Notes on Kato-Siegel functions

A special function.

First consider the elliptic curve E_{τ} over \mathbb{C} corresponding to the lattice $\mathbb{Z}+\tau \mathbb{Z}$, where $\operatorname{Im}(\tau)>0$.

Consider the function

$$
\Theta(u, \tau)=q^{\frac{1}{12}}\left(t^{\frac{1}{2}}-t^{-\frac{1}{2}}\right) \prod_{n>0}\left(1-q^{n} t\right)\left(1-q^{n} t^{-1}\right)
$$

where $q=e^{2 \pi i \tau}$ and $t=e^{2 \pi i u}$. For any integer D prime to 6 , construct the function

$$
\theta_{D}^{E_{\tau} / \mathbb{C}}:=(-1)^{\frac{D-1}{2}} \Theta(u, \tau)^{D^{2}} \Theta(D u, \tau)^{-1}
$$

Then $\theta_{D}^{E_{\tau} / \mathbb{C}}$ enjoys the following properties.
(i) $\quad \theta_{D}^{E_{\tau} / \mathbb{C}}$ has divisor $D^{2}(e)-\operatorname{ker}[\times D]$.
(ii) For any isogeny $\alpha: E \rightarrow E^{\prime}$ of degree prime to D between two such curves, $\alpha_{*} \theta_{D}^{E / \mathbb{C}}=\theta_{D}^{E^{\prime} / \mathbb{C}}$.
(iv) - $\theta_{-D}=\theta_{D} \quad$ (This is obvious.)

- $\theta_{1}=1$
- $[\times M]_{*} \theta_{M C}=\theta_{C}^{M^{2}} \in \mathcal{O}^{*}(E-\operatorname{ker}[\times C])$ (In particular, $[\times D]_{*} \theta_{D}=1$.)
- $\theta_{C} \circ[\times M]=\theta_{M C} / \theta_{M}^{C^{2}} \in \mathcal{O}^{*}(E-\operatorname{ker}[\times M C])$
(The reason for the numbering will be become apparent in a moment.)

Aim.

We wish to exhibit the algebraic nature of this phenomenon, and show that it generalizes to elliptic curves over arbitrary schemes, behaving well in families. Let $f: E \rightarrow S$ be an elliptic curve over an arbitrary scheme S. Let $\boldsymbol{\omega}_{E / S}$ be the invertible sheaf

$$
f_{*} \Omega_{E / S}^{1}=e^{*} \Omega_{E / S}^{1}
$$

which, since $\Omega_{E / S}^{1}$ is free along the fibres of f, is

$$
=x^{*} \Omega_{E / S}^{1}
$$

for any section $x \in E(S)$.
We want to assign to each E / S, and D prime to 6 , a section

$$
\theta_{D}^{E / S}
$$

of $\mathcal{O}^{*}(E-\operatorname{ker}[\times D])$ such that
(i) $\quad \theta_{D}^{E / S}$ (as a rational function) has divisor $D^{2}(e)-\operatorname{ker}[\times D]$.
(ii) The assignment is compatible with isogeny. Precisely, for any isogeny $\alpha: E \rightarrow E^{\prime}$ of degree prime to D between elliptic curves over S, we have $\alpha_{*} \theta_{D}^{E / S}=\theta_{D}^{E^{\prime} / S}$.
(iii) The assignment is compatible with base change. Precisely, for any base change

we have $g^{*}\left(\theta_{D}^{E / S}\right)=\theta_{D}^{E \times{ }_{S} S^{\prime} / S^{\prime}}$.
(iv) • $\theta_{-D}=\theta_{D}$

- $\theta_{1}=1$
- $[\times M]_{*} \theta_{M C}=\theta_{C}^{M^{2}} \in \mathcal{O}^{*}(E-\operatorname{ker}[\times C])$ (In particular, $[\times D]_{*} \theta_{D}=1$.)
- $\quad \theta_{C} \circ[\times M]=\theta_{M C} / \theta_{M}^{C^{2}} \in \mathcal{O}^{*}(E-\operatorname{ker}[\times M C])$
(v) In the case where E is an elliptic curve over \mathbb{C} corresponding to the lattice $\mathbb{Z}+\tau \mathbb{Z}, \operatorname{Im}(\tau)>0$, the section $\theta_{D}^{E / \mathbb{C}}$ is as before. That is,

$$
\theta_{D}^{E / \mathbb{C}}=(-1)^{\frac{D-1}{2}} \Theta(u, \tau)^{D^{2}} \Theta(D u, \tau)^{-1}
$$

