
Notes on Kato-Siegel functions

A special function.
First consider the elliptic curve Eτ over C corresponding to the lattice Z+τZ,

where Im(τ) > 0.
Consider the function

Θ(u, τ) = q
1
12 (t

1
2 − t−

1
2 )

∏
n>0

(1− qnt)(1− qnt−1),

where q = e2πiτ and t = e2πiu. For any integer D prime to 6, construct the
function

θ
Eτ /C
D := (−1)

D−1
2 Θ(u, τ)D2

Θ(Du, τ)−1.

Then θ
Eτ /C
D enjoys the following properties.

(i) θ
Eτ /C
D has divisor D2(e)− ker[×D].

(ii) For any isogeny α : E → E′ of degree prime to D between two such
curves, α∗θ

E/C
D = θ

E′/C
D .

(iv) • θ−D = θD (This is obvious.)
• θ1 = 1
• [×M ]∗θMC = θM2

C ∈ O∗(E − ker[×C]) (In particular, [×D]∗θD = 1.)
• θC ◦ [×M ] = θMC/θC2

M ∈ O∗(E − ker[×MC])
(The reason for the numbering will be become apparent in a moment.)

Aim.
We wish to exhibit the algebraic nature of this phenomenon, and show that

it generalizes to elliptic curves over arbitrary schemes, behaving well in families.
Let f : E → S be an elliptic curve over an arbitrary scheme S. Let ωE/S be
the invertible sheaf

f∗Ω1
E/S = e∗Ω1

E/S ,

which, since Ω1
E/S is free along the fibres of f , is

= x∗Ω1
E/S

for any section x ∈ E(S).
We want to assign to each E/S, and D prime to 6, a section

θ
E/S
D

of O∗(E − ker[×D]) such that

(i) θ
E/S
D (as a rational function) has divisor D2(e)− ker[×D].

(ii) The assignment is compatible with isogeny. Precisely, for any isogeny
α : E → E′ of degree prime to D between elliptic curves over S, we have
α∗θ

E/S
D = θ

E′/S
D .
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(iii) The assignment is compatible with base change. Precisely, for any base
change

E

f

²²

E ×S S′

²²

goo

S S′oo

we have g∗(θE/S
D ) = θ

E×SS′/S′

D .
(iv) • θ−D = θD

• θ1 = 1
• [×M ]∗θMC = θM2

C ∈ O∗(E − ker[×C]) (In particular, [×D]∗θD = 1.)
• θC ◦ [×M ] = θMC/θC2

M ∈ O∗(E − ker[×MC])
(v) In the case where E is an elliptic curve over C corresponding to the
lattice Z+ τZ, Im(τ) > 0, the section θ

E/C
D is as before. That is,

θ
E/C
D = (−1)

D−1
2 Θ(u, τ)D2

Θ(Du, τ)−1.

Note that (i) and (ii) determine θ
E/S
D uniquely. (By (i) any other possible

assignment is uθ
E/S
D , for some u ∈ O∗(S). Applying (ii) with α = [×2] and [×3]

(2 and 3 are prime to D) gives

uθ
E/S
D

=α∗(uθ
E/S
D )

=α∗(u)α∗θ
E/S
D

=α∗(u)θE/S
D

= both u4θ
E/S
D and u9θ

E/S
D ,

whence u4 = u = u9,⇒ u = 1.

Example. Suppose S = Spec k, k algebraically closed, α : E → E′ separable.
Then (ii) becomes

∏

x∈E(k)

α(x)=y

θ
E/k
D (x) = θ

E′/k
D (y) ∀y ∈ E′(k),

which is the familiar distribution relation.

Proof of main result. First note that if S = Spec k, then ker[×D]−D2(e) is
principal. (Because D is odd, the sum of ker[×D] on the elliptic curve is 0.)

• To give a rule θD satisfying (i) and (iii) is equivalent to giving an isomorphism
of line bundles

OE(ker[×D]) → OE(D2e)
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compatible with base change. Taking any fibre of E/S, we have the situation
S = Spec k above; hence the line bundles are indeed isomorphic when restricted
to any fibre. Then, our task is equivalent to finding, for each E/S, a trivializa-
tion of

e∗OE(ker[×D])⊗ e∗OE(D2e)∨,

which is

=e∗OE(ker[×D])⊗ e∗OE(−D2e)

=e∗[×D]∗OE(e)⊗ e∗OE(−D2e)

=e∗OE(e)⊗(1−D2)

=ω
⊗(D2−1)
E/S ,

compatible with base change.
Now we know the set of nowhere-vanishing sections of ω⊗12d over the moduli

stack – that is, the collections, of a section of ω⊗12d
E/S for each E/S, compatible

with base change and isogeny – is {±∆d}, for any d ∈ Z, where ∆ is the
discriminant. Then (since (D, 6) = 1 ⇒ D ≡ 1 mod 12) we have 2 non-
vanishing sections of ω⊗(D2−1), that is, ±∆(E/S)(D

2−1)/12. Let ±φ
E/S
D be the

corresponding functions on E−ker[×D]. So both E/S 7→ ±φ
E/S
D satisfy (i) and

(ii).
Change base so that α factors as a product of isogenies of prime degree.

Thus to verify (ii) we may assume deg α = p prime.
The quotient gp(E/S, α) := α∗φE/S(φE′/S)−1 ∈ O∗(S) is compatible with

base change. The modular stackMΓ0(N) classifies pairs (E/S, α) where α : E →
E′ is a cyclic isogeny of degree N . So gp is a modular unit ∈ Γ(MΓ0(p),O∗),
and so gp(E/S, α) = ±1 ∀(E/S, α). And the sign depends only on p.

• To determine the sign evaluate gp(E/Fp,FrE). Now FrE∗ : κ(E)∗ → κ(E)∗ is
the norm map. So for p odd, gp(E, FrE) = 1. In particular this does not depend
on our choice of ±φ

E/S
p . For p = 2, though, replacing one by the other replaces

g2 by −g2. Therefore exactly one of ±φE/S will make θ2 satisfy (ii).

• We check (iv). θ−D also satisfies (i) and (ii), which uniquely determine θD.
So θ−D = θD. The constant 1 satisfies (i) and (ii) for D = 1; hence θ1 = 1.

[×M ]∗θMC has divisor M2(C2(e) − ker[×C]) and is compatible with base
change, so [×M ]∗θMC = εθM2

C , ε = ±1. Now (ii) gives

εθM2

C =[×M ]∗θMC

=[×M ]∗[×2]∗θMC

=[×2]∗[×M ]∗θMC

=[×2]∗(εθM2

C )

=ε4θM2

C

=θM2

C
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and so ε = 1.
Using D = M and C = 1 produces [×D]∗θD = θD2

1 = 1.

Now θC ◦ [×M ] and θMC/θC2

M both have divisor

C2 ker[×M ]− ker[×MC];

hence their ratio is a unit compatible with base change. So (i) and (ii) give the
result as before.

• A final matter is to check that condition (v) holds – that is, that our θ
E/S
D

is indeed a generalization of the analytic θ
Eτ /C
D given at first. This found by

calculating that F (u, τ) := Θ(u, τ)D2
Θ(Du, τ)−1 is a function on Eτ (≈ C/(Z+

τZ)) with divisor D2(e)−ker[×D], and which is sl2(Z)-invariant. Then F (u, τ)
is a constant multiple of θ

E/S
D for E = Eτ , the constant being independent of τ .

Consideringt a curve Eτ defined over R with two real connected components
(for example Y 2 = X3 −X, where τ = i) we calculate that

[×2]∗F (u, τ) = (−1)
D−1

2 F (u, τ).
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