj(C)) is the free abelian group on the set of objects of C, and where ∼ is the
equivalence relation that is generated by the relations [B] ∼ [A] + [C] whenever we have a
short exact sequence 0 −→ A −→ B −→ C −→ 0. For instance, if R is a ring and R-mod is
the category of finitely generated (left) R-modules, K(R-mod) is the free abelian group on
the set of isomorphism classes of simple R-modules of finite type.

Grothendieck groups can also be defined for triangulated categories (such as derived
categories). Namely, if D is a triangulated category, define

K(D) = Z(Obj(D))/∼ ,

where now ∼ is the equivalence relation that is generated by the relations [B] ∼ [A] + [C]

whenever we have a distinguished triangle A→ B → C →. It can be shown that if A is an
abelian category, we have a natural isomorphism K(A)

∼−−→ K
(
Db(A)

)
. If X is an object of

a triangulated category D, we have
[
X[1]

]
= −[X] in K(D) because we have a distinguished

triangle X → 0→ X[1]→.

6.3. Let X be a smooth quasiprojective k-variety. We denote by K0(X) the Grothendieck
group of the category of vector bundles on X. For a vector bundle V , let [V ] denote its
class in K0(X). By construction, K0(X) is an abelian group; it has the structure of a
commutative ring given by taking tensor products, i.e., [V ] · [W ] = [V ⊗W ].

We can also consider the Grothendieck group K0(X) of the category Coh(X) of coherent
sheaves on X. There is a natural homomorphism K0(X) → K0(X), sending the class of a
vector bundle V to the class of V viewed as a coherent sheaf. This map is an isomorphism;
this uses in an essential way that X is regular, as the key idea is that every coherent
OX -module has a finite resolution by vector bundles.

In what follows, we identify K0(X) and K0(X), and we simply write K(X) for this ring.
By the remark made at the end of 6.2, K(X) can also be described as the Grothendieck ring
of the derived category Db(X) = Db

(
Coh(X)

)
.

A morphism f : X → Y of quasi-projective smooth k-varieties induces a ring homomor-
phism f∗ : K(Y ) → K(X). If f is proper it also induces an additive map Rf∗ : K(X) →
K(Y ) by sending the class of a coherent OX -module F to

Rf∗[F ] =
∑
i≥0

(−1)i ·
[
Rif∗(F )

]
.
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(To understand why this is the right definition, use the interpretation K(X) = K
(
Db(X)

)
.)

6.4. If V is a vector bundle of rank r on a smooth k-variety X, we can define higher Chern
classes ci(V ) ∈ CHi(X) and a Chern character ch(V ) ∈ CH(X)Q. These classes capture
essential geometric properties of V . We first discuss the Chern character. We already know
what ch(L ) is, for L a line bundle. One of the main properties of the Chern character is
that it will define a ring homomorphism

ch: K(X)Q → CH(X)Q

which for a morphism f : X → Y of smooth quasi-projective varieties is compatible with
pullbacks, in the sense that the diagram

K(Y )Q CH(Y )Q

K(X)Q CH(X)Q

ch

f∗ f∗

ch

is commutative. The standard way to define ch(V ) is to pass to a situation where V becomes
an iterated extension of line bundles. Namely, given a rank r vector bundle V on X, we can
consider the flag variety π : Flag(V ) → X whose fibre over a point x ∈ X is the variety of
(complete) flags

F0 = (0) ⊊ F1 ⊊ · · · ⊊ Fr−1 ⊊ Fr = V (x) .

By construction, π∗(V ) then has a filtration

F0 = (0) ⊊ F1 ⊊ · · · ⊊ Fr−1 ⊊ Fr = π∗(V )

by sub-bundles such that each Lj = Fj/Fj−1 is a line bundle on Flag(V ). According to
the properties that we want the Chern character to have, we should have the relation

π∗ch(V ) = ch
(
π∗(V )

)
=

r∑
j=1

ch(Lj) (6.4.1)

in CH(Flag(V ))Q. (Note that π∗(V ) =
∑

Lj in K(Flag(V )).) This indeed works: the
homomorphism π∗ : CH(X)Q → CH(Flag(V ))Q is injective, and one can prove that the
class

∑r
j=1 ch(Lj) lies in the image; this then allows to define ch(V ) ∈ CH(X)Q as the

unique class that satisfies (6.4.1).
Note that (6.4.1) can be written as the relation

ch(V ) =

r∑
j=1

exp(αj) ,

where αj = c1(Lj). This is a relation in CH(Flag(V ))Q, which contains CH(X)Q as a
subring (via π∗). The classes αj are called the Chern roots of V . All symmetric expressions
in the αj lie in CH(X)Q.
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While for our purposes the Chern character is the most interesting invariant, let us briefly
mention that for a rank r vector bundle we can define integral characteristic classes ci(V ) ∈
CHi(X), called the Chern classes of X, from which we can recover the Chern character.
(See [21], Example 3.2.3.) With notation as above, the homomorphism π∗ : CH(X) →
CH(Flag(V )) (with integral coefficients) is again injective, and the Chern classes ci(V ) are
defined by the relation π∗(ci(V )) = σi(α1, . . . , αr), where σi is the ith elementary symmetric
polynomial. (In fact, the map tj 7→ αj gives an isomorphism

CH(X)[t1, . . . , tr]/I
∼−−→ CH(Flag(V )) ,

where I ⊂ CH(X)[t1, . . . , tr] is the ideal generated by all elements σi(t1, . . . , tr)− ci(V ).)
An important insight is that the formation of Chern characters does not, in general,

commute with push-forwards. (See however 6.6 for a special case where the two operations
do commute.) Grothendieck’s version of the Riemann–Roch theorem is the assertion that
we do obtain a compatibility with push-forwards if we correct the Chern character by a
factor that only depends on the underlying variety, called the Todd class. In general, if V is
a rank r vector bundle on X with Chern roots α1, . . . , αr, the Todd class of V is the class
Td(V ) ∈ CH(X)Q defined by

Td(V ) =
r∏

j=1

αj

1− exp(−αj)
=

r∏
j=1

(
1 + 1

2αj +
∞∑

m=1

(−1)m−1 Bm
(2m)!α

2m
j

)
,

with Bm = mth Bernoulli number. Note that the right hand side (which a priori only defines
a class in CH(Flag(V ))Q) is a symmetric expression in the Chern roots, and therefore indeed
defines a class in CH(X)Q. These Todd classes turn out to be important. In particular, if
X is a smooth k-variety, say of dimension d, its tangent bundle TX is a vector bundle of
rank d and we have a Todd class Td(TX) ∈ CH(X)Q. With this notation, the Grothendieck–
Riemann–Roch theorem is the following result.

6.5 Theorem (Grothendieck–Riemann–Roch). Let X and Y be smooth projective varieties
over k. If f : X → Y is a morphism, the diagram

K(X)Q CH(X)Q

K(Y )Q CH(Y )Q

f∗

α 7→ch(α)·Td(TX)

f∗

β 7→ch(β)·Td(TY )

is commutative.

Because abelian varieties have trivial tangent sheaf, the following is an immediate (but
for us important) consequence:

6.6 Corollary. If f : X → Y is a homomorphism of abelian varieties then for every quasi-
coherent OX-module F we have the relation

f∗
(
ch[F ]

)
= ch

(
Rf∗[F ]

)
.
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PART 2

Chow groups of abelian varieties





7. Correspondences

Let X and Y be smooth projective varieties over a field k. If f : X → Y is a morphism, we
have associated maps f∗ and f∗ on Chow groups. A very important insight that lies at the
basis of the theory of motives, is that we can vastly generalize this, as follows.

7.1 Definition. Let X and Y be smooth projective varieties over k. For α ∈ CH(X × Y ),
define α∗ : CH(X)→ CH(Y ) by the rule

α∗(x) = prY,∗
(
α · pr∗X(x)

)
,

where X
prX←−−− X × Y

prY−−−→ Y are the projection maps. Let tα ∈ CH(Y × X) be the
transpose of α (i.e., tα = σ∗(α), where σ : Y × X

∼−−→ X × Y is the isomorphism that
exchanges the factors). Then we define α∗ : CH(Y )→ CH(X) to be the map (tα)∗.

Check for yourself that if we take α = [Γf ] for some morphism f : X → Y , we recover
the maps f∗ and f∗ on Chow groups.

7.2. If we think of classes in CH(X ×Y ) as being generalizations of maps from X to Y , we
also want to understand how composition of such ‘generalized maps’ works. It is helpful to
first introduce some terminology. If X and Y are smooth projective over k, we call elements
of CH(X ×Y ) correspondences from X to Y , and we define Corr(X,Y ) = CH(X ×Y ). We
shall later usually work with Q-coefficients, writing Corr(X,Y )Q for Corr(X,Y )⊗Q.

We introduce a grading by setting

Corri(X,Y ) = CHdim(X)+i(X × Y ) = CHdim(Y )−i(X × Y ) .

Note that if f : X → Y is a morphism, the class [tΓf ] of the transposed graph is a corre-
spondence from Y to X of degree 0. The way to remember this is that the induced map
f∗ = [tΓf ]∗ on Chow groups preserves the gradings by codimension of cycles. (See below
for the general case.) By definition,

Corr(X,Y ) =
⊕
i∈Z

Corri(X,Y ) .

If Z is a third smooth projective variety over k, we define a composition

◦ : Corr(Y,Z)× Corr(X,Y ) −→ Corr(X,Z)

by the rule
β ◦ α = prXZ,∗

(
pr∗XY (α) · pr∗Y Z(β)

)
(for α ∈ Corr(X,Y )) and β ∈ Corr(Y, Z)), where the relevant diagram of spaces and maps
is

X × Y × Z

X × Y Y × Z

X × Z

prXY prY Z

prXZ
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We shall also need an extension of these definitions to the case where X and Y are
smooth projective over k that are not necessarily irreducible. If X = X1 ⊔ · · · ⊔ Xt and
Y = Y1 ⊔ · · · ⊔ Yu are the decompositions into irreducble components, we then define
Corr(X,Y ) = ⊕i,j Corr(Xi, Yj). A correspondence γ = (γi,j) is then said to be homogeneous
of degree d if each component γi,j is homogeneous of degree d.

7.3. Basic facts. All varieties that are considered are assumed to be smooth projective
over k.

• The composition of correspondences is compatible with the grading, in the sense that
it restricts to maps Corri(Y,Z)× Corrj(X,Y ) −→ Corri+j(X,Z).

• For α ∈ Corr(X,Y ) and β ∈ Corr(Y, Z) we have the relations (β ◦ α)∗ = β∗ ◦ α∗ and
(β ◦ α)∗ = α∗ ◦ β∗.

• If α ∈ Corri(X,Y ) then the induced map on Chow groups is homogeneous of degree i,
by which we mean that it restricts to maps α∗ : CH

j(X) → CHi+j(Y ). (Remember
that if f : X → Y is a morphism, f∗ = α∗ with α = [tΓα] ∈ Corr0(Y,X).)

