COHOMOLOGY, PERIODS AND THE HODGE STRUCTURE OF TORIC HYPERSURFACES

(Course description)

VICTOR V. BATYREV

Mathematisches Institut, Universität Tübingen Auf der Morgenstelle 10, 72076 Tübingen, Germany e-mail: victor.batyrev@uni-tuebingen.de

Abstract

The aim of this course is to study the cohomology groups $H^*(Z_f)$ of nondegenerate affine toric hypersurfaces $Z_f \subset (\mathbf{C}^*)^d$. Some properties of the cohomology groups can be described in terms of the Newton polytope of the equation f. We relate the periods of Z_f to the GKZ-hypergeometric functions and give applications in physics and number theory.

1 Introduction

Let $M \cong \mathbf{Z}^d$ be a free abelian group of rank d. We identify M with the group of characters of the d-dimensional torus $\mathbf{T}_d \cong (\mathbf{C}^*)^d$

$$\mathbf{T}_d = \operatorname{Spec} \mathbf{C}[M] \cong \operatorname{Spec} \mathbf{C}[X_1^{\pm 1}, \dots, X_d^{\pm 1}].$$

Let $\Delta \subset M \otimes \mathbf{R}$ be a *d*-dimensional convex polytope such that all vertices of Δ belong to the lattice M. We choose a finite subset $A \subset \Delta \cap M$ which contains all vertices of Δ and consider a Laurent polynomial

$$f = f(X_1, \dots, X_d) = \sum_{m \in A} a_m X^m,$$

where a_m ($m \in A$) are sufficiently general complex numbers.

We will be interested in cohomology groups $H^i(Z_f, \mathbf{Z})$ of the affine hypersurface Z_f in \mathbf{T}_d defined by the equation f = 0. Since Z_f is affine, one has $H^i(Z_f, \mathbf{Z}) = 0$ for $i \geq d$. By the Lefschetz-type theorem, one obtains the isomorphisms

$$H^i(Z_f, \mathbf{Z}) \cong H^i(\mathbf{T}_d, \mathbf{Z}) = \Lambda^i M, \ i < d-1.$$

Therefore the groups $H^{d-1}(Z_f, \mathbb{Z})$ and $H^{d-1}(Z_f, \mathbb{C})$ are the only interesting objects for our study.

The group $H^{d-1}(Z_f, \mathbf{C})$ has a mixed Hodge structure which can be characterized by Hodge-Deligne numbers [7]. On the other hand, the periods, i.e., integrals of (d-1)-differential forms on Z_f over (d-1)-dimensional cycles satisfy a system of differential equations of Picard-Fuchs type. These differential equations are important for applications in physics [4] and they have *p*-adic analogs [8] which are related to the Zeta-function of Z_f over a finite field.

2 Course content

1. The toric compactification of \mathbf{C}^d with respect to a lattice polytope Δ . The nondegeneracy condition for hypersurfaces $Z_f \subset \mathbf{C}^d$. The Euler number of Z_f . The number of critical points of f in \mathbf{C}^d . The Lefschetz-type theorem for Z_f .

2. De Rham cohomology of a nondegenerate hypersurface $Z_f \subset \mathbf{C}^d$. Logarithmic de Rham complex. Principal A-determinant of f in the sense of Gelfand-Kapranov-Zelevinsky [11]. Jacobian ring R_f and its canonical module [2]. Cohomology with compact supports. Duality and toric residues. Hodge-Deligne numbers of Z_f [5].

3. Generalized hypergeometric differential system of Gelfand-Kapranov-Zelevinsky [10]. The dimension of the solution space of GKZ-system. Coherent triangulations of the Newton polytope and a basis of the solution space. Generalized GKZ-hypergeometric functions as periods of hypersurfaces Z_f .

4. The secondary polytope $\text{Sec}(\Delta)$ as the Newton polytope of the pricipal Adeterminant of f. The asymptotics of complex and real hypersurfaces corresponding to vertices of $\text{Sec}(\Delta)$. The monodromy of 1-parameter familites. The method of Viro and methods of tropical geometry [13].

5. Applications in physics and number theory. The toric mirror symmetry [3]. Monomial-divisor mirror correspondence [1]. The Seiberg duality. P-adic versions of GKZ-hypergeometric functions and period. Affine toric Fermat-type hypersurfaces.

3 Student project

First interesting examples for study are families of affine algebraic curves $Z_f \subset \mathbf{T}_2$ defined by a 2-dimensional polytope (polygone) $\Delta \subset M \otimes \mathbf{R}$. If *n* is the number of lattice points on the boundary of Δ and *g* is the number of interior lattice points in Δ , then Z_f can be seen as a Riemann surface $\overline{Z_f}$ of genus *g* minus *n* points. Periods of $\overline{Z_f}$ are classical objects of algebraic geometry [6].

4 Prerequisites

It is recommended to have some background on algebraic geometry (see e.g. the book of Griffiths and Harris [12]) and toric geometry (see e.g. the book of Fulton [9]).

References

- P.S. Aspinwall, B.R. Greene, and D.R. Morrison, *The monomial-divisor mirror map*, Int. Math. Res. Not., No.12, (1993), 319-337.
- [2] V.V. Batyrev Variations of the mixed Hodge structure of affine hypersurfaces in algebraic tori. Duke Math. J. 69 (1993), no. 2, 349–409.
- [3] V.V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Algebraic Geom., **3** (1994), 493-535.
- [4] V.V. Batyrev and D. van Straten, Generalized Hypergeometric Functions and Rational Curves on Calabi-Yau complete intersections in Toric Varieties, Commun. Math. Phys. 168 (1995), 493-533.
- [5] V.V. Batyrev, L.A. Borisov, Mirror duality and string-theoretic Hodge numbers, Invent. Math., 126 (1996), p. 183-203.
- [6] H. Clemens, A scrapbook of complex curve theory. Second edition. Graduate Studies in Mathematics, 55. AMS, Providence, RI, 2003.
- [7] Danilov, V. I.; Khovanski, A. G. Newton polyhedra and an algorithm for calculating Hodge-Deligne numbers, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 5, 925–945.
- [8] B. Dwork, Lectures on p-adic differential equations Grundlehren der Mathematischen Wissenschaften, 253. Springer-Verlag, New York-Berlin, 1982
- [9] W. Fulton, Introduction to toric varieties, Annals of Mathematics Studies, 131. The William H. Roever Lectures in Geometry. Princeton University Press, Princeton, NJ, 1993.
- [10] Gelfand, I. M.; Zelevinski, A. V.; Kapranov, M. M. Hypergeometric functions and toric varieties Funct. Anal. Appl. 23 (1989), no. 2, 94–106
- [11] Gelfand, I. M.; Zelevinski, A. V.; Kapranov, M. M. Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications. Birkhäuser Boston, Inc., Boston, MA, 1994
- [12] Ph. Griffiths, J. Harris, Principles of algebraic geometry John Wiley & Sons, Inc., New York, 1994.
- [13] G. Mikhalkin, Decomposition into pairs-of-pants for complex algebraic hypersurfaces, math.GT/0205011, to appear in Topology.
- [14] M. Oka, On the topology of full nondegenerate complete intersection variety, Nagoya Math. J. 121 (1991), 137–148.