Buzzard's Group Presentation

March 14, 2001
Let $p=2$. Consider the modular curve $X_{0}(2)=\left(\Gamma_{0}(2) \mathcal{H}^{\mathcal{H}}\right)^{*}$ which parametrizes pairs (E, C) where C is a subgroup of order 2 . As an affine curve, $X_{0}(2)$ is given by $x y=2^{12}$. And we define

$$
f:=1 / x=\frac{\Delta\left(q^{2}\right)}{\Delta(q)}=q \prod_{n=1}^{\infty}\left(1+q^{n}\right)^{24}
$$

Since $\Delta(q), \Delta\left(q^{2}\right)$ are weight 12 level 2 modular forms, f is a modular function of weight 0 level 2. We have a cannonical map of degree 3 between $X_{0}(2)$ and $X_{0}(1)$, which maps the two cusps $0, \infty$ of $X_{0}(2)$ to the one cusp ∞ of $X_{0}(1)$ and preserves q-expansions. (Picture was drawn here during the talk.) Since $\Delta(q)$ has a simple zero at ∞ and a double zero at 0 on $X_{0}(2)$ and $\Delta\left(q^{2}\right)$ has a double zero at ∞ and a single zero at 0 on $X_{0}(2), f$ has a simple zero at ∞ and a simple pole at 0 . Therefore,

$$
f: X_{0}(2) \xrightarrow{\sim} \mathbb{P}^{1}
$$

Now if we consider $X_{0}(2)$ as a rigid analytic space, the collection $\left\{1, f, f^{2}, f^{3}, \ldots\right\}$ forms a basis of the space of funtions on $\left\{x \in X_{0}(2) \quad:|f(x)| \leq 1\right\}$ such that $\sum_{n=0}^{\infty} a_{n} T^{n},\left|a_{n}\right|_{2} \rightarrow 0$ as $n \rightarrow \infty$, and where $|T|<1$. The reduction of $X_{0}(2)_{\mathbb{Q}_{2}}$ to $X_{0}(2)_{\mathbb{F}_{2}}$ takes an 2-adic annulus of supersingular points $2^{-12}>|x|>1$ to the singular point of $x y=0$. (Picture could be drawn here.)

If we write $f(q)=\sum_{n=1}^{\infty} a_{n} q^{n}$, then our goal is to compute what U_{2} looks like on $\left\{1, f, f^{2}, f^{3}, \ldots\right\}$. If we let $\alpha=f(\sqrt{q})$ and $\beta=f(-\sqrt{q})$, then we have

$$
\begin{aligned}
\alpha+\beta & =\sum a_{n} q^{n / 2}+\sum(-1)^{n} a_{n} q^{n / 2} \\
& =2 \sum a_{n} q^{n / 2}+2 \sum a_{2 n} q^{n} \\
& =2 U_{2} f
\end{aligned}
$$

Therefore $U_{2} f=\frac{1}{2}(\alpha+\beta)$, and $U_{2} f: X_{0}(2) \longrightarrow \mathbb{P}_{\mathbb{\mathbb { Q }}_{2}}$ is a map of degree 2 .
If $f(q)$ is a modular form for Γ, then $f(\delta q)$ is a modular form for $\delta^{-1} \Gamma \delta$. So $f(\sqrt{q})=$ $f(\tau / 2)=f\left(\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right) \tau\right)$ is a modular form on $\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)^{-1} \Gamma_{0}(2)\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right) \supseteq \Gamma(2)=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \bmod 2\right\}$

Note that we know the degree of α, β are 2 , and looking at where our maps factor through we have

Thus $\operatorname{deg}\left(U_{2} f\right) \leq 4$ on $X(2)$ and we have the following diagram

So $U_{2} f$ will factor through $X_{0}(2)$. Now the question becomes how far out do we need to look for f expansions?

By the above discussion we see that $\operatorname{deg}\left(U_{2} f\right)=2$ on $X_{0}(2)$, so

$$
U_{2} f=\frac{-+_{-} f+{ }_{-} f^{2}}{-+_{-} f+{ }_{-} f^{2}}
$$

and we need to figure out what should go in the blanks. Since $f: 0 \rightarrow \infty$ and $f: \infty \rightarrow 0$, $U_{2} f={ }_{-}+{ }_{\not} f+{ }_{{ }_{\mathrm{f}}} f^{2}$. By a computer calculation we see that $U_{2} f=24 f+2084 f^{2}$.