• The k-vector space Corr(X,X) with composition as defined above is a graded k-
algebra (non-commutative in general). Further, composition makes Corr(X,Y ) a
graded Corr(X,X)-Corr(Y, Y )-bimodule.

The following result, which is [17], Proposition 1.2.1, gives some useful formulas that
relate compositions of correspondences to the usual push-forward and pullback operations
on Chow groups. We state the result as identities between Chow classes. (Recall that
Corr(X,Y ) is just another name for CH(X × Y ).)

7.4 Proposition. Let X, Y and Z be smooth projective k-varieties.

(1) For α ∈ CH(X × Y ) and f : Y → Z we have [Γf ] ◦ α = (idX × f)∗(α) in CH(X × Z).
(2) For β ∈ CH(Y × Z) and f : X → Y we have β ◦ [Γf ] = (f × idZ)

∗(β) in CH(X × Z).
(3) For α ∈ CH(X × Y ) and g : Z → Y we have [tΓg] ◦ α = (idX × g)∗(α) in CH(X × Z).
(4) For β ∈ CH(Y × Z) and g : Y → X we have β ◦ [tΓg] = (g × idZ)∗(β) in CH(X × Z).

Using the language of correspondences, we can also give a precise definition of algebraic
equivalence of Chow classes, which, in a somewhat informal way, was already mentioned in
Section 5.2.

7.5 Definition. Let X be a smooth variety over a field k. Algebraic equivalence, nota-
tion ∼alg, is the equivalence relation on CH(X) that is generated by all relations γ∗(α) ∼ 0,
where γ ∈ CH(C ×X) for some smooth projective curve C/k and α ∈ CH0(C) is a class of
degree 0.

The geometric intuition is that γ is a family of cycles γ(P ) on X parametrized by the
points P ∈ C, and that in the basic case where α = (P )− (Q) for some points P , Q ∈ C(k),
the class γ∗(α) is just the difference γ(P )− γ(Q).
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7.6 Proposition. Let X be a smooth variety over an algebraically closed field k. Then

CH(X)alg =
{
α ∈ CH(X)

∣∣ α ∼alg 0
}

is a divisible group, i.e., for every n > 0 the map CH(X)alg → CH(X)alg given by multipli-
cation by n is surjective.

Proof. If C/k is a smooth projective curve, its Jacobian J = Pic0C/k is an abelian variety
and the group CH0(C)0 of 0-cycles of degree 0 is the same as J(k). The assertion now
follows from the definition of algebraic equivalence, using that the multiplication by n map
[n]J : J(k)→ J(k) is surjective. (Cf. Section 1.5.)

8. Fourier duality and Beauville decomposition

Throughout, we work over some field k. We consider Chow groups with Q-coefficients; recall
that CH(X)Q means CH(X)⊗Q.

8.1. Let X be an abelian variety with dual Xt. We identify Xtt with X via the isomorphism
κ : X

∼−−→ Xtt of Theorem 4.6. Let P be the Poincaré bundle of X, which is a line bundle
on X ×Xt. The Poincaré bundle of Xt is then given by Pt = σ∗P, where σ : Xt×X

∼−−→
X ×Xt is the isomorphism that switches the factors. Consider the three projection maps

X ×Xt ×X

X ×Xt Xt ×X

X ×X

pr12 pr23

pr13

and let (m13 × id) : X ×Xt ×X → X ×Xt be the map (x1, ξ, x3) 7→ (x1 + x3, ξ).

8.2 Lemma. We have the relation

pr∗12P ⊗ pr∗23P
t ∼= (m13 × id)∗P .

Proof. When restricted to the faces

{0} ×Xt ×X , X × {0} ×X , X ×Xt × {0} ,

the LHS and the RHS give the same. Now apply Theorem 2.2.

We now get to the first main result of these notes. This result was first proven by
Mukai [34] in the setting of derived categories. The result as stated here, in the setting of
Chow groups, is an immediate consequence. Beauville, in [4] and [5], further studied this
and gave important applications; see in particular Theorem 8.6 below.
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8.3 Theorem (Fourier duality). Let X/k be a g-dimensional abelian variety. Define

F = ch(P)∗ : CH(X)Q → CH(Xt)Q , F t = ch(Pt)∗ : CH(X
t)Q → CH(X)Q .

Then
F t ◦F = (−1)g · [−1]∗X , F ◦F t = (−1)g · [−1]∗Xt .

In particular, F and F t are isomorphisms.

Concretely, for a class α ∈ CH(X)Q its Fourier transform is given by

F (α) = prXt,∗
(
pr∗X(α) · ch(P)

)
,

and for F t we have the analogous formula. If the context requires it, we use the nota-
tion FX . (So F t = FXt .)

Proof. By symmetry (exchange the roles of X and Xt) it suffices to prove the result about
F t ◦F . By the basic facts stated in 7.3, the composition F t ◦F : CH(X)Q → CH(X)Q is
induced by the correspondence

pr13,∗

(
pr∗12ch(P) · pr∗23ch(Pt)

)
= pr13,∗

(
ch(pr∗12P) · ch(pr∗23Pt)

)
= pr13,∗

(
ch
(
pr∗12P ⊗ pr∗23P

t
))

8.2
= pr13,∗

(
ch
(
(m13 × id)∗P

))
= pr13,∗

(
(m13 × id)∗ch(P)

)
.

Because the diagram

X ×Xt ×X X ×Xt

X ×X X

m13×id

pr13 pr1

m

is Cartesian, we find that the given correspondence equals m∗pr1,∗
(
ch(P)

)
. (Note that

m : X×X → X is a smooth morphism, and in particular is therefore a flat lci morphism; so
we can use what was explained in Section 5.9.) At this point we use Corollary 6.6, together
with Theorem 4.14. This gives that

pr1,∗
(
ch(P)

)
= ch

(
Rpr1,∗(P)

)
= (−1)g · ch

(
e∗OSpec(k)

)
= (−1)g · e∗

[
Spec(k)

]
.

Because the diagram
Γ[−1] X ×X

Spec(k) X

m

e

is Cartesian (with Γ[−1] = graph of [−1]X = anti-diagonal in X ×X), we find that F t ◦F

is given by the correspondence (−1)g ·m∗e∗
[
Spec(k)

]
= (−1)g · Γ[−1], as claimed. (Again
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use that m is a flat lci morphism and note that e is proper; then apply what was explained
in Section 5.9.)

For the final assertion, we just have to note that [−1]∗X is its own inverse.

The following proposition summarizes some key properties of the Fourier transform.

8.4 Proposition. Let X be an abelian variety of dimension g.
(1) For x, y ∈ CH(X)Q we have the relations

F (x ⋆ y) = F (x) ·F (y) , F (x · y) = (−1)g ·F (x) ⋆ F (y) .

(2) If f : X → Y is a homomorphism of abelian varieties with dual f t : Y t → Xt, we have
the relations

(f t)∗ ◦FX = FY ◦ f∗ : CH(X)Q → CH(Y t)Q

and
FX ◦ f∗ = (−1)dim(X)−dim(Y ) · (f t

∗) ◦FY : CH(Y )Q → CH(Xt)Q .

Proof. (1) Write X
pr1←−−− X ×Xt pr2−−−→ Xt for the projection maps. Consider X ×X ×Xt,

let πi (i = 1, 2, 3) be the projection onto the ith factor, and let πij be the projection onto the
factors i and j; for instance, π13 : X ×X ×Xt → X ×Xt is the map (P1, P2, Q) 7→ (P1, Q).
With this notation, the diagram

X ×X ×Xt

X ×X X ×Xt

X

π12 m×id

m pr1

is Cartesian, so pr∗1(x ⋆ y) = (m× id)∗π
∗
12(x× y). The projection formula then gives

pr∗1(x ⋆ y) · ch(P) = (m× id)∗

(
π∗
12(x× y) · (m× id)∗ch(P)

)
.

As (m× id)∗P ∼= π∗
13P ⊗ π∗

23P and π∗
12(x× y) = π∗

1(x) · π∗
2(y), this becomes

pr∗1(x ⋆ y) · ch(P) = (m× id)∗

(
π∗
1(x) · π∗

13

(
ch(P)

)
· π∗

2(y) · π∗
23

(
ch(P)

))
.

By definition, F (x ⋆ y) is the element of CH(Xt) that we obtain by applying pr2,∗ to this.
We have pr2 ◦ (m× id) = π3 = pr2 ◦π13; further, π∗

1(x) ·π∗
13

(
ch(P)

)
= π∗

13

(
pr∗1(x) · ch(P)

)
,

and π∗
2(y) · π∗

23

(
ch(P)

)
= π∗

23

(
pr∗1(y) · ch(P)

)
. Again using the projection formula we find

F (x ⋆ y) = pr2,∗

((
pr∗1(x) · ch(P)

)
· π13,∗

(
π∗
23(pr

∗
1(y) · ch(P))

))
Because the diagram

X ×X ×Xt

X ×Xt X ×Xt

Xt

π13 π23

pr2 pr2

29



is Cartesian we have π13,∗
(
π∗
23(pr

∗
1(y) · ch(P))

)
= pr∗2

(
pr2,∗(pr

∗
1(y) · ch(P))

)
= pr∗2

(
F (y)

)
,

and then (once again using the projection formula)

F (x ⋆ y) = pr2,∗
(
pr∗1(x) · ch(P)

)
·F (y) = F (x) ·F (y) .

For the second identity, we may write x = F t(α) and y = F t(β) for some α, β ∈ CH(Xt),
so that F (x) = (−1)g · [−1]∗Xt(α) = (−1)g · [−1]Xt,∗(α), and similarly F (y) = (−1)g ·
[−1]Xt,∗(β). (Note that [−1]∗ = [−1]∗ because [−1] is its own inverse.) The identity just
proven then gives

F (x · y) = (−1)g · [−1]Xt,∗(α ⋆ β)

= (−1)g ·
(
[−1]Xt,∗(α)

)
⋆
(
[−1]Xt,∗(β)

)
= (−1)g ·F (x) ·F (y) .

(2) By (4.3.1) we have (f, idY )
∗ch(PY ) = (idX , f t)∗ch(PX) in CH(X × Y t)Q. By

Proposition 7.4 we can write this as ch(PY ) ◦ [Γf ] = [tΓf t ] ◦ ch(PX), which gives the first
formula. Using Theorem 8.3, it follows that

(−1)dim(X) ·FY t◦(f t)∗◦[−1]∗Xt = (−1)dim(Y ) ·[−1]∗Y ◦f∗◦FXt = (−1)dim(Y ) ·[−1]Y,∗◦f∗◦FXt

If we apply this to −f t instead of f , we obtain the second formula.

A remarkable feature of the Fourier transform—which turns out to be very useful—
is that it is not compatible with gradings. In other words, it does not, in general, send
homogeneous elements in CH(X)Q to homogeneous elements in CH(Xt)Q. To analyze this
more precisely, let us set up some notation.

8.5 Definition. Let X be an abelian variety of dimension g. For integers i and s define

CHi
(s)(X) =

{
x ∈ CHi(X)Q

∣∣ [n]∗X(x) = n2i−s · x for all n ∈ Z
}
.

