
Zeta Functions of Toric Calabi-Yau Hypersurfaces

Daqing Wan∗

March 5, 2004

Contents

1 Toric Geometry 2
1.1 n-Torus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Basic problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Projective toric hypersurfaces . . . . . . . . . . . . . . . . . . 3
1.4 ∆-regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Homological formulation of ∆-regularity . . . . . . . . . . . . 4
1.6 Hodge numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.7 Reflexive ∆ and Calabi-Yau hypersurface . . . . . . . . . . . 6
1.8 A basic example . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Zeta Functions 8
2.1 L-functions of exponential sums . . . . . . . . . . . . . . . . . 8
2.2 Dwork’s p-adic analytic character . . . . . . . . . . . . . . . . 9
2.3 Analytic representation of Sk(x0f) . . . . . . . . . . . . . . . 10
2.4 Frobenius endmorphism . . . . . . . . . . . . . . . . . . . . . 10
2.5 Rationality of L(x0f, T ) and Z(Uf/Fq, T ) . . . . . . . . . . . 11
2.6 p-adic Cohomological formula for L(x0f, T ) . . . . . . . . . . 12
2.7 Newton polygon for L(x0f, T )(−1)n

. . . . . . . . . . . . . . . 14
2.8 Variation of NP (f) with p . . . . . . . . . . . . . . . . . . . . 15
2.9 Variation of NP (f) with f (p fixed) . . . . . . . . . . . . . . 15
2.10 Generically ordinary primes . . . . . . . . . . . . . . . . . . . 16
2.11 Generically ordinary Calabi-Yau hypersurfaces . . . . . . . . 16
2.12 Basic example . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.13 Zeta functions of affine toric hypersurfaces . . . . . . . . . . . 18
∗MCM workshop lectures (Beijing, Dec. 26-27, 2003), notes taken by Guohua Peng.

Expanded by Doug. Haessig for the Arizona Winter School (March 14-17, 2004).

1



3 p-adic Variation 19
3.1 p-adic Analytic formula for the Frobenius matrix . . . . . . . 19
3.2 Deformation theory and Picard-Fuch equation . . . . . . . . . 19
3.3 Hodge-Newton decomposition and unit root formula . . . . . 20
3.4 Unit root L-function and p-adic Galois representation . . . . 21
3.5 Dwork’s unit root conjecture . . . . . . . . . . . . . . . . . . 21
3.6 p-adic Monodromy group . . . . . . . . . . . . . . . . . . . . 22

1 Toric Geometry

1.1 n-Torus

Denote by Gn
m the algebraic n-torus over Fq. Notice that its Fqk -rational

points are G(Fqk) = (F∗
qk)n and so #Gn

m(Fqk) = (qk − 1)n. It follows that
its zeta function is rational:

Z(Gn
m/Fq, T ) : = exp(

∞∑
k=1

#Gn
m(Fqk)
k

T k)

=
n∏

i=0

(1− qiT )(−1)n−i−1(n
i).

1.2 Basic problem

Given a Laurant polynomial f(x1, · · · , xn) ∈ Fq[x±1 , · · · , x±n ], we may define
an affine toric hypersurface

Uf := {x ∈ Gn
m|f(x) = 0} ↪→ Gn

m.

Wanting to understand the sequence of integers obtained by counting the
Fqk -rational points of Uf leads to its zeta function:

Z(Uf/Fq, T ) = exp(
∞∑

k=1

#Uf (Fqk)
T k

k
) ∈ 1 + TZ[[T ]].

As with the n-torus, we wonder whether this too will be a rational function.
Indeed, Dwork has shown this to be true.

Theorem 1.1 (Dwork). Z(Uf/Fq, T ) ∈ Q(T ).

A consequence of this theorem is the existence of a formula for the num-
bers #Uf (Fqk) in terms of the zeros and poles of the zeta function. However,
how well do we know these zeros and poles? Knowing their precise values
seems to be too difficult in general, so, we may ask for weaker results con-
cerning their absolute values (p-adic and over C). Also, we may wonder how
these zeros and poles vary in a family.
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1.3 Projective toric hypersurfaces

Let K be a field. With our Laurant polynomial f , write f(x) =
∑J

j=1 ajx
Vj

where aj ∈ K and Vj = (v1j , · · · , vnj) ∈ Zn. Associated to f is its Newton
polytope:

∆(f) := ∆ := the closed convex hull of the {Vj}’s in Rn.

We will assume dim ∆ = n. The Newton polytope will be used to define
a graded algebra S∆ as follows. First, define the the polytope ∆̄ ⊂ Rn+1,
which is one dimension higher than ∆, as the closed convex hull of the origin
in Rn+1 and the points (1, Vj) ∈ Rn+1. Next, define the cone C(∆) as the
cone generated by ∆. Observe that C(∆̄) =

⋃∞
k=1 k∆. Next, define the

monoid L(∆) as the lattice points in the cone C(∆). It may be shown that
L(∆̄) is a finitely generated monoid. Finally, define the K-algebra

S∆ := K[L(∆)].

This means S∆ consists of all finite sums of aux
u where au ∈ K and u ∈

L(∆̄). Since L(∆̄) is a finitely generated monoid, S∆ is a finitely generated
K-algebra. Further, we may define a grading on S∆ by deg(xu) := u0 where
u = (u0, . . . , un). Therefore,

S∆ =
∞⊕

d=0

(S∆)d

where (S∆)d is the K-submodule of S∆ consisting of all elements of S∆ of
degree d.