Note that (i) and (ii) determine $\theta_{D}^{E / S}$ uniquely. (By (i) any other possible assignment is $u \theta_{D}^{E / S}$, for some $u \in \mathcal{O}^{*}(S)$. Applying (ii) with $\alpha=[\times 2]$ and $[\times 3]$ (2 and 3 are prime to D) gives

$$
\begin{aligned}
& u \theta_{D}^{E / S} \\
= & \alpha_{*}\left(u \theta_{D}^{E / S}\right) \\
= & \alpha_{*}(u) \alpha_{*} \theta_{D}^{E / S} \\
= & \alpha_{*}(u) \theta_{D}^{E / S} \\
= & \operatorname{both} u^{4} \theta_{D}^{E / S} \text { and } u^{9} \theta_{D}^{E / S},
\end{aligned}
$$

whence $u^{4}=u=u^{9}, \Rightarrow u=1$.
Example. Suppose $S=\operatorname{Spec} k, k$ algebraically closed, $\alpha: E \rightarrow E^{\prime}$ separable. Then (ii) becomes

$$
\prod_{\substack{x \in E(k) \\ \alpha(x)=y}} \theta_{D}^{E / k}(x)=\theta_{D}^{E^{\prime} / k}(y) \quad \forall y \in E^{\prime}(k)
$$

which is the familiar distribution relation.
Proof of main result. First note that if $S=\operatorname{Spec} k$, then $\operatorname{ker}[\times D]-D^{2}(e)$ is principal. (Because D is odd, the sum of $\operatorname{ker}[\times D]$ on the elliptic curve is 0 .)

- To give a rule θ_{D} satisfying (i) and (iii) is equivalent to giving an isomorphism of line bundles

$$
\mathcal{O}_{E}(\operatorname{ker}[\times D]) \rightarrow \mathcal{O}_{E}\left(D^{2} e\right)
$$

compatible with base change. Taking any fibre of E / S, we have the situation $S=\operatorname{Spec} k$ above; hence the line bundles are indeed isomorphic when restricted to any fibre. Then, our task is equivalent to finding, for each E / S, a trivialization of

$$
e^{*} \mathcal{O}_{E}(\operatorname{ker}[\times D]) \otimes e^{*} \mathcal{O}_{E}\left(D^{2} e\right)^{\vee},
$$

which is

$$
\begin{aligned}
& =e^{*} \mathcal{O}_{E}(\operatorname{ker}[\times D]) \otimes e^{*} \mathcal{O}_{E}\left(-D^{2} e\right) \\
& =e^{*}[\times D]^{*} \mathcal{O}_{E}(e) \otimes e^{*} \mathcal{O}_{E}\left(-D^{2} e\right) \\
& =e^{*} \mathcal{O}_{E}(e)^{\otimes\left(1-D^{2}\right)} \\
& =\boldsymbol{\omega}_{E / S}^{\otimes\left(D^{2}-1\right)}
\end{aligned}
$$

compatible with base change.
Now we know the set of nowhere-vanishing sections of $\boldsymbol{\omega}^{\otimes 12 d}$ over the moduli stack - that is, the collections, of a section of $\boldsymbol{\omega}_{E / S}^{\otimes 12 d}$ for each E / S, compatible with base change and isogeny - is $\left\{ \pm \Delta^{d}\right\}$, for any $d \in \mathbb{Z}$, where Δ is the discriminant. Then (since $(D, 6)=1 \Rightarrow D \equiv 1 \bmod 12$) we have 2 nonvanishing sections of $\boldsymbol{\omega}^{\otimes\left(D^{2}-1\right)}$, that is, $\pm \Delta(E / S)^{\left(D^{2}-1\right) / 12}$. Let $\pm \phi_{D}^{E / S}$ be the corresponding functions on $E-\operatorname{ker}[\times D]$. So both $E / S \mapsto \pm \phi_{D}^{E / S}$ satisfy (i) and (ii).