Further, we define

CHi,(s)(X) = CHg−i
(s) (X) =

{
x ∈ CHi(X)Q

∣∣ [n]X,∗(x) = n2i+s · x for all n ∈ Z
}
.

Whenever we use the notation CHi
(s)(X) or CHi,(s)(X), remember that these are sub-

spaces of CHi(X)Q, resp. CHi(X)Q.

At first sight, the chosen indexing does not seem very convenient. The convenience of
the notation will become clearer only once we draw a suitable diagram, as we shall explain in
Section 8.8. First, however, we state and prove the second main result of this section, which
concerns the Beauville decomposition of Chow groups. This was introduced by Beauville
in [5].

8.6 Theorem. Let X be an abelian variety of dimension g.
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(1) We have a decomposition (called the Beauville decomposition)

CH(X)Q =
⊕
i,s∈Z

CHi
(s)(X) ,

and this makes CH(X)Q a bigraded ring with respect to the intersection product, i.e.,

CHi
(s)(X) · CHj

(t)(X) ⊂ CHi+j
(s+t)(X) .

Viewed as a decomposition

CH(X)Q =
⊕
i,s∈Z

CHi,(s)(X) ,

this makes CH(X)Q a bigraded ring with respect to the Pontryagin product, i.e.,

CHi,(s)(X) ⋆ CHj,(t)(X) ⊂ CHi+j,(s+t)(X) .

(2) The Fourier transform FX : CH(X)Q
∼−−→ CH(Xt)Q restricts to isomorphisms

FX : CHi
(s)(X)

∼−−→ CHg−i+s
(s) (Xt) .

(3) The subspace CHi
(s)(X) is nonzero only for i−g ≤ s ≤ i, and if i ∈ {0, 1, g−2, g−1, g}

then CHi
(s)(X) = 0 for all s < 0.

As we shall discuss below, it is conjectured that CHi
(s)(X) = 0 whenever s < 0, but

apart from the cases mentioned in (3) this is not known in general.
The following lemma gives the key calculation on which the proof of the theorem relies.

8.7 Lemma. Let X be a g-dimensional abelian variety and x ∈ CHi(X)Q.

(1) There exist elements y(s) ∈ CHg−i+s
(s) (Xt), for i − g ≤ s ≤ i, such that F (x) =∑i

s=i−g y(s).
(2) If x ∈ CHi

(s)(X) then F (x) ∈ CHg−i+s
(s) (Xt).

Proof. Write ℘ = c1(P) ∈ CH1(X ×Xt), so that

ch(P) = 1 + ℘+ ℘2

2! +
℘3

3! + · · · .

Then
F (x) =

∑
j≥0

yj , with yj = prXt,∗
(
pr∗X(x) · ℘j

(j!)

)
∈ CHi+j−g(Xt)Q .

By Corollary 4.10 we have (id, [n])∗℘j = nj · ℘j , hence (id, [n])∗℘
j = n2g−j · ℘j . It follows

that

[n]∗(yj) = prXt,∗

(
(id, [n])∗

(
pr∗X(x) · ℘j

(j!)

))
= prXt,∗

(
n2g−j ·

(
pr∗X(x) · ℘j

(j!)

))
= n2g−j · yj .
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(For the second equality, note that prX = prX ◦ (id, [n]) and use the projection formula.)
Hence yj lies in the subspace CHi+j−g

(2i+j−2g)(X
t). For s ∈ Z, define y(s) = y2g−2i+s. Then we

find that

F (x) =
i∑

s=i−g

y(s) , with y(s) ∈ CHg−i+s
(s) (Xt) ,

where the indicated range comes from the fact that CHg−i+s(Xt) can be nonzero only for
i− g ≤ s ≤ i.

If x ∈ CHi
(r)(X) for some r then it follows from (4.10.1) and Proposition 8.4(2) that

[n]∗Xt

(
F (x)

)
= FX

(
[n]X,∗(x)

)
= FX(n2g−2i+r · x) = n2g−2i+r ·F (x) ,

and hence F (x) = y(r) ∈ CHg−i+r
(r) (Xt).

Proof of Theorem 8.6. With notation as in Lemma 8.7(1) we have

x = (−1)g · [−1]∗FXt

(
FX(x)

)
=

i∑
s=i−g

(−1)g · [−1]∗FXt(y(s)) =

i∑
s=i−g

FXt

(
(−1)g · [−1]∗y(s)

)
.

Further, [−1]∗y(s) ∈ CHg−i+s
(s) (Xt), so by Lemma 8.7(2) we have FXt

(
(−1)g · [−1]∗y(s)

)
∈

CHi
(s)(X). Moreover, it is immediate from Lemma 8.7(2) that the subspaces CHi

(s)(X) ⊂
CHi(X)Q are linearly independent. It follows that CHi

(s)(X) = ⊕i
s=i−g CHi(X)Q and that

F induces an isomorphism CHi
(s)(X)

∼−−→ CHg−i+s
(s) (Xt). The stated compatibilities with

respect to the two ring structures on CH(X)Q follow directly from the definitions. This
proves to theorem, except for the last assertion of (3), to which we shall return in 8.10
below.

8.8. A useful diagram. Thus far, we have kept track of the summands in the Beauville
decomposition using the indices i and s, where i is the grading by codimension of cycles. It
turns out that in many ways, it is more natural to use w = 2i− s and s, where we refer to
the number w as the weight. If we draw a diagram with w as a horizontal coordinate and s

as a vertical coordinate then we obtain a pyramidal figure, and the beautiful feature of this
is that in this diagram Fourier duality acts as a reflection in the central vertical axis.

Figure 1 illustrates this for g = 7 (but see below for more on the part with s < 0). The
Fourier operator F exchanges the boxes in positions (w, s) and (2g−w, s); for instance, we
see that F gives an isomorphism CH2

(1)(X)
∼−−→ CH6

(1)(X
t). In this figure, we have only

drawn the ‘boxes’ corresponding to s ≥ 0. As we have seen, CHi
(s)(X) ̸= 0 only for s ≤ i;

this gives the nice triangular shape of the diagram.

8.9 Example. In codimension 1, where we have CH1(X) ∼= Pic(X), Beauville’s decompo-
sition is nothing but a reformulation of what we have seen in Section 2.5. Namely, if L is
a symmetric line bundle then [n]∗L ∼= L n2 , whereas for an anti-symmetric line bundle L
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Figure 1: A picture of CH(X)Q

we have [n]∗L ∼= L n. We can try to decompose an arbitrary line bundle into a symmetric
and an anti-symmetric part by using the relation (2.5.1). If we work with Q-coefficients, we
can rewrite this as the identity

γ = 1
2 ·

(
γ + [−1]∗γ

)
+ 1

2 ·
(
γ − [−1]∗γ

)
in CH1(X)Q), with γ = c1(L ) the class of L . This explains what happens in the decom-
position CH1(X)Q = CH1

(0)(X) ⊕ CH1
(1)(X), and in particular we see that CH1

(s) = 0 for
s /∈ {0, 1}.

Note that if L corresponds to a 2-torsion point of PicX/k (and in fact, every torsion
point of PicX/k lies in Pic0X/k = Xt), then L is both symmetric and antisymmetric. We
see that there is no Beauville decomposition of CH1(X) with integral coefficients; but in
codimension 1, to get a decomposition it suffices to work with coefficients in the ring Z

[
1
2

]
.

One of the proposed AWS projects is to investigate what denominators are needed to get a
Beauville decomposition in general.

A further remark about the codimension 1 case is that, as discussed in Section 4.9,
the antisymmetric line bundles are precisely the line bundles that are algebraically trivial,
i.e., the line bundles that correspond to points of the dual abelian variety Xt = Pic0X/k.
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For divisor classes, algebraic equivalence is the same as homological equivalence. Thus, for
instance, if we consider ℓ-adic cohomology for a prime number ℓ different from char(k), we
have the Chern class map

c1 : CH
1(X)Q → H2

(
Xk̄,Qℓ(1)

)
,

and the kernel of this map is CH1
(1)(X) ∼= Xt(k) ⊗ Q. The image of c1 is isomorphic to

CH1
(0)(X) ∼= NS(X) ⊗ Q. (Note that this is in agreement with the fact that [n]∗X acts as

multiplication by n2 on the cohomology of X in degree 2.) We here see that the summand
CH1

(0)(X) is the part of CH1 that is visible in cohomology, which is a finite dimensional
Q-vector space. On the other hand, CH1

(1)(X) ∼= Xt(k) ⊗ Q is of a geometric nature and
its dimension will in general be infinite, and may, depending on the type of base field, even
be uncountable. Also observe that CH1

(1)(X) heavily depends on the base field, and gets
bigger if we replace k by a field extension, whereas CH1

(0)(X) = NS(X)⊗Q will not change
under any field extension if the original base field k is separably closed.

8.10. Figure 1 represents all summands CHi
(s)(X) with s ≥ 0. Though it is conjectured

that all summands CHi
(s) with s < 0 vanish, this is not known to be true. (See 8.11 below

for further discussion.) Figure 2 shows the diagram for g = 9 including the summands with
s < 0.

The last assertion of part (3) of Theorem 8.6 can be understood as follows. First one
shows that the summands CH0

(s) and CH1
(s) with s < 0 vanish. In codimension 0 this is

clear, simply because CH0(X)Q = Q · [X] and [n]∗
(
[X]

)
= [X] for all n. In codimension 1

we have seen this in Example 8.9. By (Fourier-)symmetry, we then find that if we draw
the full diagram, the outer two layers in the region s < 0 are indeed zero. So the diagram
should really be drawn as in Figure 2, where we have take g = 9.

8.11. The Beauville decomposition is especially relevant in the context of some general
deep open conjectures about Chow groups of smooth projective varieties that are due to
Beilinson, Bloch and Murre. While it would take us too far to discuss these in detail, let us
briefly summarize what they are about.

Conjecturally, for every smooth projective variety X/k, there should exists a descending
filtration

CH(X)Q = Fil0 ⊃ Fil1 ⊃ Fil2 ⊃ · · ·

that has a number of good properties. Among these properties are functoriality and the
property that Fili·Filj ⊆ Fili+j . The graded pieces gri = Fili/Fili+1 should be cohomological
in nature; this is made precise for instance by the conjectured property that the action of
Corr0(X,X)Q on gri factors through Corr0(X,X)Q/ ∼hom. Further, Fil1 should be the
subspace CH(X)Q,hom ⊂ CH(X)Q of classes that are homologically trivial, and Fil2 should
consist of the homologically trivial classes that are in the kernel of all Abel–Jacobi maps.

Different version of these conjectures were formulated by Beilinson [9] and Murre [38]
and were later shown to be equivalent. The (conjectural!) theory of mixed motives gives a
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Figure 2: A picture of CH(X)Q including the part s < 0

very natural explanation for why these conjectures should be true. We refer to the beautiful
paper [26] for a detailed discussion.