Since S∆ is a finitely generated graded K-algebra, we may define a K-
scheme P∆ := Proj S∆. This is the toric variety associated to ∆. Observe
that this toric variety only depends on those terms of f that lie on the
vertices of ∆. So, we may think of P∆ as an analogue of projective space.
That is, since x0f ∈ (S∆)1, we may define Uf := Proj S∆/(x0f). Notice that
Ūf embeds in P∆ by construction. Thus, we call Ūf a toric hypersurface in
P∆. It follows that we have the diagram:

Uf −−−−→ P∆

projective closure
x x compactification w.r.t. ∆

Uf −−−−→ Gn
m.

This raises the new questions: what is Z(Uf , T ) and how is it related to
Z(Uf , T )?
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1.4 ∆-regularity

In this section, we define the notion of a ∆-regular polynomial f .
Let τ ⊂ ∆ be a face of the polytope of any dimension ranging between

zero and n. Define the restriction of f to τ as f τ =
∑

Vj∈τ ajx
Vj . Using the

operator Ei := xi
∂

∂xi
, define fi := Eif for each i = 1, · · · , n.

Definition 1.2. f is called ∆-regular if for each face τ ∈ ∆ of any dimen-
sion, the system

f τ = f τ
1 = · · · = f τ

n = 0

has no common solutions in Gn
m(Kalg. clos.).

We may reformulate the definition of ∆-regularity as follows. Define
F := x0f − 1 ∈ S∆. Notice that

Fi := EiF = xi
∂F

∂xi
=

{
x0f, i = 0
x0fi i = 1, · · · , n

and Fi ∈ (S∆)1. For each i, define UFi = ProjS∆/(Fi).

Proposition 1.3. f is ∆-regular if and only if
⋂n

i=0 UFi = ∅.

1.5 Homological formulation of ∆-regularity

Each Fi ∈ S∆ acts on S∆ by multiplication:

Fi : S∆ → S∆

g 7→ Fig

FiFj = FjFi.
Let K.(S∆, F0, · · · , Fn) be the Koszul complex

0 −→ S∆ e0 ∧ · · · ∧ en
∂−→· · · ∂−→

n⊕
i=0

S∆ ei
∂−→S∆ −→ 0

∂(a ei1 ∧ · · · ∧ eij ) =
j∑

k=1

(−1)kFik(a) ei1 ∧ · · · ∧ êik ∧ · · · ∧ eij

H0(K.) = S∆/(F0, F1, · · ·Fn) = Rf , the Jacobian ring of f .

Proposition 1.4. TFAE (the following are equivalent):

1) f is ∆-regular.

2) {F0, F1, · · · , Fn} forms a regular sequence of S∆.

3) Hi(K.) = 0,∀ i ≥ 1.

4) dimK H0(K.) <∞.

5) dimK H0(K.) = d(∆) = n! Vol(∆) ∈ Z>0.
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1.6 Hodge numbers

Definition 1.5. Let ∆ ⊆ Rn be n-dimensional integral convex in Rn. Let

W∆(k) = #(Zn ∩ k∆) = dimK(S∆)k.

and
∞∑

k=0

W∆(k)T k, the Poincare series of S∆.

Definition 1.6. Define

h∆(k) = dimK(Rf )k

and ∑
k≥0

h∆(k)T k, the Poincare series of Rf ,

where f is ∆-regular and

Rf = S∆

/
(F0, F1, · · · , Fn),dimRf = d(∆) = n! Vol(∆).

⇒ (1− T )n+1
∑
k≥0

W∆(k)T k =
∑
k≥0

h∆(k)T k, of degree ≤ n.

h∆(k) = W∆(k)−
(
n+ 1

1

)
W∆(k − 1) +

(
n+ 1

2

)
W∆(k − 2) + · · ·

Theorem 1.7 (Ehrhart). There exists a polynomial Λ(t) of degree n such
that

1) for k ∈ Z≥0, W∆(k) = Λ(k);

2) for k ∈ Z>0, W∆(k)∗ := #{interior lattice points in k∆} = (−1)nΛ(k)

(⇒ (1−T )n+1
∞∑

k=0

W ∗
∆(k)T k =

∑
k≥0

h∗∆(k)T k, a polynomial of degree ≤ n+1);

3) duality: h∗∆(k) = h∆(n+ 1− k), k = 0, 1, · · · , n+ 1.

Proposition 1.8.

f,∆-regular over C ⇒ hk(PHn−1
c (Uf )) = h∆(k + 1).

Definition 1.9. Let HP (∆) denote the Hodge polygon in R2 with vertices
(0, 0) and (

∑m
k=0 h∆(k),

∑m
k=0 kh∆(k)),m = 0, 1, · · · , n.
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1.7 Reflexive ∆ and Calabi-Yau hypersurface

Definition 1.10. Let ∆ ⊆ Rn, convex, integral, n-dimensional. Assume O
is in the interior of ∆. Define

∆∗ =

{
(x1, · · · , xn) ∈ Rn

∣∣∣ n∑
i=1

xiyi ≥ −1,∀ (y1, · · · , yn) ∈ ∆

}
.

∆∗ is also an n-dimensional convex polytope, not necessarily integral.
Clearly, (∆∗)∗ = ∆.

Definition 1.11. ∆ is called reflexive if ∆∗ is also integral.

