Notes on Kato-Siegel functions

A special function.

First consider the elliptic curve E_{τ} over \mathbb{C} corresponding to the lattice $\mathbb{Z} + \tau \mathbb{Z}$, where $\operatorname{Im}(\tau) > 0$.

Consider the function

$$\Theta(u,\tau) = q^{\frac{1}{12}} (t^{\frac{1}{2}} - t^{-\frac{1}{2}}) \prod_{n>0} (1 - q^n t) (1 - q^n t^{-1}),$$

where $q = e^{2\pi i \tau}$ and $t = e^{2\pi i u}$. For any integer D prime to 6, construct the function

$$\theta_D^{E_{\tau}/\mathbb{C}} := (-1)^{\frac{D-1}{2}} \Theta(u,\tau)^{D^2} \Theta(Du,\tau)^{-1}.$$

Then $\theta_D^{E_{\tau}/\mathbb{C}}$ enjoys the following properties.

(i) $\theta_D^{E_{\tau}/\mathbb{C}}$ has divisor $D^2(e) - \ker[\times D]$. (ii) For any isogeny $\alpha : E \to E'$ of degree prime to D between two such curves, $\alpha_* \theta_D^{E/\mathbb{C}} = \theta_D^{E'/\mathbb{C}}$. (iv) \bullet $\theta_{-D} = \theta_D$ (This is obvious.) \bullet $\theta_1 = 1$

- $\theta_1 = 1$ $[\times M]_* \theta_{MC} = \theta_C^{M^2} \in \mathcal{O}^*(E \ker[\times C]) \text{ (In particular, } [\times D]_* \theta_D = 1.)$ $\theta_C \circ [\times M] = \theta_{MC} / \theta_M^{C^2} \in \mathcal{O}^*(E \ker[\times MC])$

(The reason for the numbering will be become apparent in a moment.)

Aim.

We wish to exhibit the algebraic nature of this phenomenon, and show that it generalizes to elliptic curves over arbitrary schemes, behaving well in families. Let $f: E \to S$ be an elliptic curve over an arbitrary scheme S. Let $\omega_{E/S}$ be the invertible sheaf

$$f_*\Omega^1_{E/S} = e^*\Omega^1_{E/S}$$

which, since $\Omega^1_{E/S}$ is free along the fibres of f, is

$$= x^* \Omega^1_{E/S}$$

for any section $x \in E(S)$.

We want to assign to each E/S, and D prime to 6, a section

$$\theta_D^{E/S}$$

of $\mathcal{O}^*(E - \ker[\times D])$ such that

 $\theta_D^{E/S}$ (as a rational function) has divisor $D^2(e) - \ker[\times D]$. The assignment is compatible with isogeny. Precisely, for any isogeny (i) (ii) (ii) The assignment is comparison with Ecological energy $\alpha : E \to E'$ of degree prime to D between elliptic curves over S, we have $\alpha_* \theta_D^{E/S} = \theta_D^{E'/S}$.

(iii) The assignment is compatible with base change. Precisely, for any base change

we have $g^*(\theta_D^{E/S}) = \theta_D^{E \times_S S'/S'}$. (iv) • $\theta_{-D} = \theta_D$ • $\theta_1 = 1$ • $[\times M]_* \theta_{MC} = \theta_C^{M^2} \in \mathcal{O}^*(E - \ker[\times C])$ (In particular, $[\times D]_* \theta_D = 1$.) • $\theta_C \circ [\times M] = \theta_{MC} / \theta_M^{C^2} \in \mathcal{O}^*(E - \ker[\times MC])$ (v) In the case where E is an elliptic curve over \mathbb{C} corresponding to the lattice $\mathbb{Z} + \tau \mathbb{Z}$, $\operatorname{Im}(\tau) > 0$, the section $\theta_D^{E/\mathbb{C}}$ is as before. That is,

$$\theta_D^{E/\mathbb{C}} = (-1)^{\frac{D-1}{2}} \Theta(u,\tau)^{D^2} \Theta(Du,\tau)^{-1}.$$

Note that (i) and (ii) determine $\theta_D^{E/S}$ uniquely. (By (i) any other possible assignment is $u\theta_D^{E/S}$, for some $u \in \mathcal{O}^*(S)$. Applying (ii) with $\alpha = [\times 2]$ and $[\times 3]$ (2 and 3 are prime to D) gives

$$u\theta_D^{E/S}$$

= $\alpha_*(u\theta_D^{E/S})$
= $\alpha_*(u)\alpha_*\theta_D^{E/S}$
= $\alpha_*(u)\theta_D^{E/S}$
= both $u^4\theta_D^{E/S}$ and $u^9\theta_D^{E/S}$

whence $u^4 = u = u^9$, $\Rightarrow u = 1$.

Example. Suppose $S = \operatorname{Spec} k$, k algebraically closed, $\alpha : E \to E'$ separable. Then (ii) becomes

$$\prod_{\substack{x \in E(k) \\ \alpha(x) = y}} \theta_D^{E/k}(x) = \theta_D^{E'/k}(y) \qquad \forall y \in E'(k),$$

which is the familiar distribution relation.

Proof of main result. First note that if $S = \operatorname{Spec} k$, then $\ker[\times D] - D^2(e)$ is principal. (Because D is odd, the sum of ker[$\times D$] on the elliptic curve is 0.)

