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This is a write-up of lectures presented at the first Arizona Winter School in Arithmetic

Geometry on the abc conjecture. There isn’t anything new in these notes, except perhaps

the point of view. Most of the results are in [V] and [TV].

The Brill-Segre formula counts the number of osculation points for a morphism of a

curve to n-dimensional space and generalizes the Hurwitz formula (n = 1) and the Plucker

formula (n = 2). The Brill-Segre formula implies the abc theorem for function fields for

arbitrarily many summands. Smirnov has suggested a conjectural analogue of Hurwitz

formula for number fields which implies the abc conjecture. We had hoped to be able to

formulate a corresponding number field analogue of the Brill-Segre formula, but had to

stop short of that goal and discuss only local aspects of such an analogue.

Let X be an irreducible, nonsingular, projective algebraic curve of genus g defined over

an algebraically closed field k of characteristic zero (see the papers of J. Wang [W1,2]

for the case of positive characteristic). Let K be the function field of X. For elements

f0, . . . , fn of K, not all zero, we define the height as

h(f0, . . . , fn) :=
∑

P∈X

−min{vP (f0), . . . , vP (fn)},

where vP (f) is the order of f at a point P of X.

Let f0, . . . , fn ∈ K and be linearly independent over k. Consider the morphism

φ = (f0, . . . , fn) : X → Pn. For each P ∈ X we have

f(P ) = ((teP

P f0)(P ), . . . , (teP

P fn)(P ))

where eP := −min{vP (f0), . . . , vP (fn)} and tP is a local parameter of X at P . The set

{vP (
∑n

i=0 aifi)+eP | ai ∈ k} consists of n+1 integers, say 0 ≤ j0 < j1 < . . . < jn ≤ deg φ,

where deg φ = h(f0, . . . , fn) is the degree of φ. This can be shown as follows. There is a
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descending sequence Pn = V0 ⊇ V1 ⊇ V2 ⊇ · · · of linear subspaces of Pn such that, for

each m ≥ 0

Vm(k) = {(a0 : . . . : an) ∈ Pn(k) | vP (
n∑

i=1

aifi) + eP ≥ m)}.

Indeed, the condition in question amounts to m linear conditions on the indeterminate con-

stants a1, . . . , an. Geometrically, we view a1, . . . , an as the coordinates of the hyperplane
∑

aiXi = 0 and interpret Vm as the space of hyperplanes in Pn which meet our curve

with multiplicity at least m at P . At each stage Vm = Vm+1 or Vm+1 is of codimension

one in Vm. Also, it is clear that Vm is empty for m large, since the descending sequence

Pn = V0 ⊇ V1 ⊇ V2 ⊇ · · · must stabilize and
⋂

Vm = ∅ since the fi are linearly indepen-

dent over k. Therefore there are exactly n + 1 integers, say 0 ≤ j0 < j1 < . . . < jn with

Vm = Vm+1 if and only if m 6= ji for all i. In particular dim Vm = n− i, for ji−1 < m ≤ ji.

Brill-Segre formula. Let φ : X → Pn be a morphism. For each P ∈ X define wφ(P ) =
∑n

i=0(ji − i), then
∑

P∈X wφ(P ) = n(n + 1)(g − 1) + (n + 1) deg φ.

We will not give a proof of this result here since it is readily available in the literature,

see, e.g., [FK],[GH],[SV], etc.

It follows from the Brill-Segre formula that there exists only finitely many points in

X where (j0, . . . , jn) 6= (0, . . . , n). These points are called the Weierstrass points for the

morphism φ and wφ(P ) is called the weight of P .

We will now use the Brill-Segre formula to prove (see [BM] or [V]):

Theorem. Suppose u1, . . . , um ∈ K are linearly independent over k, satisfy u1+. . .+um =

1 and let S = {P ∈ X | ∃i, vP (ui) 6= 0} then:

h(u1, . . . , um) ≤ m(m− 1)
2

(2g − 2 + #S).

This is a generalization of Mason’s abc theorem which corresponds to m = 2. Before

embarking on the proof (which will follow [V]) we need a lemma.
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Lemma. If vP (f0) ≤ vP (f1) ≤ . . . ≤ vP (fn), then ji ≥ vP (fi) + eP , for i = 0, ..., n.

Proof: The hypothesis implies that the linear space x0 = · · · = xi−1 = 0 is contained

in Vm, where m = vP (fi)+eP , so dim Vm ≥ n− i. However, ji is defined by dimVji
= n− i

so ji ≥ vP (fi) + eP , as desired.

Proof of the theorem: Consider the morphism φ : X → Pm−1 given by (u1 : . . . : um).