Example ∆a,b: q
−b

q
0

q
a

=⇒ ∆∗
a,b: q

− 1
a

q
0

q
1
b

∆a,b is reflexive iff a, b = 1.

Definition 1.12. Let W be an irreducible normal n-dimensional projective
variety with Gorenstein canonical singularities. Then W is called a Calabi-
Yau variety if

1) the dualizing sheaf Ω̂n
W = OW is trivial;

2) Hi(W,OW ) = 0,∀ 0 < i < n.

Elliptic curves and K3-surfaces are CY.

Theorem 1.13 (Hibi, Batyrev). TFAE:

1) ∆ is reflexive.

2) For any hyperplane H = {(x1, · · · , xn) ∈ Rn |
∑n

i=1 aixi = 1} such
that H ∩∆ is a codimension 1 face of ∆, we have ai ∈ Z.

3) Hodge numbers are symmetric: h∆(k) = h∆(n− k), 0 ≤ k ≤ n.

4) The closure Uf of Uf (f is ∆-regular) in P∆ is a CY variety with
canonical singularities.

Definition 1.14. For ∆ reflexive; f ∆-regular, Uf is called an affine toric
CY hypersurface.

Definition 1.15. Denote

Mp(∆) = {f/Fp | ∆(f) = ∆, f is ∆-regular}.

Let ∆ be reflexive. The family {f ∈ Mp(∆)} is called the mirror family of
{g ∈Mp(∆∗)} over Fp.
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Question: If g is the “mirror” of f , Z(f/Fq, T ) ! Z(g/Fq, T )?

Definition 1.16. A reflexive ∆ in Rn is called Fano, if

1) ∆ is simplicial, i.e., each codimension 1 face of ∆ is a simplex. And

2) The vertices of each codimension 1 face of ∆ form a Z-basis of Zn in
Rn.

Proposition 1.17. Reflexive ∆ is Fano ⇐⇒ P∆∗ is smooth.

1.8 A basic example

Take
∆ = 〈e1, e2, · · · , en,−(e1 + · · ·+ en)〉,

where ei’s are the standard unit vectors in Rn. Then

∆∗ = 〈(n,−1, · · · ,−1), (−1, n, · · · ,−1), · · · , (−1, · · · ,−1, n), (−1,−1, · · · ,−1)〉.

∆ is reflexive, ∆ Fano, but ∆∗ NOT Fano if n > 1. For n = 2,

-

6

@
@
@

�
�
�
�
�
�

��
�
��
�

−(e1 + e2)

e2

e1

∆
=⇒ -

6@
@
@
@
@
@
@
@@

−1
∆∗

−1

x1 + x2 = 1

Let
f(λ, x) = x1 + x2 + · · ·+ xn +

1
x1x2 · · ·xn

− λ.

It’s clear that ∆(f) = ∆.
f(λ, x) is ∆-regular ⇐⇒ λ 66= (n+ 1)α, αn+1 = 1.
Mirror family:

g(λ, x) =
xn+1

1

x1x2 · · ·xn
+ · · ·+ xn+1

n

x1x2 · · ·xn
+

1
x1x2 · · ·xn

− λ

=
1

x1x2 · · ·xn
(xn+1

1 + · · ·+ xn+1
n + 1− λx1x2 · · ·xn)

xi 6=0
! 1 + xn+1

1 + · · ·+ xn+1
n − λx1x2 · · ·xn
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Projective closure in Pn:

xn+1
0 + xn+1

1 + · · ·+ xn+1
n − λx0x1x2 · · ·xn = 0

(the well known family of CY hypersurfaces in Pn.)

Let

G = (Z/(n+ 1)Z)n−1 =

{
(ζ(1), · · · , ζ(n))

∣∣∣ (ζ(i))n+1 = 1,
n∏

i=1

ζ(i) = 1

}
.

Then G acts on Ug(λ,x):

(ζ(1), · · · , ζ(n))(x1, · · · , xn) = (ζ(1)x1, · · · , ζ(n)xn).

Proposition 1.18. Uf(λ,x) = Ug(λ,x)/G.

Proof. If g(λ, x) = 0 for some x, xi 6= 0, let
y1 = xn+1

1 /x1 · · ·xn

...
yn = xn+1

n /x1 · · ·xn

⇒

{
x1 · · ·xn = y1 · · · yn

xn+1
i = yiy1 · · · yn

⇒ y1 + · · ·+ yn +
1

y1 · · · yn
− λ = 0.

Exercise:
∆ = ∆(x1 + · · ·+ xn + 1

x1···xn
−λ) ⇒ h∆(0) = h∆(1) = · · · = h∆(n) = 1.

(Betti number d(∆) = n+ 1.)

2 Zeta Functions

2.1 L-functions of exponential sums

For f ∈ Fq[x±1 , · · · , x±n ], Uf = {f = 0} ↪→ Gn
m, we have

Z(Uf , T ) = exp(
∞∑

k=1

#Uf (Fqk)
T k

k
).

Let
Ψ : Fp → C∗

x 7→ ψ(x) = exp(
2πix
p

)
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be a nontrivial character of Fp. Then

Ψ ◦ TrF
qk/Fp

: Fqk → C∗

induces a nontrivial character of Fqk .
The exponential sum

Sk(x0f) =
∑

xi∈F∗q

Ψ ◦ TrF
qk/Fp

(x0f).