The Beauville decomposition gives a filtration of CH(X)Q in case X is an abelian variety,
by setting Filj = ⊕s≥j CH(s)(X), where

CH(s)(X) =

g⊕
i=0

CHi
(s)(X) . (8.11.1)

This filtration indeed seems to have the right properties, but some of this remains as yet con-
jectual. For instance, the expected property that CH(X)Q = Fil0 is precisely the statement
that CHi

(s)(X) should be zero whenever s < 0.
Clearly, the Beauville decomposition gives even more, as we even have a splitting of the

filtration. This is expected to happen only for rather special varieties. For K3 surfaces, such
a splitting was given by Beauville and Voisin in [8]. We refer to Beauville’s paper [7] for
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further discussion; as explained there, one expects at least a weak form of such a splitting
for hyperkähler varieties. Related to this, Shen and Vial [48] introduced the notion of a
multiplicative Chow–Künneth decomposition, which turns out to be intimately related to
splittings of the Bloch–Beilinson filtration. (We shall briefly return to this in Section 13.5.)
One of their conjectures (ibid., Conjecture 4) is that hyperkähler varieties admit such a mul-
tiplicative Chow–Künneth decomposition; this has been proven in several special examples.
A nice starting point for further reading is the paper [20].

9. The action of the Lie algebra sl2 on CH(X)Q

9.1. In what follows, we simply write sl2 for the Lie algebra sl2 over the field Q. Explicitly,
it is the 3-dimensional vector space sl2 = Q · e⊕Q · h⊕Q · f , and the Lie bracket is given
by the relations

[e, h] = 2e , [f, h] = −2f , [e, f ] = h . (9.1.1)

If W is a Q-vector space (possibly of infinite dimension), a representation of sl2 on W

is a homomorphism of Lie algebras ρ : sl2 → End(W ). Concretely, such a representation is
given by specifying three Q-linear endomorphisms e, h, f of W (the images of the generators
of sl2 under ρ) that satisfy the commutation relations (9.1.1). As an example, we have the
standard 2-dimensional representation

ρ1 : sl2 → End(Q2) = M2(Q)

(where M2(Q) denotes the algebra of 2× 2 matrices with rational coefficients, here viewed
as a Lie algebra with the usual commutator bracket), given by

e 7→
(
0 1
0 0

)
, h 7→

(
1 0
0 −1

)
, f 7→

(
0 0
1 0

)
.

For n ∈ N, the n + 1-dimensional representation ρn = Symn(ρ1) is irreducible. This
representation can be realized by taking as underlying vector space

W = Q · w−n ⊕Q · w−n+2 ⊕Q · w−n+4 ⊕ · · · ⊕Q · wn−2 ⊕Q · wn ,

with operators given by h(wj) = j · wj and

e(w−n+2i) = (n− i) · w−n+2i+2 , f(w−n+2i) = i · w−n+2i−2 . (9.1.2)

It is helpful to think of the action of h as giving a grading W = ⊕Wj with Wj = Q · wj

of degree j, for j = −n,−n + 2, . . . , n − 2, n. The commutation relations [e, h] = 2e and
[f, h] = −2f then express that e is homogeneous of degree 2 and f has degree −2. One
could visualize this representation as a string of 1-dimensional spaces that each have a
weight (corresponding to the action of h), with operators e and f of degrees +2 and −2,
respectively. E.g., for n = 5 this gives the picture

−5 −3 −1 1 3 5

e e e e e

f f f f f
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with e(w5) = 0 and f(w−5) = 0. (Caution: the picture does not mean to suggest that
e and f map base vectors wj to base vectors wj+2, resp. wj−2; see (9.1.2) for the correct
relations.)

Every finite dimensional irreducible representations of sl2 is isomorphic to one of the
representations ρn and every finite dimensional representation of sl2 is completely reducible,
i.e., is isomorphic to a direct sum of irreducible representations. In some cases this extends
to infinite dimensional representations; what we need is the following result.

9.2 Lemma. Let ρ : sl2 → End(W ) be a representation of sl2, with W a Q-vector space,
possibly of infinite dimension. Suppose there exists a positive integer N and a grading
W = ⊕N

j=−N Wj such that h ∈ sl2 acts on Wj as multiplication by j. For j ≥ 0, let
Pj =

{
x ∈ W−j

∣∣ f(x) = 0
}
. (Note the sign: we define Pj to be a subspace of W−j.) Then

we have an isomorphism of sl2-representations

W ∼=
N⊕
j=0

Pj ⊗ ρj .

About the notation: if P is a Q-vector space and ρ : sl2 → End(U) is a representation
of sl2 then by P ⊗ ρ we mean the vector space P ⊗Q U , viewed as a representation of sl2
through the action of sl2 on U .

Pictorially, the lemma says that every sl2-representation in which h acts semisimply
with eigenvalues in a finite range −N,−N + 1, . . . , N − 1, N , is a direct sum of ‘strings’ of
the type depicted above. A string of length n represents a copy of the representation ρn. If
we fix n, the leftmost vectors in the strings, which may be thought of as generators of the
representation, span a vector space Pn. (Here P is for ‘primitive’, as the vectors killed by f

are usually called the primitive vectors.) The total contribution of all strings of length n

can therefore be written as Pn ⊗ ρn.

9.3. We now explain how this is related to Chow groups of abelian varieties. Let X be
a g-dimensional abelian variety over a field k, and let θ : X → Xt be a polarization. We
are going to construct an action of sl2 on CH(X)Q. For this we need to specify three
operators e, h and f on CH(X)Q that satisfy certain commutation relations. The operator h
corresponds to a grading on CH(X)Q, and if we compare our earlier diagrams with the
above picture of an sl2-representation, it should perhaps not come as a surprise that we
define h : CH(X)Q → CH(X)Q by the rule

h = multiplication by 2i− s− g on CHi
(s)(X).

Recall that we refer to 2i−s as the weight of the summand CHi
(s)(X); so the grading that is

defined by the operator h is the grading by weight, except that we shift everything by −g,
so that we obtain a grading in degrees −g,−g + 1, . . . , g − 1, g. Pictorially: the vertical
symmetry axis in the diagrams in Section 8 is now placed in degree 0. To avoid confusion,
we shall refer to the new grading of CH(X)Q as the h-grading.

37



What remains to be done is to define operators e : CH(X)Q → CH(X)Q of degree 2

and f : CH(X)Q → CH(X)Q of degree −2 such that [e, f ] = h. This is where the chosen
polarization θ : X → Xt comes in. The degree of a polarization is a square; let m(θ) be the
positive integer such that deg(θ) = m(θ)2. If θ = ϕL for some ample line bundle L then
m(θ) = h0(L ) = dimk H

0(X,L ).
Define a class ℓ ∈ CH1(X)Q by

ℓ = 1
2 · c1

(
(id, θ)∗P

)
,

where P is the Poincaré bundle on X × Xt. If θ = ϕL for some symmetric ample line
bundle L then ℓ = c1(L ). (See 4.8(3).) Because such a bundle L exists after an extension
of the base field, it follows that ℓ ∈ CH1

(0)(X).
Next, define λ ∈ CHg−1

(0) (X) to be the unique class with the property that

F (ℓ) = (−1)g · θ∗(λ) .

Note that because θ : X → Xt is an isogeny, the induced maps θ∗ : CH(X)Q → CH(Xt)Q
and θ∗ : CH(Xt)Q → CH(X)Q are isomorphisms, and by the projection formule we have
θ∗ ◦ θ∗ = m(θ)2 · id. The class F (ℓ) lies in CHg−1

(0) (Xt); so λ is, up to a constant, nothing
but the Fourier dual class F (ℓ), ‘transported back to X’. It can be shown that

λ =
ℓg−1

m(θ) · (g − 1)!
.

9.4 Theorem. Let X/k be a g-dimensional abelian variety, and let θ : X → Xt be a polar-
ization. Define ℓ ∈ CH1

(0)(X) and λ ∈ CHg−1
(0) (X) as above.

(1) The operators e, h and f on CH(X)Q given by

e(x) = ℓ · x (intersection product)

h(x) = (2i− s− g) · x for x ∈ CHi
(s)(X)

f(x) = λ ⋆ x (Pontryagin product)

satisfy the commutation relations (9.1.1) and therefore define an action of the Lie al-
gebra sl2 on CH(X)Q.

(2) For every s ∈ Z, the subspace CH(s)(X) ⊂ CH(X)Q (see (8.11.1)) is preserved under
this sl2-action.

(3) For s ∈ Z and j ∈ {0, . . . , g − |s|} such that g − s − j = 2i is even, define a Q-vector
space Pj,(s) by

Pj,(s) =
{
x ∈ CHs+i

(s) (X)
∣∣ f(x) = 0

}
.

Then we have an isomorphism of sl2-representations

CH(s)(X) =
⊕

j∈{0,...,g−|s|}
j≡g−s mod 2

Pj,(s) ⊗ ρj .
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In (3), note that the summand CHs+i
(s) (X) has weight 2(s+ i)− s = s+ 2i, and for the

h-grading therefore has degree s + 2i − g = −j, in accordance with the notation used in
Lemma 9.2.

A picture may help to visualize what is going on. In Figure 3 we draw the same kind of
diagram as before, taking g = 7 and drawing (for simplicity) only the summands with s ≥ 0.
We use the h-grading as horizontal coordinate, and the parameter s as vertical coordinate.

the class ℓ

lives here
the class λ

lives here

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7
h-grading

0

1

2

3

4

5

6

7

s
g = 7

e e e e e

f f f f f

Figure 3: A picture for the sl2-action

If we take out one ‘horizontal layer’, meaning that we fix s and consider CH(s)(X) =

⊕g
i=0 CHi

(s)(X), this is an sl2-subrepresentation (pictorially: the operators e and f act
horizontally), and CH(s)(X) is a sum (usually infinite) of copies of the irreducible represen-
tations

ρg−|s| , ρg−|s|−2 , ρg−|s|−4 , . . .

For instance, if in the above diagram we consider the layer with s = 1, which is

then as a representation of sl2 this decomposes as a sum of copies of the irreducible repre-
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sentations

−6 −4 −2 0 2 4 6ρ6

−4 −2 0 2 4ρ4

−2 0 2ρ2

0ρ0

More precisely, if in this particular example (with g = 7 and s = 1) we define

P6,(1) =
{
x ∈ CH1

(1)(X)
∣∣ f(x) = 0

}
P2,(1) =

{
x ∈ CH3

(1)(X)
∣∣ f(x) = 0

}
P4,(1) =

{
x ∈ CH2

(1)(X)
∣∣ f(x) = 0

}
P0,(1) =

{
x ∈ CH4

(1)(X)
∣∣ f(x) = 0

}
then we find

CH(1)(X) =
(
P6,(1) ⊗ ρ6

)
⊕
(
P4,(1) ⊗ ρ4

)
⊕
(
P2,(1) ⊗ ρ2

)
⊕
(
P0,(1) ⊗ ρ0

)
.