The matrix for $2 U_{2}$ with respect to $\left\{1, f, f^{2}, f^{3}, \ldots\right\}$ will be denoted by $\left(c_{i j}\right)$, where $2 U_{2} f^{j}=\sum_{i} c_{i j} f^{i}$. And this matrix actually begins

$$
\left(\begin{array}{cccc}
2 & 0 & 0 & \longrightarrow \\
0 & 48 & 2 & \\
0 & 2^{12} & 2304 & \ldots \\
0 & 0 & \vdots & \\
\downarrow & \downarrow & \vdots &
\end{array}\right)
$$

So we are interested in a generating function. Let $g=\sum b_{n} q^{n}$, then $2 U_{2} g=2 \sum b_{2 n} q^{n}=$ $g(\sqrt{q})+g(-\sqrt{q})$. So if $g=f^{j}, 2 u_{2} f^{j}=\alpha^{j}+\beta^{j}=\sum c_{i j} f^{i}$. Now

$$
\begin{aligned}
\sum(\alpha y)^{j}+(\beta y)^{j} & =\sum c_{i j} f^{i} y^{j} \\
& =\frac{1}{1-\alpha y}+\frac{1}{1-\beta y} \\
& =\frac{2-(\alpha+\beta) y}{1-(\alpha+\beta) y+\alpha \beta y^{2}}
\end{aligned}
$$

In fact

$$
\begin{aligned}
\alpha \beta & =\sqrt{q} \prod_{n}\left(1+(\sqrt{q})^{n}\right)^{24} \cdot-\sqrt{q} \prod_{n}\left(1+(-\sqrt{q})^{n}\right)^{24} \\
& =-q \prod_{n \text { even }}\left(\left(1+q^{n}\right)^{2}\right)^{24} \cdot \prod_{n \text { odd }}\left(1-q^{n}\right)^{24} \\
& =-q \prod_{n} \frac{\left(\left(1+q^{n}\right)^{2}\right)^{24}\left(1-q^{n}\right)^{24}}{\left(1-q^{2 n}\right)^{24}} \\
& =-q \prod_{n}\left(1+q^{n}\right)^{24} \\
& =-f
\end{aligned}
$$

So we have a generating function

$$
\frac{2-\left(48 f+2^{12} f^{2}\right) y}{1-\left(48 f+2^{12} f^{2}\right) y-f y^{2}}
$$

Can you figure out the $c_{i j}$ from this generating function?
In order to make our argument rigorous, we need to show that $2 U_{2}$ is a compact operator on the ρ-overconvergent modular forms with $|\rho|_{2}<1$. We know that if $M=\left(m_{i j}\right)$ is an infinite matrix giving an operator, then M is compact if and only if for $\gamma_{i}=\sup _{j}\left|m_{i j}\right|_{2}$, we have that $\gamma_{i} \rightarrow 0$ as $i \rightarrow \infty$. The problem we face is that $c_{i, 2 i}=2$, so we do not have a compact operator for the basis $\left\{1, f, f^{2}, f^{3}, \ldots\right\}$.

Since we do not have a compact operator on the space of all 2 -adic modular forms, we must restrict to ρ-overconvergent modular forms. Pick $\omega \in \overline{\mathbb{Q}}_{2}$ such that $|\omega|_{2}<1$. We now adjust our basis: $\left\{1,(\omega f),(\omega f)^{2}, \ldots\right\}$ and look at $2 U_{2}$ as a matrix with respect to this new basis

$$
\begin{aligned}
2 U_{2}(\omega f)^{i} & =\omega^{j} \sum_{i} c_{i j} f^{i} \\
& =\sum_{i} c_{i j} \omega^{j-i}(\omega f)^{i}
\end{aligned}
$$