It’s easy to compute

qk#Uf (Fqk) =
∑

xi∈F∗
qk

1≤i≤n

∑
x0∈Fq

Ψ ◦ TrF
qk/Fp

(x0f)

=(qk − 1)n + Sk(x0f)
=#Gn

m(Fqk) + Sk(x0f).

Then
Z(Uf , qT ) = Z(Gn

m, T )L(x0f, T ),

where

L(x0f, T ) = exp(
∞∑

k=1

#Sk(x0f)
T k

k
).

⇒It is enough to study L(x0f, T ).

2.2 Dwork’s p-adic analytic character

Consider the Artin-Hasse series

t+
tp

p
+
tp

2

p2
+ · · · .

The Newton polygon of this tells us that there are exactly p − 1 roots of
this series of slope 1

p−1 . Let π be one of these roots, and so ordp(π) = 1
p−1 .

Using this, we may define a splitting function

θ(t) := exp
(

(πt) +
(πt)p

p
+ · · ·

)
∈ Qp(π)[[T ]].

Since

exp
(
t+

tp

p
+ · · ·

)
=

∏
(k,p)=1

(1− tk)−
µ(k)

k ,

it follows that θ(t) converges on |t|p < p
1

p−1 . In particular, θ is defined at the
Teichmüller points in Cp. Splitting functions have the following remarkable
properties:
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Property 1. θ(1) is a primitive p-th root of unity.
Property 2. We may define a nontrivial additive character

ψk : Fpk → C∗
p by ψk(x̄) := θ(x)θ(xp) · · · θ(xpk−1

) = ψ1(TrF
pk/Fp

(x̄)).

where x is the Teichmüller representative of x̄.

2.3 Analytic representation of Sk(x0f)

Write x0f̄(x) =
∑J

j=1 ājx0x
vj ∈ Fq[x±1

0 , . . . , x±1
n ]. Then, with q = pa, we

have

Sk(x0f) =
∑

x̄i∈F∗
qk

ψk(x0f̄(x̄))

=
∑

x̄i∈F∗
qk

J∏
j=1

ψk(ājx0x
vj )

=
∑

xqk−1
i =1,xi∈Q̄p

J∏
j=1

ak−1∏
i=0

θ((ajx0x
vj )pi

) (1)

=
∑

xqk−1
i =1

Fa(f, x)Fa(f, xq) · · ·Fa(f, xqk−1
) (2)

where we have lifted the coefficients of f to Cp, that is, aj = Teich(āj), and,

Fa(f, x) :=
a−1∏
i=0

J∏
j=1

θ(ajx0x
vj )pi

.

This is the p-adic analytic representation of Sk(x0f) that we will use.

2.4 Frobenius endmorphism

Recall S∆ from section 1.3, with K replaced by Zp. Now, define

S∆,p := {
∑

u∈L(∆̄)

Auπ
u0xu|Au ∈ Zp, Au → 0}.

Note, S∆,p is isomorphic to the p-adic completion of S∆ at p. Now, with a
norm defined by ‖

∑
Auπ

u0xu‖ := supu |Au|p, we see that S∆,p is a Banach
Zp-module. By construction, we see that Γ := {πu0xu|u ∈ L(∆̄)} is an
orthonormal basis for S∆,p, that is, the coefficients tend to zero.

Consider the field Qq(π) and its Galois group over Qp(π), which is cyclic
of order a generated by τ . By definition, τ sends Teichmüller representatives
to their p-th power.
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Using notation from the last section, define

F (f, x) :=
J∏

j=1

θ(ajx0x
vj )

and
G(x) := F (f, x)F τ (f, xp)F τ2

(f, xp2
) · · · .

On the space S∆,p ⊗ Zq[π], define the compact operators

φ1 := ψp ◦ F (f, x)

and
φa := ψq ◦ Fa(f, x)

where, q = pa, and
ψp(
∑

Aux
u) :=

∑
Aτ−1

pu xu.

Note, we may formally write

φ1 = G(x)−1 ◦ ψp ◦G(x) and φa = G(x)−1 ◦ ψq ◦G(x),

where
ψq(
∑

Aux
u) :=

∑
Aqux

u.

2.5 Rationality of L(x0f, T ) and Z(Uf/Fq, T )

Now φa has the following amazing property called the Dwork trace tormula:

Sk(x0f) = (qk − 1)n+1Tr(φk
a)

where Tr denotes the trace of the operator. Recall the relation

1
det(I − φaT )

= exp
∑
k≥1

Tr(φk
a)

k
T k.

Combining these with the binomial theorem, we see that

L(x0f, T ) = exp
∑
k≥1

Sk(x0f)
k

T k

=
n+1∏
i=0

[
det(I − qiφaT )

](−1)n−i(n+1
i )

.

This looks like rationality, however, remember that the operator φa acts on
S∆,p ⊗ Zq[π], an infinite dimensional space and so the characteristic poly-
nomials are actually power series. However, since this operator is compact,
det(I−qiφaT ) is a p-adic entire function. Therefore, the L-function is p-adic
meromorphic.

To prove rationality, we need to use an extension of a theorem of Borel
proven by Dwork.
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Theorem 2.1 (Borel). Let g(T ) ∈ Z[[T ]]. Then g(T ) ∈ Q(T ) if and only
if g(T ) satisfies both

1. g(T ) converges in some neighborhood of the origin in C.

2. g(T ) is p-adic meromorphic.