10. Zero cycles on abelian varieties

In this section we discuss some results about 0-cycles on abelian varieties. Our focus will
be on results with integral coefficients; but as we shall see, there is a direct connection to
the results with Q-coefficients that we have discussed in the previous sections. Throughout,
we work over an algebraically closed base field k. (While this restricts generality, it should
be recalled that over an arbitrary field k with algebraic closure k̄, the kernel of CH(X) →
CH(Xk̄) is torsion; see Section 5.)

10.1. Let X be an abelian variety over a field k = k̄. By definition, CH0(X) is the group
of 0-cycles module rational equivalence. Note that CH0(X) is a subring of CH(X) with
respect to the Pontryagin product.

For P ∈ X(k), we write (P ) ∈ CH0(X) for the class of the corresponding 0-cycle. An
element of CH0(X) can be written as a finite formal sum

Z =
∑
P∈X

mP · (P )

where P runs over the k-rational points of X and where the mP are integers of which only
finitely many are nonzero. The first invariant of such a 0-cycle is its degree:

deg(Z) =
∑
P∈X

mP .

In what follows, an important role is played by the space

I = Ker
(
CH0(X)

deg−−−→ Z
)
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of 0-cycles of degree 0. Note that I ⊂ CH0(X) is an ideal for the Pontryagin product; as an
abelian group it is generated by the classes of the form (P )− (e). For r ≥ 0 we denote by
I⋆r the rth power of I with respect to the Pontryagin ring structure.

Clearly, the map Z→ CH0(X) given by m 7→ m · (e) gives a section of the degree map,
so that CH0(X) = Z · (e)⊕ I.

As a next step, we can consider the summation map S : CH0(X)→ X(k), given by

S
(
m1 · (P1) + · · ·+mt · (Pt)

)
= m1P1 + · · ·+mtPt ,

where in the right hand side we use the addition in X(k). Clearly, S factors through
CH0(X)/Z · (e) ∼= I; so all essential information is contained in its restriction S : I → X(k)

to the ideal I. The map X(k)→ I given by P 7→ (P )− (e) gives a section of this map.

10.2 Proposition. Let X be an abelian variety over an algebraically closed field k.
(1) The ideal I = Ker(deg) equals the subspace CH0(X)alg of 0-cycles that are algebraically

trivial.
(2) For all r ≥ 1, the subgroup I⋆r ⊂ CH0(X) is divisible.
(3) We have a short exact sequence of abelian groups

0 −→ I⋆2 −→ I
S−−→ X(k) −→ 0 . (10.2.1)

Consequently, I ∼= X(k)⊕ I⋆2 as an abelian group.

Proof. Part (1) follows from the fact that I is generated, as an additive group, by the classes
of the form (P )− (e), as clearly (P ) ∼alg (e). By Proposition 7.6 this gives the case r = 1

of (2); the assertion for r > 1 is an immediate consequence. For (3), it suffices to show that
the inclusion I⋆2 ⊂ Ker(S) is an equality. We have the relation(

(P )− (e)
)
+
(
(Q)− (e)

)
=

(
(P +Q)− (e)

)
−
(
(P )− (e)

)
⋆
(
(Q)− (e)

)
,

≡
(
(P +Q)− (e)

)
mod I⋆2 .

Applying this to P−Q and Q we find that
(
(P )−(e)

)
−
(
(Q)−(e)

)
≡

(
(P−Q)−(e)

)
mod I⋆2.

Hence every class in I/I⋆2 can be represented in the form
(
(P )− (e)

)
for some P ∈ X(k).

It follows that S̄ : I/I⋆2 → X(k) is injective, so I⋆2 = Ker(S).

The following result is due to Rŏıtman [43], with, in case char(k) = p > 0, some results
about p-power torsion provided by [33].

10.3 Theorem. Let X be an abelian variety over an algebraically closed field k. Then the
summation map S induces an isomorphism

S : CH0(X)tors
∼−−→ X(k)tors .

Note that CH0(X)tors is contained in I, so in fact CH0(X)tors = Itors.

10.4 Corollary. For every r ≥ 2 the subgroup I⋆r ⊂ CH0(X) is a Q-vector space.

Proof. Proposition 10.2 gives that I⋆r is divisible. On the other hand, by Rŏıtman’s theorem
together with the exact sequence (10.2.1), I⋆2 (and hence also I⋆r) is torsion-free. Hence
I⋆r is uniquely divisible and is therefore a Q-vector space.
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10.5. On CH0(X) we have the filtration by ⋆-powers of the ideal I:

CH0(X) = I⋆0 ⊃ I ⊃ I⋆2 ⊃ I⋆3 ⊃ · · · ,

and as we have seen, CH0(X) ∼= Z ⊕ I and I ∼= X(k) ⊕ I⋆2. Extending scalars to Q only
has an effect on the first two terms, so we get

CH0(X)Q ⊃ IQ ⊃ I⋆2 ⊃ I⋆3 ⊃ · · · , (10.5.1)

of course with IQ = I ⊗Q.

10.6 Lemma. Let X be a g-dimensional abelian variety over k = k̄.
(1) For all n ∈ Z the filtration (10.5.1) is preserved by the endomorphisms [n]∗ and [n]∗ of

CH0(X)Q, and [n]∗ induces multiplication by nr on I⋆r/I⋆(r+1).
(2) For all r ≥ 0 we have I⋆rQ ⊆ ⊕s≥r CH0,(s). In particular, I⋆(g+1) = 0.

As we shall show hereafter, in fact I⋆rQ = ⊕s≥r CH0,(s) for all r ≥ 0.

Proof. For α ∈ CH0(X)Q and n ∈ Z we have deg
(
[n]∗α

)
= deg(α); hence [n]∗(I) ⊂ I, and

because [n]∗ is an endomorphism of CH(X)Q for the Pontryagin ring structure, it follows
that [n]∗ preserves the filtration (10.5.1). The same conclusion for the endomorphisms [n]∗

follows from the fact that [n]∗ ◦ [n]∗ = n2g · id.
By Fourier duality we have CH0,(0)(X) = F

(
CH0(X)Q

) ∼= Q, and in fact, CH0,(0)(X) =

Q · [e]. If ℓ is a prime number different from char(k), we have a commutative diagram

CH0(X)Q Q

H2g
(
Xk̄,Qℓ(g)

) ∼= Qℓ

cl

deg

where cl is the cycle class map in ℓ-adic cohomology. Because [n]∗ acts as the identity
on H2g

(
Xk̄,Qℓ(g)

)
, it follows that IQ = ⊕s≥1 CH0,(s), and hence I⋆rQ ⊆ ⊕s≥r CH0,(s). The

last assertion now follows from Theorem 8.6(3).

10.7 Theorem. Let X be an abelian variety of dimension g > 0 over an algebraically closed
field k. Then for all r ≥ 0 we have

I⋆rQ =
⊕
s≥r

CH0,(s)(X) .

To avoid confusion: I⋆0Q = CH0(X)Q, and by Corollary 10.4, I⋆rQ = I⋆r for all r ≥ 2.

Proof. To simplify notation, write CH0,(s) for CH0,(s)(X). If V ⊂ CH0(X)Q is a nonzero
subspace, let r(V ) be the smallest index r such that V ̸⊂ I

⋆(r+1)
Q ; note that by the previous

lemma we always have 0 ≤ r(V ) < g. If s ≥ 0 and r = r
(
CH0,(s)

)
then CH0,(s) ⊂ I⋆r

and the induced map CH0,(s) → I⋆r/I⋆(r+1) is nonzero. By the lemma, it follows that
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r = s. Further, the intersection V = CH0,(s)∩I⋆(s+1) is zero, for otherwise we get a nonzero
map V → I⋆r/I⋆(r+1) with r = r(V ) > s, which is impossible. In this way we obtain a
well-defined injective map α : CH0,(s) ↪→ I⋆s/I⋆(s+1). On the other hand, the inclusions
I⋆rQ ⊆ ⊕s≥r CH0,(s) give us a homomorphism β : I⋆s/I⋆(s+1) → CH0,(s)(X), and α ◦ β is the
identity. Hence α is an isomorphism for every s, and because the filtration (10.5.1) is finite,
the theorem follows.

11. Small and big Chow groups

The following result is due to Künnemann [29], based on a weight argument from [49]. The
proof makes essential use of the theory of Chow motives.

11.1 Theorem. Let X be an abelian variety over a field k which is a subfield of Fp for
some prime number p. Then CHi

(s)(X) = 0 for all i and all s ̸= 0, so that

CH(X)Q =

g⊕
i=0

CHi
(0)(X) .

For instance, this applies when k is finite, or k = Fp. In this result it is essential
that we work with Q-coefficients, and thereby kill all torsion. E.g., we have seen that
CH1

(1)(X) ∼= Xt(k) ⊗ Q, and while Xt(k) is of course not trivial, it is a torsion group if
k ⊂ Fp. (The point is that all classes are defined over some finite field and Xt(k) is a finite
group if k is finite.)

With X/k as in the theorem, it is conjectured that (for ℓ a prime number different
from p) the cycle class maps

clℓ : CH
i
(0)(X)⊗Qℓ → H2i

(
Xk̄,Qℓ(i)

)
are injective. (See [15], Section 4.) This would imply that CH(X)Q is a finite dimensional
Q-vector space.

For 0-cycles this gives a nice result with integral coefficients:

11.2 Corollary. Let X be an abelian variety over Fp. Then CH0(X) ∼= Z⊕Xt(Fp).

Proof. By the results discussed in 10.1 and Proposition 10.2 we have

CH0(X) ∼= Z⊕ I ∼= Z⊕Xt(Fp)⊕ I⋆2 .

But Theorems 10.7 and 11.1 give I⋆2 = I⋆2Q = ⊕s≥2 CH0,(s)(X) = 0.

11.3. The above results give the picture that over fields k ⊆ Fp, Chow groups are fairly
small. It should be clear, though, that the situation is very different for other base fields.
E.g., even if X is defined over a subfield k of Fp, if k ⊂ K = K then we have seen that
CH0,(1)(XK) ∼= X(K)⊗Q, which is uncountable if K is.
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It is interesting to note that the 0th layer Fil0/Fil1 of the conjectural Bloch–Beilinson
filtration should be the image of CH(X)Q in cohomology, which should be a finite dimen-
sional Q-vector space that is (almost) independent of the base field, in the sense that it does
not change if we extend from an algebraically closed field k to a bigger field. By contrast,
already by looking at CH0,(1)(X), we see that other layers in the filtration will depend in
size on k.

11.4. We shall next discuss some results that imply that, in general, Chow groups are very
large, at least if we work over an uncountable base field. While it is clear that, except
for special cases, we cannot expect CH(X)Q to be a finite dimensional Q-vector space,
this in itself does not say much about its size. To make more precise what ‘very large’
should mean, we focus on 0-cycles. Consider a g-dimensional smooth projective variety X

(not necessarily an abelian variety) over an algebraically closed field k. Let CH0(X)hom =

Ker(deg : CH0(X)Q → Q) be the group of 0-cycles of degree 0. (If Z ∈ CH0(X)Q then
the condition deg(Z) = 0 is equivalent to saying that Z is homologically trivial, which for
0-cycles is in turn the same as saying that Z ∼alg 0.)

