Pierre Deligne
 Arizona Winter School 2002

Project description

Compute the $\zeta^{(p)}(s, t)$ mentioned above, or make an educated guess, and verify that they satisfy the identities known for the $\zeta(s, t)$.

The "known identities" I have in mind are:
(a) Let Δ be the coproduct on $\mathbb{Q} \ll e_{0}, e_{1} \gg$ for which the e_{i} are primitive: $\Delta e_{i}=e_{i} \otimes 1+$ $1 \otimes e_{i}$. It induces a coproduct on $\mathbb{Q} \ll e_{0}, e_{q} \gg / \mathbb{Q} \ll e_{0}, e_{1} \gg e_{0}+e_{1} \mathbb{Q} \ll e_{0}, e_{1} \gg$. In this quotient,

$$
g_{\mathbb{R}}:=\sum \zeta\left(s_{1}, \ldots, s_{r}\right) e_{0}^{s_{1}-1} e_{1} \ldots e_{0}^{s_{r}-1} e_{1}
$$

is group like: $\Delta g_{\mathbb{R}}=g_{\mathbb{R}} \otimes g_{\mathbb{R}}$.
(b) $\zeta(s) \zeta(t)=\zeta(s, t)+\zeta(t, s)+\zeta(s+t) \quad$ (an instance of $\left.\sum_{n, m}=\sum_{n>m}+\sum_{m>n}+\sum_{n=m}\right)$

The action of Frobenius is defined in [1], §11. A more natural definition is given in [2], but I don't expect it to make computations easier. The tangential base point required (tangent vector 1 at 0) is explained in [1], $\S 15$. A rather unsatisfactory computation of the $\zeta^{(p)}(s)$ is essentially the content of [1], 19.6, 19.7, and amounts to $\zeta^{(p)}(s)$ being the following regularization of

$$
-p^{s} \sum_{p \nmid n} \frac{1}{n^{s}}:
$$

write \sum^{\prime} for a sum extended only to n prime to p and for ℓ prime to p write formally

$$
\begin{gathered}
\ell^{1-s} \sum^{\prime} \frac{1}{n^{s}}=\ell \sum^{\prime} \frac{1}{(\ell n)^{s}}=\sum_{\alpha^{\ell}=1} \sum^{\prime} \frac{\alpha^{n}}{n^{s}}, \text { hence } \\
\sum^{\prime} \frac{1}{n^{s}}=\left(\ell^{1-s}-1\right)^{-1} \sum_{\alpha^{\ell}=1, \alpha \neq 1} \sum_{p \nmid n}^{\prime} \frac{\alpha^{n}}{n^{s}} .
\end{gathered}
$$

It remains to regularize $\sum^{\prime} \frac{z^{n}}{n^{s}}$ for z not congruent to $1 \bmod p$. Let $\left(n \bmod p^{N}\right)$ denote the residue of $n \bmod p^{N}$. Define

$$
\begin{aligned}
\sum^{\prime} \frac{z^{n}}{n^{s}} & =\lim _{N} \sum^{\prime} \frac{z^{n}}{\left(n \bmod p^{N}\right)^{s}}=\lim _{N} \sum_{k} z^{p^{N} \cdot k} \sum_{1}^{p^{N}} \frac{z^{n}}{n^{s}} \\
& :=\lim _{N}\left(1-z^{p^{N}}\right)^{-1} \sum_{1}^{p^{N}} \frac{z^{n}}{n^{s}}
\end{aligned}
$$

[1] P. Deligne, Le groupe fondamental de la droite projective moins trois points, in: Galois Groups over \mathbb{Q}, MSRI Publ. 16 (1989), p. 79-297.
[2] B. Chiarellotto and B. Le Stum, F-isocristaux unipotents, Comp. Math. 116 (1999), p. 81-110.

