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Abstract

The aim of this course is to study the cohomology groups H∗(Zf ) of non-
degenerate affine toric hypersurfaces Zf ⊂ (C∗)d. Some properties of the
cohomology groups can be described in terms of the Newton polytope of the
equation f . We relate the periods of Zf to the GKZ-hypergeometric functions
and give applications in physics and number theory.

1 Introduction

Let M ∼= Zd be a free abelian group of rank d. We identify M with the group of
characters of the d-dimensional torus Td

∼= (C∗)d

Td = SpecC[M ] ∼= SpecC[X±1
1 , . . . , X±1

d ].

Let ∆ ⊂ M ⊗ R be a d-dimensional convex polytope such that all vertices of ∆
belong to the lattice M . We choose a finite subset A ⊂ ∆ ∩M which contains all
vertices of ∆ and consider a Laurent polynomial

f = f(X1, . . . , Xd) =
∑
m∈A

amXm,

where am (m ∈ A) are sufficiently general complex numbers.
We will be interested in cohomology groups H i(Zf ,Z) of the affine hypersurface

Zf in Td defined by the equation f = 0. Since Zf is affine, one has H i(Zf ,Z) = 0
for i ≥ d. By the Lefschetz-type theorem, one obtains the isomorphisms

H i(Zf ,Z) ∼= H i(Td,Z) = ΛiM, i < d− 1.

Therefore the groups Hd−1(Zf ,Z) and Hd−1(Zf ,C) are the only interesting objects
for our study.
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The group Hd−1(Zf ,C) has a mixed Hodge structure which can be character-
ized by Hodge-Deligne numbers [7]. On the other hand, the periods, i.e., integrals
of (d− 1)-differential forms on Zf over (d-1)-dimensional cycles satisfy a system of
differential equations of Picard-Fuchs type. These differential equations are impor-
tant for applications in physics [4] and they have p-adic analogs [8] which are related
to the Zeta-function of Zf over a finite field.

2 Course content

1. The toric compactification of Cd with respect to a lattice polytope ∆. The
nondegeneracy condition for hypersurfaces Zf ⊂ Cd. The Euler number of Zf . The
number of critical points of f in Cd. The Lefschetz-type theorem for Zf .

2. De Rham cohomology of a nondegenerate hypersurface Zf ⊂ Cd. Logarithmic
de Rham complex. Principal A-determinant of f in the sense of Gelfand-Kapranov-
Zelevinsky [11]. Jacobian ring Rf and its canonical module [2]. Cohomology with
compact supports. Duality and toric residues. Hodge-Deligne numbers of Zf [5].

3. Generalized hypergeometric differential system of Gelfand-Kapranov-Zelevin-
sky [10]. The dimension of the solution space of GKZ-system. Coherent trian-
gulations of the Newton polytope and a basis of the solution space. Generalized
GKZ-hypergeometric functions as periods of hypersurfaces Zf .

4. The secondary polytope Sec(∆) as the Newton polytope of the pricipal A-
determinant of f . The asymptotics of complex and real hypersurfaces corresponding
to vertices of Sec(∆). The monodromy of 1-parameter familites. The method of Viro
and methods of tropical geometry [13].

5. Applications in physics and number theory. The toric mirror symmetry [3].
Monomial-divisor mirror corespondence [1]. The Seiberg duality. P -adic versions of
GKZ-hypergeometric functions and period. Affine toric Fermat-type hypersurfaces.

3 Student project

First interesting examples for study are families of affine algebraic curves Zf ⊂ T2

defined by a 2-dimensional polytope (polygone) ∆ ⊂ M ⊗R. If n is the number of
lattice points on the boundary of ∆ and g is the number of interior lattice points in
∆, then Zf can be seen as a Riemann surface Zf of genus g minus n points. Periods
of Zf are classical objects of algebraic geometry [6].

4 Prerequisites

It is recommended to have some background on algebraic geometry (see e.g. the
book of Griffiths and Harris [12]) and toric geometry (see e.g. the book of Fulton
[9]).
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