Change base so that α factors as a product of isogenies of prime degree. Thus to verify (ii) we may assume $\operatorname{deg} \alpha=p$ prime.

The quotient $g_{p}(E / S, \alpha):=\alpha_{*} \phi^{E / S}\left(\phi^{E^{\prime} / S}\right)^{-1} \in \mathcal{O}^{*}(S)$ is compatible with base change. The modular stack $\mathcal{M}_{\Gamma_{0}(N)}$ classifies pairs $(E / S, \alpha)$ where $\alpha: E \rightarrow$ E^{\prime} is a cyclic isogeny of degree N. So g_{p} is a modular unit $\in \Gamma\left(\mathcal{M}_{\Gamma_{0}(p)}, \mathcal{O}^{*}\right)$, and so $g_{p}(E / S, \alpha)= \pm 1 \forall(E / S, \alpha)$. And the sign depends only on p.

- To determine the sign evaluate $g_{p}\left(E / \mathbb{F}_{p}, \operatorname{Fr}_{E}\right)$. Now $\operatorname{Fr}_{E *}: \kappa(E)^{*} \rightarrow \kappa(E)^{*}$ is the norm map. So for p odd, $g_{p}\left(E, \operatorname{Fr}_{E}\right)=1$. In particular this does not depend on our choice of $\pm \phi_{p}^{E / S}$. For $p=2$, though, replacing one by the other replaces g_{2} by $-g_{2}$. Therefore exactly one of $\pm \phi^{E / S}$ will make θ_{2} satisfy (ii).
- We check (iv). θ_{-D} also satisfies (i) and (ii), which uniquely determine θ_{D}. So $\theta_{-D}=\theta_{D}$. The constant 1 satisfies (i) and (ii) for $D=1$; hence $\theta_{1}=1$.
$[\times M]_{*} \theta_{M C}$ has divisor $M^{2}\left(C^{2}(e)-\operatorname{ker}[\times C]\right)$ and is compatible with base change, so $[\times M]_{*} \theta_{M C}=\epsilon \theta_{C}^{M^{2}}, \epsilon= \pm 1$. Now (ii) gives

$$
\begin{aligned}
\epsilon \theta_{C}^{M^{2}} & =[\times M]_{*} \theta_{M C} \\
& =[\times M]_{*}[\times 2]_{*} \theta_{M C} \\
& =[\times 2]_{*}[\times M]_{*} \theta_{M C} \\
& =[\times 2]_{*}\left(\epsilon \theta_{C}^{M^{2}}\right) \\
& =\epsilon^{4} \theta_{C}^{M^{2}} \\
& =\theta_{C}^{M^{2}}
\end{aligned}
$$

and so $\epsilon=1$.
Using $D=M$ and $C=1$ produces $[\times D]_{*} \theta_{D}=\theta_{1}^{D^{2}}=1$.
Now $\theta_{C} \circ[\times M]$ and $\theta_{M C} / \theta_{M}^{C^{2}}$ both have divisor

$$
C^{2} \operatorname{ker}[\times M]-\operatorname{ker}[\times M C] ;
$$

hence their ratio is a unit compatible with base change. So (i) and (ii) give the result as before.

- A final matter is to check that condition (v) holds - that is, that our $\theta_{D}^{E / S}$ is indeed a generalization of the analytic $\theta_{D}^{E_{\tau} / \mathbb{C}}$ given at first. This found by calculating that $F(u, \tau):=\Theta(u, \tau)^{D^{2}} \Theta(D u, \tau)^{-1}$ is a function on $E_{\tau}(\approx \mathbb{C} /(\mathbb{Z}+$ $\tau \mathbb{Z})$) with divisor $D^{2}(e)-\operatorname{ker}[\times D]$, and which is $\operatorname{SL}_{2}(\mathbb{Z})$-invariant. Then $F(u, \tau)$ is a constant multiple of $\theta_{D}^{E / S}$ for $E=E_{\tau}$, the constant being independent of τ.

Consideringt a curve E_{τ} defined over \mathbb{R} with two real connected components (for example $Y^{2}=X^{3}-X$, where $\tau=i$) we calculate that

$$
[\times 2]_{*} F(u, \tau)=(-1)^{\frac{D-1}{2}} F(u, \tau)
$$