Let us formulate some properties, each of which expresses that CH0(X)Q is small, in a
suitable sense. To begin with, every 0-cycle of degree 0 is of the form (P1+P2+ · · ·+Pm)−
(Q1+ · · ·+Qm) for some closed points P1, . . . , Pm, Q1, . . . , Qm of X, and we may ask if the
value of m can be bounded.

Property (A). There exists an integer m such that every ξ ∈ CH0(X)hom can be written in
the form ξ = [(P1 + P2 + · · ·+ Pm)− (Q1 + · · ·+Qm)] for some points Pi and Qj .

The 0-cycles of degree m are the closed points of the mth symmetric power Sm(X) =

Xm/Sm, where the symmetric group Sm acts on the m-fold power Xm of X by permutation
of the coordinates. This Sm(X) is a variety of dimension gm, which is singular, except when
g ≤ 1 or m ≤ 1. In what follows we interpret points of Sm(X) as 0-cycles of degree m on X.
We then have the map

γm : Sm(X)× Sm(X)→ CH0(X)hom

given by γ(Z1, Z2) = Z1 − Z2. Even though the target is not an algebraic variety, we can
give some meaning to what the dimension of the image of γm should be. This uses that the
fibres of γm are countable unions of closed irreducible subsets of Sm(X)× Sm(X); we may
therefore define the ‘dimension of the image of γm’ as the number dm = 2gm − r, where r

is the largest integer that occurs as the dimension of a component of a fibre.

Property (B). The function m 7→ dm is bounded.

If C/k is a smooth projective curve and J is its Jacobian, we have CH0(X)hom = J(k).
So 0-cycles on curves are quite manageable.

Property (C). There exists a nonsingular projective curve j : C ↪→ X such that the homo-
morphism j∗ : CH0(C)Q → CH0(X)Q is surjective.

For the next property, fix a base point x0 ∈ X(k). (The choice of base point is not essential
but it makes it easier to state the results.) The Albanese variety Alb(X) of (X,x0) is
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an abelian variety that comes with a morphism a : X → Alb(X) such that alb(x0) = 0,
and which has the following universal property: whenever f : X → B is a morphism to an
abelian variety with f(x0) = 0, there is a unique homomorphism h : Alb(X)→ B such that
f = h ◦ alb. (In particular, if X itself is an abelian variety then Alb(X) = X.) We then
have an induced homomorphism

alb: CH0(X)→ Alb(X)(k)

given by

[P1 + · · ·+ Pr −Q1 − · · · −Qs] 7→ a(P1) + · · ·+ a(Pr)− a(Q1)− · · · − a(Qs) ,

where in the right hand side we mean the result of addition and subtraction of points
of Alb(X). If X itself is an abelian variety, this is the summation map S that we have used
in Section 10. Because alb[x0] = 0, we may in fact restrict the map alb to the subgroup
CH0(X)hom without loosing any information.

Property (D). The map alb: CH0(X)hom → Alb(X)(k) is an isomorphism.

It turns out that if the base field k is big, the above properties are all equivalent. This
uses results of Mumford and Roitman. An excellent reference is Section 1 of Jannsen’s
paper [26].

11.5 Theorem. Let X be a smooth projective variety over an algebraically closed field k

which is uncountable. Then the above properties (A)–(D) are all equivalent.

All hopes that Chow groups might be ‘small’ were shattered by a result of Mumford [35]
(which was inspired by work of Severi) which says that for a complex surface X, properties
(A)–(D) do not hold if pg(X) > 0. (Recall that the geometric genus pg(X) of a surface X/k

is the k-dimension of H0(X,Ω2
X/k), i.e., the Hodge number h2,0.) The following result gives

a generalization to higher dimensional varieties; for technical reasons we here restrict to
k = C as base field, but closely related results are true more generally. The theorem as
stated here is very close to Roitman’s generalization [42] of Mumford’s theorem.

11.6 Theorem. Let X be a smooth projective complex variety of dimension g such that the
above (equivalent) properties (A)–(D) hold. Then H0(X,Ωi

X/C) = 0 for all i ≥ 2.

An elegant proof of this result can be given using techniques due to Bloch and Srini-
vas [12]. A good reference is for instance [54], Chapter 10.

We now return to abelian varieties. Theorem 11.1 shows that for abelian varieties
over Fp, the bound I⋆(g+1) = 0 from Theorem 10.7 is far from sharp in general. After the
preceding discussion, it should not come as surprise that the situation is different over bigger
base fields, as the following result of Bloch [10] shows.

11.7 Theorem. Let k be an uncountable algebraically closed field of characteristic 0. If X
is a g-dimensional abelian variety over k, we have I⋆g ̸= 0.
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It should be noted that the analogous statement over (uncountable and algebraically
closed) fields of characteristic p > 0 is false, in general. For instance, by the results of
Fakhruddin in [19], I⋆g = 0 for every g-dimensional supersingular abelian variety.

11.8 Remark. By using the sl2-action on CH(X), we see that I⋆sQ injects into CHi
(s)(X),

for every i ∈ {0, . . . , s}. Hence the results about 0-cycles also have implications for the
Chow groups in other codimensions.

11.9. Further reading. There are many interesting further topics related to the themes
of the previous sections. One that should certainly be mentioned is the Kimura–O’Sullivan
theory of ‘finite dimensional motives’. (We shall give the definition in 12.10.) The fascinat-
ing idea here is that, even though Chow groups tend to be very large, from a categorical
perspective Chow motives of smooth projective varieties should behave as if they were finite
dimensional objects. To read about this, we recommend [2], [28] and [25]. Related to this is
a conjecture of Voevodsky that, on a smooth projective variety X, every cycle α ∈ CHi(X)

which is numerically trivial should be smash nilpotent, which means that there exists a pos-
itive integer N such that α× · · · × α (N factors) is zero in CHiN (XN ). By Voevodsky [52]
and Voisin [53], this is known to hold for classes α that are algebraically trivial. While it is
known that Chow motives of abelian varieties are indeed finite dimensional in the sense of
Kimura–O’Sullivan (we shall briefly return to this in Section 13), Voevodsky’s smash nilpo-
tence conjecture for abelian varieties is known in general only for cycles of dimension ≤ 1,
see [47]. It could be argued that Kimura–O’Sullivan finite dimensionality and Voevodsky’s
smash nilpotence conjecture are assertions about the complexity of Chow groups, more than
about their size.

Another beautiful topic that should be mentioned is the study of tautological classes on
Jacobians. Let C/k be a smooth projective curve of genus g ≥ 1 with base point x0 ∈ C(k),
and let J be its Jacobian. We have an embedding C ↪→ J , given by x 7→ OC(x − x0).
This defines a 1-cycle [C] on J , and we can consider the components [C](s) ∈ CH1,(s)(J) of
this class in the Beauville decomposition. The tautological ring T (J) ⊂ CH(J)Q is defined
as the smallest Q-subalgebra for both ring structures (intersection product and Pontryagin
product) that contains all classes [C](s). If we work modulo rational equivalence, the ring
that is obtained is independent of the chosen base point, and by a result of Beauville [6]
it has finite Q-dimension. By a famous result of Ceresa [14], for a very general complex
curve C of genus g ≥ 3 the class C − C− on J (where C− = [−1]∗(C)), which is twice the
sum of the terms [C](s) with s odd, is not algebraically trivial, and it can be shown that
in fact [C](1) ̸∼alg 0. For arbitrary C, there are subtle relations between the Brill-Noether
properties of C and the vanishing of the classes [C](s); a first instance of this is a result of
Colombo and van Geemen [16]; this was later refined by Herbaut [24]. If we work in CH(J)Q
rather than modulo algebraic equivalence, the tautological ring does depend on the chosen
base point, but still turns out to be rich in structure. Extensive results on this were obtained
by Polishchuk (see [40], [41]). Yin [55] extended many of these ideas to families of curves,
and established a close relation to the tautological ring of the moduli space of curves.

Thus far in these notes, we have focused on Chow groups with Q-coefficients, thereby
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killing all torsion. While the author is not aware of any specific conjectures about the torsion
subgroup of CH(X), it is known that for a very general principally polarized complex abelian
threefold, CH2(X)/ℓ is infinite for all prime numbers ℓ. First examples where CH(X)/n

is infinite were given by Schoen [46]; for the very general complex abelian threefold it was
shown by Rosenschon and Srinivas [44] that CH(X)2/ℓ is infinite for almost all ℓ, and this
was extended to all ℓ by Totaro [51]. The proof uses that the very general principally
polarized abelian threefold is the Jacobian of a curve, which is no longer true in dimension
g ≥ 4; it seems plausible, though, that a similar result is true for very general abelian
varieties of higher dimension.
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PART 3

Chow motives





12. The category of Chow motives

We here present a very brief introduction to the theory of Chow motives. We cannot do
justice to this rich theory within a couple of pages, so the reader will have to read some
of the available longer texts for a more detailed account. We hope, though, that the quick
summary of basic facts presented here will make it easier to get an idea of what Chow motives
are. For further reading we recommend [39] and [45], or the more panoramic overview given
in [1].

12.1. Let k be a field. Let us first give a very informal explanation of what Chow motives
are about. The idea is that every smooth projective variety Y/k should have an associated
motive, which we denote by h(Y ), and that the (contravariant) functor Y 7→ h(Y ) should
behave like a universal cohomology theory, which means that every other (Weil) cohomol-
ogy theory should factor through this functor. As discussed in Section 7, if Z is another
smooth projective variety over k, the elements of Corr(Y,Z)Q := CH(Y ×Z)Q, called corre-
spondences, may be viewed as generalized maps from Y to Z, and correspondences can be
composed. In particular, Corr(Y, Y )Q = CH(Y × Y )Q becomes a ring under composition,
and this ring naturally acts on CH(Y )Q. The class [∆Y ] of the diagonal (which is the graph
of the identity morphism) is the identity element in this ring.

If π ∈ Corr(Y, Y )Q is an idempotent (meaning that π ◦ π = π) then so is π′ = [∆Y ]− π,
and using these projectors,1 we can decompose the motive h(Y ) as a direct sum of two
pieces, namely the images of π and π′. In this way, we obtain new motives; these are not
simply smooth projective varieties but ‘summands’ of such. It is as if smooth projective
varieties are molecules and motives are the atoms of which they are composed.

In any (Weil) cohomology theory H we have, for a d-dimensional smooth projective
variety Y/k, a decomposition H(Y ) = H0(Y ) ⊕ H1(Y ) ⊕ · · · ⊕ H2d(Y ). Analogously, we
expect that there exist mutually orthogonal projectors πj , for j = 0, . . . , 2d in Corr(Y, Y )

such that [∆Y ] = π0+π1+ · · ·+π2d and such that the corresponding motivic decomposition
h(Y ) = h0(Y )⊕h1(Y )⊕· · ·⊕h2d(Y ) is the analogue of the decomposition in cohomology. See
Section 12.7 below. Unfortunately, the existence of such a decomposition is not known in
general—but for abelian varieties this is known, and this in fact gives a deeper interpretation
of the Beauville decomposition. We shall discuss this in the next section.