We obtain

Theorem 2.2 (Dwork). L(x0f, T ) ∈ Q(T ) and so Z(Uf/Fq, T ) ∈ Q(T ).

To prove this, we need only show that L(x0f) converges in some neigh-
bourhood of the origin in C. Now,

|Sk(x0f)|C ≤ (qk − 1)n+1 ≤ qk(n+1)

and since ∑
k≥1

qk(n+1)

k
T k

converges for |T |C < 1/qn+1, we see that L(x0f, T ) converges for any |T |C <
1/qn+1. This proves the theorem.

2.6 p-adic Cohomological formula for L(x0f, T )

As mentioned in section 2.5, we may define a compact operator φa on a
p-adic Banach module B := S∆,p ⊗ Zq[π]. We may also define differential
operators

Di := G(x)−1 ◦ xi
∂

∂xi
◦G(x)

for each i = 0, 1, . . . , n acting on B. Since these commute, we may create a
Koszul complexK•(B,D0, . . . , Dn), the top line of the commutative diagram
below. Also, since φa ◦Di = qDi ◦ φa, we may define a chain map between
complexes:

0 −−−−→ B(n+1
n+1) d−−−−→ B(n+1

n ) d−−−−→ · · · d−−−−→ B(n+1
0 ) −−−−→ 0y qn+1φa

y qnφa

y y yφa

y
0 −−−−→ B(n+1

n+1) d−−−−→ B(n+1
n ) d−−−−→ · · · d−−−−→ B(n+1

0 ) −−−−→ 0

where
B(n+1

i ) := B ⊗ Λi(⊕n
j=0Zej)

and d : B(n+1
i ) → B(n+1

i−1) is defined by

d(aej1 ∧ · · · ∧ eji) :=
i∑

k=0

(−1)kDjk
(a)ej1 ∧ · · · ∧ êjk

∧ · · · ∧ eji .
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We may rewrite the L-function as follows.

L(x0f, T )(−1)n
=

n+1∏
i=0

det(I − Tqiφa|B)(−1)i(n+1
i )

=
n+1∏
i=0

det(I − Tqiφa|B(n+1
i ))(−1)i

=
n+1∏
i=0

det(I − Tqiφa|Hi(K•(B,D0, . . . , Dn)))(−1)i
.

Now, if f is ∆-regular, then all the homology spaces are trivial except
for i = 0, in which case

H0(K•(B,D0, . . . , Dn)) = B/

n∑
i=0

Di(B)

is a free Zq[π]-module of rank d(∆). That is the essence of the next two
theorems.

Theorem 2.3 (Adolphson-Sperber). If f is ∆-regular, then L(x0f, T )(−1)n

is a polynomial of degree d(∆) = n! Vol(∆).

Theorem 2.4 (Denef-Loeser). If f is ∆-regular, then L(x0f, T )(−1)n
is

mixed of weight ≤ n+ 1. That is, if

L(x0f, T )(−1)n
=

d(∆)∏
i=1

(1− αiT ),

then
|αi| =

√
qwi , wi ∈ Z ∩ [0, n+ 1].

Let
ej = #{1 ≤ i ≤ d(∆) | wi = j}, 0 ≤ j ≤ n+ 1.

There exists a very complicated combinatorial formula for ej .
Example: Let ∆ be a simplex and

c0 = 1, ci =
∑

τ⊂∆,face
dim τ=i−1

Vol(τ), i ≥ 1.

Then

e0 = 1, ej =
j∑

i=0

(−1)j−ii!
(
n+ 1− i

n+ 1− j

)
ci, j ≥ 1.

Exercise: f(λ, x) = x1 + · · ·+ xn + 1
x1···xn

− λ, ∆-regular. Compute ej .
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2.7 Newton polygon for L(x0f, T )(−1)n

Let f be ∆-regular over Fq. Write

L(x0f, T )(−1)n
=

d(∆)∑
m=0

AmT
m, A0 = 1, Am ∈ Z.

Define the q-adic Newton polygon of L(x0f, T )(−1)n
to be the lower convex

closure in R2 of the points (m, ordq(Am)), m = 0, 1, · · · , d(∆). Denote this
polygon by NP (f).

r        r���r������r�����
�

r��r
r

NP (f)

r

s

︸ ︷︷ ︸
hs =horizontal length of the slope s side

Newton polygon of f

Theorem 2.5. NP (f) has a side of slope s with horizontal length hs iff
there are exactly hs reciprocal zeros αi’s such that

ordq(αi) = s, i.e., |αi| = q−s.

Question. For s ∈ Q ∩ [0, n+ 1], hs =?

Theorem 2.6 (Adolphson-Sperber). f is ∆-regular⇒NP (f) ≥ HP (∆),
with endpoints coincide, where HP (∆) is the Hodge polygon of ∆.

An outline of the proof is as follows. See section 2.6 for some relevant
notions. We define an operator φ1 on our Banach module B := S∆,p⊗Zq[π].
This induces an operator on the finite dimensional homology space

H0 := H0(K•(B,D0, . . . , Dn)) = B/

n∑
i=0

Di(B)

and so may be represented by a matrix if we provide a basis. Choosing
a monomial basis ΓI := {πu0xu|u ∈ I}, we may explicitly estimate the p-
adic order of the entries of the matrix A1 representing φ1 to get a (Hodge)

14



filtration: φ1(ΓI) = ΓIA1, where

A1 =


M00 M01 M02 · · ·
pM10 pM11 pM12 · · ·
p2M20 p2M21 p2M22 · · ·

...
...

