Let's Fix

- \bullet k: a number field
- $E: Y^2 = (X a_1)(X a_2)(X a_3)$: an elliptic curve defined over k whose 2-torsion points are all rational.
- \mathcal{B} : a finite set of "bad primes" consisting of places dividing 2 or ∞ and odd primes dividing $(a_1 a_2)(a_2 a_3)(a_3 a_1)$ and representatives of ideal class group.

The \mathbb{F}_2 -space of 2-coverings of E

 $m = (m_1, m_2, m_3) \in (k/k^2)^3$ satisfying $m_1 m_2 m_3$ is square. For such m, $\Gamma(m)$ is a 2-covering of E given by :

$$m_i Y_i^2 - m_j Y_j^2 = (c_j - c_i) Y_0^2 \text{ for } i, j \in \{1, 2, 3\}$$

The correspondence $\Gamma(m) \mapsto (m_1, m_2)$ gives a bijection between the set of 2-coverings of E and $(k/k^2)^2$. This map makes the set of 2-coverings a \mathbb{F}_2 -space.

The set of 2-coverings soluble at each prime outside \mathcal{B} corresponds to $(\mathbf{o}_{\mathcal{B}}^*/\mathbf{o}_{\mathcal{B}}^{*2})$, where $\mathbf{o}_{\mathcal{B}}^*$ is the multiplicative group of units outside \mathcal{B} .

• Let's denote

$$X_{\mathcal{B}} = \mathcal{O}_{\mathcal{B}}^*/\mathcal{O}_{\mathcal{B}}^{*2}, Y_v = k_v^*/k_v^{*2}, Y_{\mathcal{B}} = \bigoplus_{v \in \mathcal{B}} Y_v$$

$$V_v = Y_v \times Y_v, V_{\mathcal{B}} = Y_{\mathcal{B}} \times Y_{\mathcal{B}} = \bigoplus_{v \in \mathcal{B}} V_v$$

 $U_{\mathcal{B}}$ is the image of $X_{\mathcal{B}} \times X_{\mathcal{B}}$ in $V_{\mathcal{B}}$.

• If $|\mathcal{B}| = n$,

 $X_{\mathcal{B}}$ is *n*-dimensional over \mathbb{F}_2 .(by unit theorem)

 $Y_{\mathcal{B}}$ is 2*n*-dimensional over \mathbb{F}_2 since $|Y_v| = 4/|2|_v$.

The canonical map $X_{\mathcal{B}} \to Y_{\mathcal{B}}$ is injective.(class field theory)

Define a non-degenerate alternating bilinear form $e_{\mathcal{B}}$ on $V_{\mathcal{B}}$ given by

$$e_{\mathcal{B}} = \prod_{v \in \mathcal{B}} e_v \text{ where } e_v(a \times b, c \times d) = (a, d)_v(b, c)_v.$$

 $U_{\mathcal{B}}$ is a maximal isotropic in $V_{\mathcal{B}}$ w.r.t $e_{\mathcal{B}}$ by Hilbert product theorem.

 $T_v = \text{the image of } \mathcal{O}_v / \mathcal{O}_v^2 \text{ in } V_v.$

 W_v = the image of $E(k_v)$ in V_v under the Kummer map

$$(X,Y) \mapsto (X-c_1,X-c_2).$$

$$W_{\mathcal{B}} = \bigoplus_{v \in \mathcal{B}} W_v$$

 W_v is a maximal isotropic in V_v . (Tate)

 $T_v = W_v$ if v is not a place of bad reduction.

 $\Gamma(m)$ is locally soluble at v iff the corresponding point (m_1, m_2) is in W_v .

2-Selmer group of E is

 $U_{\mathcal{B}} \cap W_{\mathcal{B}} = \text{left and right kernel of } U_{\mathcal{B}} \times W_{\mathcal{B}} \to \pm 1 \text{ by } e_{\mathcal{B}}$ since $U_{\mathcal{B}}, W_{\mathcal{B}}$ are maximal isotropic.

Lemma There exist maximal isotropics K_v in V_v such that $V_{\mathcal{B}} = U_{\mathcal{B}} \bigoplus K_{\mathcal{B}}$ where $K_{\mathcal{B}} = \bigoplus_{v \in \mathcal{B}} K_v$.

 $t_{\mathcal{B}}: V_{\mathcal{B}} \to U_{\mathcal{B}}$ is the projection along $K_{\mathcal{B}}$.

This $t_{\mathcal{B}}$ induces

$$\tau_{\mathcal{B}}: W_{\mathcal{B}}' = W_{\mathcal{B}}/(W_{\mathcal{B}} \bigcap K_{\mathcal{B}}) \simeq U_{\mathcal{B}} \bigcap (W_{\mathcal{B}} + K_{\mathcal{B}}) = U_{\mathcal{B}}'.$$

 $e_{\mathcal{B}}$ induces a bilinear map $e'_{\mathcal{B}}$ on $W'_{\mathcal{B}} \times U'_{\mathcal{B}}$.

Theorem The bilinear forms on $W_{\mathcal{B}}$ and $U_{\mathcal{B}}$ given by :

$$u'_1 \times u'_2 \mapsto e'_{\mathcal{B}}(u'_1, \tau_{\mathcal{B}}^{-1}u'_2) \text{ and } w'_1 \times w'_2 \mapsto e'_{\mathcal{B}}(\tau_{\mathcal{B}}w'_1, w'_2)$$

are symmetric and their kernels are isomorphic to the 2-Selmer group of E.

Proof Let $t_{\mathcal{B}}w_i = u_i'$. Note that $(1 - t_{\mathcal{B}})w_i \in K_{\mathcal{B}}$. Then

$$1 = e_{\mathcal{B}}(w_1, w_2) = e_{\mathcal{B}}(t_{\mathcal{B}}w_1 + (1 - t_{\mathcal{B}})w_1, t_{\mathcal{B}}w_2 + (1 - t_{\mathcal{B}})w_2))$$

$$= e_{\mathcal{B}}(t_{\mathcal{B}}w_1, (1 - t_{\mathcal{B}})w_2)e_{\mathcal{B}}((1 - t_{\mathcal{B}})w_1, t_{\mathcal{B}}w_2) = e(t_{\mathcal{B}}w_1, w_2)e_{\mathcal{B}}(w_1, t_{\mathcal{B}}w_2)$$

$$= e'_{\mathcal{B}}(u'_1, w_2)e'_{\mathcal{B}}(u'_2, w_1). \quad \Box$$