Given a point P ∈ X, choose j such that vP (uj) = −eP . We can make a change of

coordinates that replaces uj by
∑

ui = 1. After reordering the new coordinates we can

assume we are under the hypotheses of the lemma and therefore

∑
ji ≥ vP (1) + eP +

∑

i 6=j

(vP (ui) + eP ) =
∑

i6=j

vP (ui) + meP =
∑

vP (ui) + (m + 1)eP .

So wφ(P ) =
∑

ji −m(m− 1)/2 ≥ ∑
vP (ui) + (m + 1)eP −m(m− 1)/2. Thus

∑

P∈S

wφ(P ) ≥
∑

P∈S

(m + 1)eP −m(m− 1)/2 +
∑

i

vP (ui)

= (m + 1)h(u1, . . . , um)−m(m− 1)/2|S|.

On the other hand,
∑

P∈S wφ(P ) ≤ ∑
P∈X wφ(P ) = m(m−1)(g−1)+mh(u1, . . . , um)

by the Brill-Segre formula, and these two inequalities immmmmmediately give the theorem.

We will now consider an arithmetic analogue of the above. Let a1, . . . , an be elements

of a number field K. Thinking of K as the function field of a non-existent curve, (a1 : . . . :

an) can be viewed as a map of the curve to Pn−1. This point of view has been dubbed

”geometry over the field of one element” (see [M] or [Sm] and also [I], which is perhaps

in the same spirit). We can consider the local and global aspects of the situation. In

[Sm], Smirnov studies the case n = 2, where the local theory is trivial, and makes some

global conjectures in the spirit of a number field analogue of the Hurwitz formula. He asks

about a possible higher dimensional generalization of his conjecture, which should be an

analogue of the Plücker formulas in dimension two which corresponds to n = 3, and their

higher dimensional extensions, that is, the Brill-Segre formula. The results obtained in
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[TV] provide a possible local theory towards such a generalization and the next step will

be to formulate such a higher dimensional global conjecture.

Consider an unramified local field K of characteristic zero with perfect residue field

k of characteristic p > 0, and a1, . . . , an ∈ K. As K has no constant field, we take as

replacement the set of Teichmüller representatives of the elements of of k, which we denote

by T (k). Denote the valuation on K by v(.).

Theorem ([TV]). Let K be as above. Given a1, . . . , an ∈ K, there exists a positive

integer m such that for ζ1, . . . , ζn ∈ T (k), either
∑

ζiai = 0 or v(
∑

ζiai) ≤ m.

Proof: Without loss of generality, we can assume that k is algebraically closed and

that a1, . . . , an are in the ring of integers of k, which we can identify with the ring of Witt

vectors of infinite length over k. For z ∈ k we let T (z) denote its Teichmüller representative

T (z) = (z, 0, 0, . . .). Since the Witt vectors of length m form a ring scheme and T is

multiplicative, the condition
∑

ζiai ≡ 0 (mod pm), for ζi = T (zi), translates into a set of m

homogeneous polynomial equations in z1, . . . , zn and therefore defines a closed subscheme

Vm of Pn−1 over k. Moreover, the Vm form a decreasing sequence, so must become

constant. If Vm0 = Vm, for m > m0, then any ζ1, . . . , ζn ∈ T (k) whose residues z1, . . . , zn

define a point in Vm0 satisfies
∑

ζiai = 0 and all others satisfy v(
∑

ζiai) ≤ m0 − 1. This

completes the proof.

The Vm in the above proof are the analogues of the Vm in the function field case. In the

function field case they were linear spaces, thus reduced, irreducible and equidimensional.

In the arithmetic case they are just schemes which may not be reduced, irreducible or

equidimensional. See [TV] for examples and for results that ensure that the Vm are well-

behaved for small m.

Assume now we are dealing with the global situation. To begin with define the weight

of a place w of K. A weak version is the following

Mw =
1

p(n−1)(n−2)/2

∑

(z1:...:zn)∈Vn−1

(
w(

∑
aiT (zi))− (n− 1)

)
.
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As a first approximation to the Brill-Segre formula one can ask if the infinite series
∑

w Mw log Nw converges if n ≥ 3. There is no good reason to assume it is a finite sum,

but the convergence seems reasonable. A formula, or at least an estimate, for the sum of

this series would then be the required conjecture. One would like to add an archimedian

term, as in [Sm], also. At this point, further theoretical work and numerical experimen-

tation seem advisable before hazarding a shape for this formula. Such a formula should

imply the generalized abc-conjecture for number fields with arbitrarily many summands,

so it lies quite deep. Also, it should be mentioned that in [SV] we obtain a variant of

the Brill-Segre formula “twisted by Frobenius” that leads to a proof of the Riemann hy-

pothesis for function fields and one may speculate whether there is something similar in

the number field case. Like in [Sm], such a conjecture would have implications to some

classical arithmetic questions such as whether there are infinitely many primes satisfying

ap−1 ≡ 1 (mod p2) or (mod p3), where a is some fixed integer.
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