- **Problem**: Associate to formulas geometric objects related to counting points
- \mathcal{L} 1st order language
- T a theory
- $\mathbf{K}_o(T)$ abelian group on 1st order formulas ϕ modulo:

- 1. ϕ formula in \mathcal{L} with free variable $x = (x_1, \dots x_m)$
 - ϕ' formula in \mathcal{L} with free variable $x' = (x'_1, \dots x'_m)$
 - $[\phi] = [\phi']$ if $\exists \psi \in \mathcal{L}$ with free variables x and x' such that

$$T \models \left[\forall x \left(\phi(X) \longrightarrow \exists! x' \left(\phi'(x') \land \psi(x, x') \right) \right) \right]$$

- 2. $[\phi \lor \phi'] = [\phi] + [\phi'] [\phi \land \phi']$ where ϕ , ϕ' have the same free variables
- 3. Product: $[\phi(x)][\phi'(x')] = [\phi(x) \land \phi'(x')]$ where x and x' are difference sets of free variables

- \mathbf{PFF}_k : Theory of pseudo-finite fields_{/k}
- \mathcal{L} : Language of rings with parameters in k
- $\mathbf{K}_o(\mathbf{PFF}_k) \longrightarrow \mathbf{K}_o^{\mathbf{mot}}(\mathbf{Var}_k) \otimes \mathbb{Q}$ char k = 0

- Galois stratification (Fried-Sacerdote) (Fried-Jarden)
- Basic Objects:

• $x \in A(k), \exists y \in C(k)$ $f(y) = x \iff \text{decomposition group above } x \text{ is } \{1\}$

- Consider $C \xrightarrow{G} A$ and a family $\mathcal C$ of subgroups of G stable under conjugation
- set of points in A with decomposition group in \mathcal{C}
- Assume k is a number field, $k_{(p)}$ finite residue field
- $h(C \xrightarrow{G} A, \mathcal{C}, k_{(\mathfrak{p})}) = \{ \text{ set of points in } k_{(\mathfrak{p})}^n \text{ with decomposition group in } \mathcal{C} \}$
- |h(---)| expressed in terms of a central function on G built out of C

Chow Motives

- \bullet G finite group acting on X a smooth projective variety
- $h(X) = \bigoplus_{\alpha \in \hat{G}} h(X)^{\alpha}$ in **ChMot**_k

- \bullet X smooth projective
- Γ correspondence i.e. a cycle of dimension $n = \dim X$ in $X \times X$
- Example: Γ =graph of a morphism $X \longrightarrow X$

To compose correspondences we need to replace $Z^n(X \times X)$ n-dimensional cycle by $\mathbf{CH}^n(X \times X) \otimes \mathbb{Q}/_{\sim}$ where \sim is rational equivalence

- Y variety
- $Z, Z' \in \mathcal{Z}^d(Y)$ co-dimension d
- If $\exists W \in \mathbb{Z}^{d+1}(Y)$, f meromorphism on W such that $Z Z' = \mathbf{div}(f)$ then $Z \sim Z'$

A Chow motive /k is (X, p, n) where:

- \bullet X smooth projective
- p correspondence on X with $p \circ p = p$
- $n \in \mathbb{Z}$

- To $X \rightsquigarrow h(X) = [X, \mathbf{id}, 0] \in \mathbf{ChMot}_k$
- Theorem: (Gillet-Soulé, Guillen-Navaro, Bittner) char k = 0 $\exists ! \mathfrak{X}_X : \mathbf{K}_o(\mathbf{Var}_k) \longrightarrow \mathbf{K}_o(\mathbf{ChMot}_k)$ such that $\mathfrak{X}_C([X]) = h(x)$ for X smooth projective

- \bullet G acts on smooth projective X
- $h(X) = \bigoplus_{\alpha \in \hat{G}} h(X)^{\alpha}$
- $\alpha \leadsto P_{\alpha}$ a projector in $\mathbb{Q}[G]$
- $P_{\alpha} = \sum \lambda_g g$ where g induces a morphism $f_g : X \longrightarrow X$
- $P_{\alpha}^2 = P_{\alpha}$

- \bullet This construction extends to G acting on any X
- \rightsquigarrow $(C \xrightarrow{G} A, \lambda) \rightsquigarrow \mathbf{K}_o(\mathbf{ChMot}_k) \otimes \mathbb{Q}$ where λ is a central function
- In fact belongs to $\operatorname{Im}(\mathbf{K}_o(\operatorname{Var}_k) \otimes \mathbb{Q})$ in $\mathbf{K}_o(\operatorname{ChMot}_K) \otimes \mathbb{Q}$
- We denote the image by $\mathbf{K}_o^{\mathbf{mot}}(\mathbf{Var}_K)_{\mathbb{O}}$
- Finally $\mathfrak{X}_C : \mathbf{K}_o(\mathbf{PFF}_k) \longrightarrow \mathbf{K}_o^{\mathbf{mot}}(\mathbf{Var}_k)_{\mathbb{Q}}$
- Well defined uses Cebotarev
- Finally if ϕ is a formula with coefficients in k, **char** $k = 0 \longrightarrow \mathfrak{X}_C([\phi]) \in \mathbf{K}_o^{\mathbf{mot}}(\mathbf{Var}_k)_{\mathbb{Q}}$
- Fact: $\mathbf{Eu}(\mathfrak{X}_C([\phi])) \in \mathbb{Z}$

Example

- Take k containing n^{th} -roots of unity
- $\phi_n : \exists y \ x = y^n \land x \neq 0$
- Then $\mathfrak{X}_C([\phi_n]) = \frac{\mathbb{L}-1}{n}$
- $\mathbf{Eu}(\mathfrak{X}_c([\phi_n])) = 0$
- $H(\mathfrak{X}_C([\phi_n])) = \frac{uv-1}{n}$

- Define: $P_r(T) \in \mathbf{K}_o^{\mathbf{mot}}(\mathbf{Var}_k)_{\mathbb{Q}}$
- Assume $X \subseteq \mathbb{A}_k^N$
- There exists formula ϕ_n expressing that points in $\mathcal{L}_n(X)(k)$ lift to $\mathcal{L}(X)(k)$
- $P_r(T) := \sum \mathfrak{X}_C([\phi_n])T^n$

Theorem (Denef-Loeser)

- 1. $P_r(T)$ is rational
- 2. If k is a number field, $N_{\mathfrak{p}}(P_r(T)) = P_{\mathfrak{p}}(T)$ (Serre's series) for almost all \mathfrak{p}

More Generally

- K: number field
- L: Pas-language
- Formula in Pas-language
- f a polynomial (or definable function)
- There exists a motive integral I_{mot} such that

$$N_{\mathfrak{p}}(I_{\text{mot}}) = \int |f|_{\mathfrak{p}}^{s} |dx|_{\mathfrak{p}}$$

where the integration is taken over the set defined by ϕ (assumed bounded)

General Principle

- Natural *p*-adic integral are motivic
- Example (Habes) Orbital integrals are motivic
- Once can consider motivic integrals with parameters and get a result of Denef-type (Cluckers-Loeser)