...
. . .


where Mij is a matrix with h∆(i) rows and h∆(j) columns. Further, the
entries of Mij have ordp ≥ 0. Relating this to our operator φa via the
relation φa

1 = φa and using an argument of Dwork’s, we may show the
q-adic Newton polygon of det(I − Tφa|H0) lies above the Hodge polygon,
which is defined as the lower convex hull of the points(

m∑
i=0

h∆(i),
m∑

i=0

i · h∆(i)

)
m=0,1,...,n

.

Definition. If NP (f) = HP (∆), then f is called ordinary. In this case,
L(x0f, T )(−1)n

has exactly h∆(k) reciprocal zeros αi’s such that ordq(αi) = k
for all 0 ≤ k ≤ n.

2.8 Variation of NP (f) with p

Conjecture: Let f ∈ Z[x±1 , · · · , x±n ] be ∆-regular. Then there exist in-
finitely many primes p such that NP (f mod p) = HP (∆) (p is then called
ordinary). One further conjectures that the density δ(f) of ordinary primes
exists and is positive.

Example. If f = x1 + x2 + 1
x1x2

− λ is ∆-regular and hence defines an
elliptic curve over Q, the density δ(f) is either 1/2 if f has CM (Deuring)
or 1 if f has no CM (Serre).

2.9 Variation of NP (f) with f (p fixed)

Let

Mp(∆)(Fp) = {f ∈ Fp[x±1 , · · · , x
±
n ] | ∆(f) = ∆, f is ∆-regular}.

This set is non-empty if p > d(∆).
f ∈Mp(∆)(Fp) ⇒ f ∈Mp(∆)(Fq) for some q.

⇒ q-adic NP (f) is defined, independent of
the choice of the defining field Fq.

The relatively cohomology is locally free and thus forms an overcon-
vergent σ-module and in fact an overconvergent F -crystal on Mp(∆). We
obtain

15



Theorem 2.7 (Grothendieck-Katz). The global minimun

GNP (∆, p) = inf
f∈Mp(∆)

NP (f)

exists and is precisely attained for all f in a Zariski open dense subset
Up(∆) ↪→ Mp(∆). This minimun polygon GNP (∆, p) is called the generic
Newton polygon of the family Mp(∆).

Thus, Newton polygon goes up under specialization, that is, for f ∈
Mp(∆),

NP (f) ≥ GNP (∆, p) ≥ HP (∆).

The first equality holds for all f ∈ Up(∆).
Definition: If GNP (∆, p) = HP (∆), ∆ is called ordinary at p or

generically ordinary at p.
Question: Which primes p are ordinary for ∆?

2.10 Generically ordinary primes

Conjecture (Adolphson-Sperber): ∆ is ordinary for p� 0.

Proposition 2.8. Let ∆ be minimal (i.e., no lattice points on ∆ other than
vertices). If p ≡ 1( modd(∆)), then ∆ is ordinary at p

For minimal ∆, x0f becomes a diagonal, the L-function can be com-
puted directly using Gauss sums and the slopes can be found using the
Stickelberger theorem. This is the local case. Note also for minimal ∆, one
has d(∆) = 1 if n ≤ 2.

Theorem 2.9 (Wan). 1) If n ≤ 3, ∆ is ordinary for p > d(∆).

2) If n ≥ 4, there exists n-dimensional ∆ which is NOT ordinary for all
primes p in a certain congruence class.

3) There existsD∗(∆) > 0 such that ∆ is ordinary for p ≡ 1( mod D∗(∆)).

Part 1) and part 3) follow from the collapsing decomposition (to be
explained in the lectures) and a finer form of the above local proposition.

Conjecture. There is a positive integer µ(∆) such that the set of almost
all (except for finitely many) ordinary primes for ∆ consists of the primes
in certain congruence classes modulo µ(∆).

2.11 Generically ordinary Calabi-Yau hypersurfaces

Theorem 2.10 (Wan). Let ∆ be reflexive.

1) If n = dim(∆) ≤ 4, then ∆ is ordinary for p > d(∆).

2) If ∆ is Fano, then ∆ is always ordinary for every p.

16



Part 2) follows from the star decomposition theorem. The case n = 4
of Part 1) follows from a combination of the star decomposition and the
collapsing decomposition (to be explained in the lectures).

Questions:

1) For reflexive ∆ with n = dim(∆) ≥ 5, is ∆ ordinary for p > d(∆)?

2) If ∆ is reflexive and ordinary at p > d(∆), is ∆∗ ordinary at p?

(already yes if n ≤ 4 or ∆ is Fano)

2.12 Basic example

Take
f(λ, x) = x1 + · · ·+ xn +

1
x1 · · ·xn

− λ.

Then

∆ =∆(f) = 〈e1, e2, · · · , en,−(e1 + e2 + · · ·+ en)〉,
∆∗ =〈(n,−1, · · · ,−1), · · · , (−1,−1, · · · , n), (−1,−1, · · · ,−1)〉.

Theorem 2.11. Both ∆ and ∆∗ are ordinary for all primes p.

Theorem 2.12. 1) Let f(λ, x) be ∆-regular over Fq. Then

L(x0f, T )(−1)n
=

n∏
i=0

(1− αi(λ)T ), d(∆) = n+ 1.

2) α0(λ) = 1, |αi(λ)| = √
qn+1.