So in terms of the new basis $2 U_{2}=\left(d_{i j}\right)=\left(c_{i j} \omega^{j-i}\right)$. Now letting $\omega=2^{l}$ with l a positive rational and recalling the generating function for $\left(c_{i j}\right)$, we have

$$
\begin{aligned}
\sum d_{i j} f^{i} y^{j} & =\sum c_{i j} \omega^{j-i}(\omega y)^{j} \\
& =\frac{2-\left(2^{4} \cdot 3 f+2^{12} f^{2} \omega^{-1}\right) y}{1-\left(2^{4} \cdot 3 f+2^{12} f^{2} \omega^{-1}\right) y-\omega f y^{2}} \\
& =\frac{2-\left(2^{4} \cdot 3 f+2^{12-l} f^{2}\right) y}{1-\left(2^{4} \cdot 3 f+2^{12-l} f^{2}\right) y-2^{l} f y^{2}}
\end{aligned}
$$

which has a power series in $\mathcal{O}_{\overline{\mathbb{Q}}_{2}}$. Thus $\left|d_{i j}\right|_{2}<\left|2^{i l}\right|_{2}=2^{-i l} \rightarrow 0$ as $i \rightarrow 0$. So $2 U_{2}$ is compact on $\left\{1,(\omega f),(\omega f)^{2}, \ldots\right\}$ as desired.

We have been interested in computing $\left(c_{i j}\right)$ and a result of Frank Calegari shows this matrix is computable for U_{2}.
Theorem. $c_{i j}=\frac{2^{8 i-4 j} 3 j(i+j-1)!}{(2 i-j)!(2 j-i)!}$ where $c_{i j}=0$ whenever not well-defined.
Proof. There is a recurrence relation

$$
\begin{aligned}
F_{1} & =2 U_{2} f=\alpha+\beta=48 f+4096 f^{2} \\
F_{n} & =2 U_{2} f^{n}=\alpha^{n}+\beta^{n} \\
F_{n+1} & =2 U_{2} f^{n+1}=\alpha^{n+1}+\beta^{n+1}=(\alpha+\beta)\left(\alpha^{n}+\beta^{n}\right)-\alpha \beta\left(\alpha^{n-1}+\beta^{n-1}\right)
\end{aligned}
$$

then

$$
\begin{aligned}
F_{n+1} & =2 U_{2} f \cdot 2 U_{2} f^{n}+f\left(2 U_{2}\right)\left(f^{n-1}\right) \\
& =\left(48 f+4096 f^{2}\right) F_{n}+f F_{n-1}
\end{aligned}
$$

so $c_{i+1, j+1}=48 c_{i, j}+4096 c_{i-1, j}+c_{i, j-1}$ and the rest follows by an ugly calculation.
Ideally we would like to have a closed form, which we hope to derive from

$$
\frac{2-(\alpha+\beta) y}{1-(\alpha+\beta) y+\alpha \beta y^{2}}
$$

but what we have been able to compute is that

$$
c_{i j}=2^{8 i-4 j} 3^{2 j-1}\left(\binom{j}{2 j-i}+j \sum_{k=1}^{\left[\frac{2 j-i}{3}\right]} \frac{3^{-3 k}}{k}\binom{j-(k+1)}{j-2 k}\binom{j-2 k}{2 j-i-3 k}\right)
$$

but we have been unable to reduce this to Frank's result.
There are many related open and fun problems. We can try the same calculations with $E_{2}(q)=$ weight 2, level 2 Eisenstein series, then $E_{2}(q), E_{2}\left(q^{2}\right)$ are overconvergent modular forms of weight 2 and level 1. Let $g=\frac{E_{2}(q) / E_{2}\left(q^{2}\right)-1}{24}$ (which is overconvergent of weight 0 and level 2) try to compute the matrix in terms of the paramaters

$$
\begin{aligned}
U_{2}(g) & =0 \\
U_{2}\left(g^{2}\right) & =\sum\left((2 i+1) 3^{i-2} 2^{3(j-1)}(-1)^{i+1}\right) g^{i} \\
U_{2}\left(g^{3}\right) & =0 \\
U_{2}\left(g^{4}\right) & = \pm\left(U_{2}\left(g^{2}\right)\right)^{2}
\end{aligned}
$$

There are many interesting problems for $p=3,5,7,13, \ldots$. What are nice paramaters ... try to find nice formulae.