• To give a rule θ_D satisfying (i) and (iii) is equivalent to giving an isomorphism of line bundles

$$\mathcal{O}_E(\ker[\times D]) \to \mathcal{O}_E(D^2e)$$

compatible with base change. Taking any fibre of E/S, we have the situation $S = \operatorname{Spec} k$ above; hence the line bundles are indeed isomorphic when restricted to any fibre. Then, our task is equivalent to finding, for each E/S, a trivialization of

$$e^*\mathcal{O}_E(\ker[\times D])\otimes e^*\mathcal{O}_E(D^2e)^{\vee},$$

which is

$$\begin{split} &= e^* \mathcal{O}_E(\ker[\times D]) \otimes e^* \mathcal{O}_E(-D^2 e) \\ &= e^* [\times D]^* \mathcal{O}_E(e) \otimes e^* \mathcal{O}_E(-D^2 e) \\ &= e^* \mathcal{O}_E(e)^{\otimes (1-D^2)} \\ &= \boldsymbol{\omega}_{E/S}^{\otimes (D^2-1)}, \end{split}$$

compatible with base change.

Now we know the set of nowhere-vanishing sections of $\boldsymbol{\omega}^{\otimes 12d}$ over the moduli stack – that is, the collections, of a section of $\boldsymbol{\omega}_{E/S}^{\otimes 12d}$ for each E/S, compatible with base change and isogeny – is $\{\pm \Delta^d\}$, for any $d \in \mathbb{Z}$, where Δ is the discriminant. Then (since $(D, 6) = 1 \Rightarrow D \equiv 1 \mod 12$) we have 2 nonvanishing sections of $\boldsymbol{\omega}^{\otimes (D^2-1)}$, that is, $\pm \Delta (E/S)^{(D^2-1)/12}$. Let $\pm \phi_D^{E/S}$ be the corresponding functions on $E - \ker[\times D]$. So both $E/S \mapsto \pm \phi_D^{E/S}$ satisfy (i) and (ii).

Change base so that α factors as a product of isogenies of prime degree. Thus to verify (ii) we may assume deg $\alpha = p$ prime. The quotient $g_p(E/S, \alpha) := \alpha_* \phi^{E/S} (\phi^{E'/S})^{-1} \in \mathcal{O}^*(S)$ is compatible with

The quotient $g_p(E/S, \alpha) := \alpha_* \phi^{E/S} (\phi^{E'/S})^{-1} \in \mathcal{O}^*(S)$ is compatible with base change. The modular stack $\mathcal{M}_{\Gamma_0(N)}$ classifies pairs $(E/S, \alpha)$ where $\alpha : E \to E'$ is a cyclic isogeny of degree N. So g_p is a modular unit $\in \Gamma(\mathcal{M}_{\Gamma_0(p)}, \mathcal{O}^*)$, and so $g_p(E/S, \alpha) = \pm 1 \ \forall (E/S, \alpha)$. And the sign depends only on p.

• To determine the sign evaluate $g_p(E/\mathbb{F}_p, \operatorname{Fr}_E)$. Now $\operatorname{Fr}_{E*} : \kappa(E)^* \to \kappa(E)^*$ is the norm map. So for p odd, $g_p(E, \operatorname{Fr}_E) = 1$. In particular this does not depend on our choice of $\pm \phi_p^{E/S}$. For p = 2, though, replacing one by the other replaces g_2 by $-g_2$. Therefore exactly one of $\pm \phi^{E/S}$ will make θ_2 satisfy (ii).

• We check (iv). θ_{-D} also satisfies (i) and (ii), which uniquely determine θ_D . So $\theta_{-D} = \theta_D$. The constant 1 satisfies (i) and (ii) for D = 1; hence $\theta_1 = 1$.

 $[\times M]_*\theta_{MC}$ has divisor $M^2(C^2(e) - \ker[\times C])$ and is compatible with base change, so $[\times M]_*\theta_{MC} = \epsilon \theta_C^{M^2}$, $\epsilon = \pm 1$. Now (ii) gives

$$\epsilon \theta_C^{M^2} = [\times M]_* \theta_{MC}$$
$$= [\times M]_* [\times 2]_* \theta_{MC}$$
$$= [\times 2]_* [\times M]_* \theta_{MC}$$
$$= [\times 2]_* (\epsilon \theta_C^{M^2})$$
$$= \epsilon^4 \theta_C^{M^2}$$
$$= \theta_C^{M^2}$$

and so $\epsilon = 1$.

Using D = M and C = 1 produces $[\times D]_* \theta_D = \theta_1^{D^2} = 1$.

Now $\theta_C \circ [\times M]$ and $\theta_{MC}/\theta_M^{C^2}$ both have divisor

$$C^2 \operatorname{ker}[\times M] - \operatorname{ker}[\times MC];$$

hence their ratio is a unit compatible with base change. So (i) and (ii) give the result as before.

• A final matter is to check that condition (v) holds – that is, that our $\theta_D^{E/S}$ is indeed a generalization of the analytic $\theta_D^{E_{\tau}/\mathbb{C}}$ given at first. This found by calculating that $F(u, \tau) := \Theta(u, \tau)^{D^2} \Theta(Du, \tau)^{-1}$ is a function on $E_{\tau} (\approx \mathbb{C}/(\mathbb{Z} + \tau\mathbb{Z}))$ with divisor $D^2(e) - \ker[\times D]$, and which is $\operatorname{SL}_2(\mathbb{Z})$ -invariant. Then $F(u, \tau)$ is a constant multiple of $\theta_D^{E/S}$ for $E = E_{\tau}$, the constant being independent of τ . Consideringt a curve E_{τ} defined over \mathbb{R} with two real connected components (for example $Y^2 = X^3 - X$, where $\tau = i$) we calculate that

$$[\times 2]_*F(u,\tau) = (-1)^{\frac{D-1}{2}}F(u,\tau).$$