Before we give a more formal definition, there is one more idea from cohomology theory
that is important. Namely, part of a Weil cohomology theory is that there are Tate twists;
this is intimately related to the idea that objects have a weight. In the theory of Chow
motives, we shall have such Tate twists as well.

12.2 Definition. Let k be a field. The category CHM(k) of Chow motives over k is obtained
as follows:
(1) The objects of CHM(k) are triples (X,π,m), where X is a smooth projective k-scheme,

π ∈ Corr(X,X)Q is an idempotent, and m ∈ Z.

1we use the words idempotent and projector as synonyms
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(2) For Chow motives (X,π,m) and (Y, ρ, n), the morphisms ϕ : (X,π,m) → (Y, ρ, n) in
CHM(k) are the elements of the subspace

ρ ◦ Corrn−m(X,Y )Q ◦ π ⊂ Corrn−m(X,Y )Q ,

i.e., the correspondences that are of the form ρ ◦ γ ◦ π with γ ∈ Corrn−m(X,Y )Q.
(3) Composition of morphisms is given by the composition of correspondences, as in 7.2.

In this definition, recall that Corri(X,Y )Q = CHdim(X)+i(X × Y )Q. The following is no
more than an exercise in unravelling the definitions:

12.3 Proposition. Let SmProj(k) denote the category of smooth projective k-schemes.
Then we have a functor

h : SmProj(k)op → CHM(k)

that sends a smooth projective X/k to the motive h(X) = (X, [∆X ], 0) and sends a mor-
phism f : X → Y to the morphism f∗ : h(Y ) → h(X) given by the correspondence [tΓf ] ∈
Corr0(Y,X)Q.

Instead of (X,π,m) one often uses the more suggestive notation πh(X)
(
m
)
. Here

h(X)
(
m
)
= (X, [∆X ],m) should be read as ‘the motive of X, Tate-twisted by m’, and

πh(X)
(
m
)

is then the direct summand that is obtained as the image of the projector π.
If M = (X,π,m) is a motive then π ◦ [∆X ] ◦ π ∈ Corr0(X,X)Q is the identity element

in EndCHM(k)(M).

12.4. Basic facts. The category of Chow motives over a field k has a number of agreeable
properties. Here are a couple of them.
(1) The category CHM(k) is a Q-linear category. In this category we have finite direct

sums. If (X,π,m) and (Y, ρ, n) are two objects and m = n then the direct sum is given
by

(X,π,m)⊕ (Y, ρ, n) = (X ⊔ Y, π + ρ,m) .

(Slogan: the direct sum of motives comes from the disjoint union of schemes.) If m ̸= n,
the construction is slightly more involved; we shall return to it in Example 12.8.

(2) The category CHM(k) is Karoubian, which means that whenever M is an object and
π ∈ EndCHM(k)(M) is an idempotent, we have a decomposition M = M1 ⊕M2 such
that π is the composition M ↠ M1 ↪→ M and idM − π is M ↠ M2 ↪→ M . (In other
words: M1 = πM is the summand that is cut out by π and M2 is the image of idM−π.)
Note, however, that CHM(k) is certainly not an abelian category, unless possibly when
k is contained in the algebraic closure of a finite field; this is explained for instance
in [45], Section 3.

(3) The category CHM(k) has a tensor product, given by

(X,π,m)⊗ (Y, ρ, n) = (X ×k Y, π ⊗ ρ,mn) ;

here π⊗ ρ ∈ Corr(X × Y,X × Y )Q is given by the rule π⊗ ρ = pr∗13(π) · pr∗24(ρ), where
pr13 : X×Y ×X×Y → X×X and pr24 : X×Y ×X×Y → Y ×Y are the projections.
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(Slogan: the tensor product of motives comes from the product of schemes.) This
makes CHM(k) into a symmetric monoidal category.

(4) The motive 1 = h
(
Spec(k)

)
is the identity for the tensor product. For n ∈ Z we

define 1(n) =
(
Spec(k), [∆], n

)
; these objects satisfy 1(m)⊗ 1(n) = 1(m+ n). If M =

(X,π,m) is a Chow motive and n ∈ Z, we define M(n) = (X,π,m+ n) = M ⊗ 1(n).

12.5. Chow groups of motives. If M is a Chow motive, we define its Chow groups by

CHi(M) = HomCHM(k)

(
1(−i),M

)
= HomCHM(k)

(
1,M(i)

)
.

As a sanity check, note that for M = h(Y ) this gives

CHi
(
h(Y )

)
= Corri(Spec(k), Y )Q = CHi(Y )Q .

Further note that CHi
(
M(n)

)
= CHi+n(M), so the effect of a Tate twist is to shift the

grading.

12.6. Cohomological realizations. Let H be a Weil cohomology theory on smooth pro-
jective varieties over k with coefficient field Q. In particular, this means that H is a functor
H : SmProj(k)op → GrVec(Q) (the category of graded Q-vector spaces). Then H factors via
the functor h of Proposition 12.3, i.e., there exists a functor H̄ : CHM(k)→ GrVec(Q) such
that H = H̄ ◦ h. (In practice, we again write H instead of H̄ for this new functor.)

In many situations we have something stronger. The classical Weil cohomology theories
all take values in a more interesting category. For instance, de Rham cohomology takes
values in the category of filtered k-vector spaces, and singular cohomology (for k = C) takes
values in the category of polarizable Q-Hodge structures. If ℓ is a prime number different
from the characteristic of the base field, ℓ-adic cohomology takes values in the category
of Qℓ-vector spaces equipped with a continuous action of Gal(ksep/k). In each of these
examples, the functor H̄ lifts to a functor with values in the relevant target category.

12.7. Chow–Künneth decompositions. It was conjectured by Murre [38] that for ev-
ery smooth projective variety X/k, say of dimension d, there exist mutually orthogonal
projectors

πi ∈ EndCHM(k)

(
h(X)

)
= Corr0(X,X)Q , i = 0, . . . , 2d,

such that:

• [∆X ] = π0 + π1 + · · ·+ π2d, so that we obtain a decomposition

h(X) = h0(X)⊕ h1(X)⊕ · · · ⊕ h2d(X) ,

where hi(X) = πih(X);
• for any Weil cohomology theory H, the induced decomposition of H(X) = H

(
h(X)

)
is the usual cohomological decomposition H(X) = H0(X)⊕ · · · ⊕H2d(X).
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Such a decomposition of h(X)—if it exists—is called a Chow–Künneth decomposition, some-
times abbravtiated to CK decomposition. Murre’s conjecture about the existence of such a
Chow–Künneth decomposition is completely open in general. (A notable exception is the
case where the base field is contained in Fp for some p.) Note that if there exists a CK
decomposition of h(X), it will usually be non-unique; see below.

While the existence of CK decompositions is one of the major open problems in the
theory, there are some small pieces of the puzzle that we do have. For instance, suppose X

has a k-rational point x0 ∈ X(k). Then

π0 = [{x0} ×X] , π2d = [X × {x0}] , π′ = [∆X ]− π0 − π2d

are mutually orthogonal idempotents in Corr0(X,X) that define a decomposition h(X) =

h0(X)⊕h′(X)⊕h2d(X) whose cohomological realization (in any Weil cohomology theory H)
is

H0(X)⊕
[
⊕2d−1

i=1 H i(X)
]
⊕H2d(X) .

Already here we see that we should expect CK projectors to be non-unique: in general, a
different choice of base point x0 gives different projectors π0 and π2d. The motives h0(X)

and h2d(X) are easy to understand, in fact,

h0(X) ∼= 1 , h2d(X) ∼= 1(−d) .

To see this, note that x0 : Spec(k)→ X gives rise to a morphism x∗0 : h(X)→ 1 and also to a
morphism x0,∗ : 1(−d)→ h(X), whereas the structural morphism a : X → Spec(k) induces
morphisms a∗ : 1 → h(X) and also a∗ : h(X) → 1(−d). Because a ◦ y0 is the identity
on Spec(k) we get a∗ ◦x∗0 = id and x0,∗ ◦a∗ = id; on the other hand, it is easy to verify that
x∗0 ◦ a∗ = π0 and a∗ ◦ x0,∗ = π2d.

Going one step further, it is known by the work of Murre [37] how to define projectors
π1 and π2d−1 such that (for some fixed x0 ∈ X(k)) the projectors

π0 , π1 , π′′ = [∆X ]− π0 − π1 − π2d−1 − π2d , π2d−1 , π2d

are mutually orthogonal, and such that the resulting decomposition

h(X) = h0(X)⊕ h1(X)⊕ h′′(X)⊕ h2d−1(X)⊕ h2d(X)

lifts the corresponding decomposition in cohomology, with H
(
h′′(X)

)
= ⊕2d−2

i=2 H i(X).

12.8 Example. Take a point x0 ∈ P1(k). The resulting projectors π0 = [{x0} × P1] and
π2 = [P1×{x0}] are independent of the choice of x0 because any two k-rational points on P1

are rationally equivalent. We have [∆] = π0 + π2 in Corr0(P1,P1)Q = CH1(P1×P1)Q. (Use
that Pic(P1 × P1) = Z2 with the classes of {x0} × P1 and P1 × {x0} as generators.) This
gives us a decomposition

h(P1) = h0(P1)⊕ h2(P1)

with h0(P1) ∼= 1 and h2(P1) ∼= 1(−1).
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With this, we can also describe direct sums of motives in general. As in 12.4(1), suppose
we have two Chow motives M = πh(X)(m) = (X,π,m) and N = ρh(Y )(n) = (Y, ρ, n),
say with m ≤ n. We have already seen how to describe the direct sum in case m = n.
Assume then that m < n. The trick is to use that M ∼=

[
πh(X) ⊗ h2(P1)⊗(n−m)

]
(n), so

that M ⊕N ∼=
[(
πh(X)⊗ h2(P1)⊗(n−m)

)
⊕ ρh(Y )

]
(n).

12.9. Let X/k be a smooth projective variety. The diagonal morphism δ : X → X ×k X

defines a morphism of Chow motives

δ∗ : h(X)⊗ h(X)→ h(X) .

The induced map on Chow rings is the intersection product; in other words: if α ∈ CHi(X)Q
and β ∈ CHj(X)Q correspond to the morphisms α : 1(−i) → h(X) and β : 1(−j) → h(X)

then the composition

1(−i− j) ∼= 1(−i)⊗ 1(−j) α⊗β−−−−→ h(X)⊗ h(X)
δ∗−−→ h(X)

corresponds to the class α · β ∈ CHi+j(X)Q. Similarly, the induced map in cohomology is
the cup-product.