3) ∆ is ordinary at p. That is, except for finitely many λ, we have
ordq(αi(λ)) = i, 1 ≤ i ≤ n.

Proof of 2). Since endpoints for NP (f) and HP (∆) coincide, we have

ord(α0α1 · · ·αn) = ord(α1 · · ·αn) =
n∑

k=0

kh∆(k) =
n(n+ 1)

2
.

By Denef-Loeser (Theorem 2.2), |αi| ≤ q
n+1

2 . Now α1 · · ·αn ∈ Z implies
that (α1 · · ·αn)2 = α1 · · ·αnα1 · · ·αn ≤ qn(n+1).

But ord(α1 · · ·αn)2 = n(n + 1), then (α1 · · ·αn)2 = qn(n+1). Hence
|αi| = q

n+1
2 for all 1 ≤ i ≤ n.

Let g(λ, x) = xn+1
0 + · · ·+xn+1

n −λx0x1 · · ·xn. For almost all λ, it defines
a smooth projective hypersurface in Pn. Then

Z(g(λ, x), T ) =
P (T )(−1)n

(1− T )(1− qT ) · · · (1− qn−1T )
,

17



where P (T ) is a polynomial of degree n(nn−(−1)n)
n+1 , pure of weight n−1. The

Newton polygon of P (T ) ≥ HP (Dwork).
Question: Is this family g(λ, x) of projective hypersurfaces in Pn gener-

ically ordinary for all p > n+ 1? (yes for n ≤ 3.)

2.13 Zeta functions of affine toric hypersurfaces

Let f ∈ Fq[x±1 , · · · , x±n ],∆ = ∆(f), f is ∆-regular. Then trivially T = 1 is a
root of L(x0f, T )(−1)n

. And

L(x0f, T )(−1)n

1− T
= P (f, qT )

is a polynomial in 1 + TZ[T ] of degree d(∆) − 1 (with slope ≥ 1), where
P (f, T ) is a polynomial in Z[T ]. We have

Z(Uf , qT ) =
n∏

i=0

(1− qiT )(−1)n−i−1(n
i)L(x0f, T )

=
n∏

i=1

(1− qiT )(−1)n−i−1(n
i)(
L(x0f, T )(−1)n

1− T
)(−1)n

=
n∏

i=1

(1− qiT )(−1)n−i−1(n
i)P (f, qT )(−1)n

,

Z(Uf , T ) =
n−1∏
i=0

(1− qiT )(−1)n−i( n
i+1)P (f, T )(−1)n

,

where

P (f, T ) =
d(∆)−2∏

i=0

(1− βiT )

and the βi’s are algebraic numbers.

Definition 2.13. The primitive Hodge polygon PHP (∆) is the polygon in
R2 with vertices (0, 0) and (

∑m
k=0 h∆(k),

∑m
k=0(k − 1)h∆(k)), 1 ≤ m ≤ n.

r r���
r���

r���
�
�
�

0
1

PHP (∆)

︸ ︷︷ ︸︸ ︷︷ ︸
h∆(1) h∆(2)

Primitive Hodge polygon of ∆18



P (f, T ) = det(I − FrobqT | PHn−1
c (Uf ⊗ Fq,Q`))

=⇒ All results on L(x0f, T )(−1)n
carry over to P (f, T ).

Corollary 2.14. If f is ∆-regular over Fq, then

#Uf (Fqk) =
(qk − 1)n + (−1)n+1

qk
+ (−1)n+1(βk

0 + βk
1 + · · ·+ βk

d(∆)−2),

where |βi| ≤ q
n−1

2 .

3 p-adic Variation

3.1 p-adic Analytic formula for the Frobenius matrix

Let f(λ, x) be the universal family of f ∈Mp(∆). For f(λ, x) ∈Mp(∆)(Fq),

P (f(λ, x), T ) = det(I − FrobqT | PHn−1
c ) = det(I − F (λ)T ).

Here F (λ is a matrix of size (d(∆) − 1) × (d(∆) − 1). Is there any p-adic
analytic formula for F (λ)? Since the relative cohomology forms a locally
free overconvergent σ-module, one obtains

Theorem 3.1. Zariski locally on Mp(∆), there exists an overconvergent
matrix A(λ) of size (d(∆)− 1)× (d(∆)− 1) of the form

A(λ) =


A00(λ) A00(λ) · · ·
pA10(λ) pA11(λ) · · ·

...
...

pn−1An−1,0(λ) pn−1An−1,1(λ) · · ·

 ,

where Aij(λ) has h∆(i+ 1) rows and h∆(j + 1) columns, whose entries are
overconvergent functions on the lifting of Mp(∆) with norm ≤ 1, satisfies
the following property:

if f(λ, x) ∈Mp(∆)(Fpa) and λ = Teich(λ), then one can take

F (λ) = A(λpa−1
) · · ·A(λp)A(λ).

That is, P (f(λ, x), T ) = det(I −A(λpa−1
) · · ·A(λp)A(λ)T ).

3.2 Deformation theory and Picard-Fuch equation

Let p > 2. Since the relatively cohomology forms an overconvergent F -
crystal whose underlying differential equation is the Picard-Fuch equation,
we deduce that the matrix A(λ) as above can be expressed in terms of a
fundamental solution matrix C(λ) of the Picard-Fuch equation:
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A(λ) = C(λp)−1A(λ0)C(λ),

where λ0 is a regular point.
Remark: C(λ) is NOT analytic on the closed unit disk near λ0.
Example: Let

πp−1 = −p, λpa
= λ, θ(λ) = exp(−πλp) · exp(πλ) A(λ),

Ψ ◦ TrF
qk/Fp

(λ) = θ(λpa−1
) · · · θ(λp)θ(λ).