A Chow–Künneth decomposition as in 12.7 is said to be multiplicative if δ∗ restricts to
morphisms hi(X)⊗hj(X)→ hi+j(X) for all i, j ≥ 0. As we shall discuss in the next section,
an abelian variety has such a multiplicative CK decomposition. Perhaps surprisingly, it is
known that for general smooth projective varieties X/k there does not exist a multiplicative
CK decomposition. For a very nice discussion of this, we refer to the paper [20].

12.10. The tensor product of motives makes CHM(k) into a Q-linear symmetric monoidal
category. As a result, notions such as symmetric and exterior products, and more general
Schur functors, make sense in CHM(k). To define Symn(M) and ∧n(M), for M a Chow
motive and n ≥ 0, consider the action of the symmetric group Sn on the motive M⊗n =

M ⊗ · · · ⊗M by permutation of the factors. Then

sn = 1
n!

∑
σ∈Sn

σ

is an idempotent in EndCHM(k)(M), and Symn(M) is defined as the image of this projector.
Similarly, ∧n(M) is defined as the image of the projector λn = 1

n!

∑
σ∈Sn

sgn(σ) · σ.
A motive M is said to be evenly finite dimensional if there exists an integer n ≥ 1 such

that ∧n(M) = 0, and oddly finite dimensional if there exists an integer n ≥ 1 such that
Symn(M) = 0. Finally, M is said to be finite dimensional in the sense of Kimura–O’Sullivan
if there exists a decomposition M = M+ ⊕M− such that M+ is evenly finite dimensional
and M− is oddly finite dimensional. It is known that the class of finite dimensional motives
is closed under direct factors, direct sums and tensor products, and contains all motives of
abelian varieties (see Corollary 13.5 below). Beyond that, the Kimura–O’Sullivan conjecture
that all Chow motives are finite dimensional is widely open.
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12.11 Remark. An additive category may be viewed as a ‘ring with many objects’. (This
idea was developed notably by Mitchell and Street.) This is a very useful perspective for
the theory of motives. For a detailed discussion, see for instance the paper [3] by André and
Kahn. It was shown by Jannsen in [27] that adequate equivalence relations on algebraic
cycles correspond to ⊗-ideals in CHM(k). Jannsen also showed that each step Fili in the
conjecturel filtration of Bloch and Beilinson (see 8.11) may be viewed as a ⊗-ideal, and
that if the Bloch–Beilinson conjecture and the Lefschetz type standard conjecture are true,
Fili equals the ith power if the ideal Ihom that corresponds to the relation ‘homological
equivalence’. See also [2], Théorème 2.13.

12.12. Variant: the covariant (homological) category of Chow motives. For some
purposes, it is more convenient to work in a category of motives that plays the role of a
homology theory, rather than a cohomology theory. This means we want to construct a
category CHM•(k) (we use a dot to distinguish it from the category CHM(k) = CHM•(k)

as above), together with a covariant functor h• : SmProj(k) → CHM•(k). The construction
is almost the same as for the contravariant version; we here only give a summary.

If X and Y are smooth projective over k with dim(X) = d, define Corri(X,Y ) =

CHd+i(X×Y ). Composition of correspondences defines maps Corri(X,Y )×Corrj(Y,Z)→
Corri+j(X,Z). The objects of CHM•(k) are triples (X, p,m) with X/k smooth projective,
p ∈ Corr0(X,X) an idempotent (i.e., p ◦ p = p), and m ∈ Z. If (Y, q, n) is a second such
object, we define

HomCHM•(k)

(
(X, p,m), (Y, q, n)

)
= q ◦ Corrm−n(X,Y ) ◦ p ,

which is a subspace of Corrm−n(X,Y ), and composition of morphisms is given by composi-
tion of correspondences.

We have a covariant functor h• that sends X to h•(X) = (X, [∆], 0) and that sends
f : X → Y to the morphism f∗ : h•(X)→ h•(Y ) given by [Γf ] ∈ Corr0(X,Y ).

We define 1(n) =
(
Spec(k), id, n

)
, and then the Chow groups of a motive M are defined

by CHn(M) = HomCHM•(k)(1(n),M). As a sanity check: for M = h•(X) this gives

HomCHM•(k)

(
1(n), h•(X)

)
= Corrn(Spec(k), X) = CHn(X) ,

which is what we want.
The category CHM•(k) thus obtained is isomorphic to the opposite of the ‘cohomological’

category of Chow motives CHM(k) = CHM•(k), via the functor D : CHM•(k)
op → CHM•(k)

that sends an object (X, p,m) of CHM•(k) to the object (X, tp,−m) of CHM•(k) and that
sends a morphism

q ◦ α ◦ p ∈ q ◦ Corrm−n(X,Y ) ◦ p = HomCHM•(k)

(
(X, p,m), (Y, q, n)

)
to

tp ◦ tα ◦ tq ∈ tp ◦ Corr−m+n(Y,X) ◦ tq = HomCHM•(k)

(
(Y, tq,−n), (X, tp,−m)

)
.

As special cases of this, D
(
h•(X)

)
= h•(X), and for a morphism f : X → Y we have

D(f∗) = f∗. Further note that D sends 1(n) ∈ CHM•(k) to 1(−n) ∈ CHM•(k)
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13. Chow motives of abelian varieties

The following result is due to Deninger and Murre [17].

13.1 Theorem. Let X be a g-dimensional abelian variety over a field k. Then there exist
a Chow–Künneth decomposition

[∆X ] = π0 + π1 + · · ·+ π2g

of the diagonal as a sum of mutually orthogonal projectors, such that the resulting decom-
position of the Chow motive

h(X) = h0(X)⊕ h1(X)⊕ · · · ⊕ h2g(X)

is stable under all endomorphisms [n]∗ for n ∈ Z, and such that [n]∗ induces multiplication
by ni on hi(X). This decomposition is multiplicative, in the sense that the restriction of
δ∗ : h(X) ⊗ h(X) → h(X) to hi(X) ⊗ hj(X) factors through hi+j(X) for all i, j ≥ 0. The
induced decomposition of CH(X)Q is the same as Beauville’s decomposition.

Deninger and Murre in fact prove the analogous statement in the setting of abelian
schemes over some smooth quasi-projective base scheme. This level of generality is needed
even if one is interested only in abelian varieties over fields. The sought-for Chow–Künneth
decomposition is a decomposition of the class [∆X ] ∈ CHg(X ×k X)Q. A natural idea is to
consider the Beauville decomposition of CH(X × X)Q and to use this to ‘decompose’ the
class of the diagonal. This, however, gives nothing of interest, as it is not hard to show that
[n]∗X×X acts as multiplication by n2g on the class of the diagonal, so the class [∆X ] already
lies in one of the summands in the Beauville decomposition. Instead, one wants to consider
the endomorphisms (n, id) : (x1, x2) 7→ (nx1, x2) of X ×X and use these to decompose the
Chow group; but this goes beyond the setting of Beauville’s decomposition. To remedy this,
one should view X × X as an abelian scheme over X via the second projection, because
then (n, id) becomes the usual multiplication by n endomorphism of this abelian scheme. To
make this work requires a generalization of Fourier duality and Beauville’s decomposition
to the relative setting. This is precisely what Deninger and Murre do in their paper.

13.2 Remark. The components h0(X) and h2g(X) are the same as in the discussion of
Section 12.7 (here applied with d = g), taking the origin of X as base point. In particular,
h0(X) ∼= 1 and h2g(X) ∼= 1(−g).

Explicit formulas for all projectors πi can be found in [30]. There is also another con-
crete way to describe these. Namely, consider the matrix M indexed by {0, . . . , 2g}2 with
coefficients Mrs = rs. By Vandermonde this matrix is invertible. If Q is the inverse matrix,
the projectors πi are given by πi =

∑2g
n=0 qin · [n]∗X .

The next result, due to Künnemann [29], expresses the motives hn(X) in terms of h1(X).
If X is a g-dimensional abelian variety and n ∈ {0, . . . , 2g} then by hn(X) we mean the
motives as in the Deninger–Murre decomposition. For n > 2g we define hn(X) = 0.
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13.3 Theorem. Let X be an abelian variety over a field k, and let n be a natural number.
Then the morphism h1(X)⊗n → h(X) given by the diagonal morphism X → Xn induces an
isomorphism Symn

(
h1(X)

) ∼−−→ hn(X).

In any Weil cohomology theory we have Hn(X) ∼= ∧nH1(X), and one might therefore
think that the correct assertion should be that hn(X) is isomorphic to ∧nh1(X). (In fact,
this is the way the result is stated in [29].) However, the cohomology ring H(X) is a
supercommutative algebra (i.e., it is graded-commutative, meaning that for homogeneous
elements x and y of degrees p and q we have y ∪ x = (−1)pq · x ∪ y). In the setting of
superalgebras, because H1(X) ⊂ H(X) is an odd subspace, Symn

(
H1(X)

)
has ∧nH1(X)

as its underlying vector space.
It should be noted that the theorem has no immediate consequences for Chow groups.

For a motive M , we have homomorphisms

CHi1(M)⊗ · · · ⊗ CHin(M)→ CHi1+···+in(M⊗n) ,

but in general CHi(M⊗n) is not spanned by the images of such maps. Therefore, there is in
general no way to express CH(M⊗n) (of which CH(Symn(M)) is a direct factor) in terms
of CH(M).

13.4 Remark. Künnemann’s theorem shows that the entire Chow motive of X can be
expressed in terms of h1(X). This is analogous to the fact that in any cohomology theory,
H(X) is the exterior algebra on H1(X). (Note that, though we present Chow motives as
some kind of ‘cohomology theory’, in many ways the theory of Chow motives is far more
subtle. Chow motives are not simply some kind of vector spaces with additional structure.)

A useful fact is that also the endomorphism algebra of X can be recovered from the
motive h1(X), in the sense that we have a canonical isomorphism

End0(X)
∼−−→ EndCHM(k)

(
h1(X)

)
.

(See [45], Corollary 5.10.)

13.5 Corollary. If X/k is a g-dimensional abelian variety, Sym2g+1(h1(X)) = 0, and h(X)

is a finite dimensional motive.

Proof. The first assertion follows from the fact that h2g+1(X) = 0. The second assertion
then follows from the theorem together with the fact that the class of finite dimensional
motives is stable under taking direct factors, direct sums and tensor products.

To conclude, we mention the result, also due to Künnemann [29], that the sl2-action
that we have discussed in Section 9 is motivic.

13.6 Theorem. Let (X, θ) be a g-dimensional polarized abelian variety over a field k.
Then there is an action of the Lie algebra sl2 on h(X) such that h ∈ sl2 acts on hi(X)

as multiplication by i − g, and such that the induced sl2-action on CH(X)Q is the one of
Theorem 9.4.

58



13.7. Further reading. The main results discussed in these notes are several decades old
by now, and it should be clear that there is a lot of more recent research that goes beyond
the scope of these notes. As a very inspiring example of how the story continues, let me
mention the recent work of Maulik, Shen and Yin [32] in which they extend Fourier duality
and the Beauville decomposition (on a motivic level) to families of abelian varieties with
degenerate fibres; they then use this to give a new proof of the so-called ‘P=W conjecture’
in nonabelian Hodge theory.
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