If P (f(λ, x), T ) =
∏d(∆)−2

i=0 (1 − αi(λ)T ) ∈ Z[T ] has h∆(k + 1) reciprocal
roots with slope k, k = 0, 1, · · · , n− 1, then

P (f(λ, x), T ) =
n−1∏
i=0

Pi(λ, T ), Pi(λ, T ) ∈ Zp[T ],

degPi(λ, T ) =h∆(i+ 1)
i = slope of Pi(λ, T ).

Question: Any p-adic analytic formula for Pi(λ, T )?

3.3 Hodge-Newton decomposition and unit root formula

Let ∆ be ordinary at p > 2 and Hp(∆) be the ordinary locus of Mp(∆).
One wishes to find a new basis such that the new matrix(

I00 −E01(λp)
0 I1

)
A(λ)

(
I00 E01(λ)
0 I1

)
=
(
B00(λ) ∗

0 pA′(λ)

)
.

This defines a p-adic contraction map and thus it has a unique solution
matrix E01(λ) which is a convergent matrix of h∆(0) rows and

∑n
i=1 h∆(i)

columns. By induction, one then shows that there exists a convergent matrix
D(λ) on the lifting of Hp(∆) such that

D(λp)−1A(λ)D(λ) =

B00(λ) ∗ ∗
0 pB11(λ) ∗

0 0
. . .

 .

Then

P (f(λ, x), T ) =
n−1∏
i=0

det
(
I − paiBii(λpa−1

) · · ·Bii(λp)Bii(λ)T
)
,

where f(λ, x) ∈ Hp(∆)(Fpa), Bii(λ) is convergent (not overconvergent) on
the closed unit disk,

Bii(λ) = Cii(λp)−1Bii(0)Cii(λ),
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where Cii(λ) is a fundamental solution matrix of a piece of the Picard-Fuch
equation. The p-adic analytic formula for Pi(λ, T ) is then

Pi(λ, T ) = det
(
I − paiBii(λpa−1

) · · ·Bii(λp)Bii(λ)T
)
.

3.4 Unit root L-function and p-adic Galois representation

Let ∆ be ordinary at p. As above,

A(λ) ∼


B00(λ) ∗ ∗ ∗

0 pB11(λ) ∗ ∗

0 0
. . . ∗

0 0 0 pn−1Bn−1,n−1(λ)

 .

Each Bii(λ) is invertible on the lifting of Hp(∆) and hence it defined a unit
root F-crystal on Hp(∆). Alternatively, we have

Theorem 3.2 (Katz). Each Bii defines a continuous p-adic representation

ρi : πarith
1 (Hp(∆)/Fp) −→ GLh∆(i+1)(Zp),

such that
ρi(Frobλ) = Bii(λpa−1

) · · ·Bii(λp)Bii(λ).

It is clear that the L-function

L(ρi, T ) =
∏

λ∈Hp(∆)
closed point

1
det
(
I − T deg(λ)ρi(Frobλ)

) ∈ 1 + T (Q ∩ Zp)[[T ]]

is analytic in |T |p < 1.

3.5 Dwork’s unit root conjecture

Theorem 3.3 (Wan). L(ρi, T ) is p-adic meromorphic everywhere.

Let ρ = ρi. Write the p-adic Weierstrass factorization

L(ρi, T ) =

∏∞
j=1(1− z

(1)
j T )∏∞

j=1(1− z
(2)
j T )

, z
(1)
j → 0, z(2)

j → 0.

Question: Let Kp = Qp(z
(1)
j , z

(2)
j |1 ≤ j < ∞). Is [Kp : Qp] < ∞?

(p-adic RH for L(ρi, T )).

Definition 3.4. Let

r+ρ = lim sup
x→∞

log(1 + #{i | ordq(z
(1)
i ) ≤ x}+ #{j | ordq(z

(2)
j ) ≤ x})

log x
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This is called the order of the p-adic meromorphic function L(ρ, T ). It
measures the size of L(ρ, T ). Clearly, we have 0 ≤ r+ρ ≤ +∞.

Question: r+ρ < +∞?

Theorem 3.5 (Wan). If rank(ρ) = 1 ⇒ r+ρ < +∞.

(true for the family x1 + · · ·+ xn + 1
x1···xn

− λ)

Definition 3.6. Let

r−ρ = lim sup
x→∞

log(1 + |#{i | ordq(z
(1)
i ) ≤ x} −#{j | ordq(z

(2)
j ) ≤ x}|)

log x

Clearly, 0 ≤ r−ρ ≤ r+ρ ≤ +∞.

Question: r−ρ < +∞? (yes if rank(ρ) = 1)

3.6 p-adic Monodromy group

Let ∆ be ordinary at p. Let

ρ = ρi : πarith
1 (Hp(∆)/Fp) −→ GLh∆(i+1)(Zp).

Then Gp(∆, i) = ρi(πarith
1 ) is a p-adic Lie-group.

Question: Gp(∆, i) =?

Example (Igusa). For the elliptic family x1 + x2 + 1
x1x2

− λ, one has

Gp(∆, 0) = Gp(∆, 1) = Z∗p = GL1(Zp).
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