p-adic Modular Forms

K. Buzzard
$3 / 13 / 01$

Let $E / R / R_{0}$ be an elliptic curve over an R_{0}-algebra R, where $R_{0}=\mathcal{O}_{K}$ with $\left[K: \mathbb{Q}_{p}\right]<\infty$. Now consider E / K, then we have two cases:

$$
v(E) \in \begin{cases}\text { not defined } & \text { if } E \text { is very supersingular } \tag{1}\\ {[0,1) \cap \mathbb{Q}} & \text { otherwise }\end{cases}
$$

Theorem 1. (Katz-Lubin) If

$$
v(E)< \begin{cases}\frac{p}{p+1} & \text { if } p \geq 5 \tag{2}\\ \frac{p}{2(p+1)} & \text { if } p=3 \\ \frac{p}{4(p+1)} & \text { if } p=2\end{cases}
$$

then E has a "canonical" subgroup of ord=p.
Remark 1. $v(E)=0 \Leftrightarrow E$ has ordinary reduction, and then the canonical subgroup is just the kernel of the reduction map on its p-torsions.
Assume $v(\rho)<c_{p}$, where c_{p} denotes the number on the right of (2) corresponding to different p 's. If $(E / R, \omega, Y)$ is a ρ-overconvergent test object, then $v\left(E_{K}\right) \leq v(\rho)<c_{p}$. So E has a canonical subgroup H, and $(E / R, \omega, H)$ is a classical test object plus a subgroup of order p. A rule on these objects is a classical modular form of level p. Hence we get a map from classical modular forms of level p over K_{0} to ρ-overconvergent forms of level 1. So we also have a U_{p} operator acting on the ρ-overconvergent forms. If f is a ρ-overconvergent, then
Remark 2. Let E / K have $v(E)<c_{p}$, and H be the canonical subgroup, then
(1) If C is a subgroup of order n with $(n, p)=1$ then $v(E / C)=v(E)$,
(2) If C is not canonical then $v(E / C)=\frac{1}{p} v(E)$,
(3) If $v(E)<\frac{1}{p} c_{p}$ then $v(E / C)=p v(E)$, so in fact U_{p} maps ρ-overconvergent forms to ρ^{P}-overconvergent forms.

Definition 1.

$$
\mathbb{M}_{k}\left(K_{0}, \rho\right)=\left(\rho-\text { overconvergent forms of weight } k \text { defined over } R_{0}\right) \otimes K_{0}
$$

Then $\mathbb{M}_{k}\left(K_{0}, \rho\right)$ is a p-adic Banach space over K_{0}.
As the remark indicates, we will have Hecke operators T_{l} for $l \neq p$ acting on $\mathbb{M}_{k}\left(K_{0}, \rho\right)$, and U_{p} : $\mathbb{M}_{k}\left(K_{0}, \rho\right) \rightarrow \mathbb{M}_{k}\left(K_{0}, \rho^{p}\right)$.
While at the same time there is a natural inclusion

$$
\mathbb{M}_{k}\left(K_{0}, \rho^{p}\right) \longrightarrow \mathbb{M}_{k}\left(K_{0}, \rho\right)
$$

where $v(\rho)<\frac{1}{p} c_{p}$.
Hence we get a map

$$
U_{p}: \mathbb{M}_{k}\left(K_{0}, \rho\right) \longrightarrow \mathbb{M}_{k}\left(K_{0}, \rho\right)
$$

One can also get $U_{p}\left(\sum a_{n} q^{n}\right)=\sum a_{n p} q^{n}$.
Remark 3. T_{l} 's are continuous. U_{p} is even better than that! Let V be a big infinite dimensional p-adic Banach space, and assume e_{1}, e_{2}, \ldots is a countable Banach basis of V. Then every $v \in V$ can be written uniquely as

$$
v=\sum a_{i} e_{i}, \text { with } a_{m} \rightarrow 0, a_{n} \in K_{0}
$$

Let $T: V \rightarrow V$ be a continuous operator, and $T\left(e_{i}\right)=\sum c_{j i} e_{j}$. So $c_{j i}$ is the matrix of T with respect to the basis. Then the queation is: does this matrix have a trace? Of course one cannot expect an affirmative answer in general as the identity matrix has no trace.
But the operator $T: e_{i} \rightarrow p^{i} e_{i}$ of V has a trace $=\sum p^{i}=\frac{p}{1-p}$.
Now denote $\mathcal{L}(V, V)=$ continuous linear maps: $V \rightarrow V . \mathcal{L}(V, V)$ inherits a norm from V. Let F be the subspace consisting of the maps whose image is finite dimensional. We define compact operators to be the closure of these F 's.
Compact operators have traces, and even better, they have a spectral theory. Now say C is a compact linear operator, i.e. $C=\lim _{n \rightarrow \infty} C_{n}$, where $C_{n}: V \rightarrow V$ have finite dimensional images. Put

$$
P_{n}(X)=\operatorname{det}\left(I-X C_{n}\right)=1-t_{n} X+\cdots+(-1)^{n} \operatorname{det}\left(C_{n}\right) X^{n}
$$

then P_{n} 's converge to a power series $P \in K_{0}[[X]]$ called the characteristic power series of C.
Example:Let $C_{n}=\left(\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right), C=\lim C_{n}$. Then

$$
P_{n}(X)=\prod_{i=1}^{n}\left(1-p^{i} X\right)
$$

therefore

$$
P(X)=\prod_{i=1}^{\infty}\left(1-p^{i} X\right) \in K_{0}[[X]]
$$

and $P(x)$ converges ofor any $x \in K_{0}$.
Now we have a very nice result
Theorem 2. If $v(\rho) \in\left(0, \frac{1}{p} c_{p}\right)$, then $U_{p}: \mathbb{M}_{k}\left(K_{0}, \rho\right) \longrightarrow \mathbb{M}_{k}\left(K_{0}, \rho\right)$ is compact.

Re-interpretation of G-M: Fix ρ such that $0<v(\rho)<\frac{1}{p} c_{p}$. Recall that $M_{k}\left(\Gamma_{0}(p), K_{0}\right)$ denotes the classical modular forms with weight k of level p over K_{0}. Then we have a U_{p}-covariant linear injection

$$
M_{k}\left(\Gamma_{0}(p), K_{0}\right) \longrightarrow \mathbb{M}_{k}\left(K_{0}, \rho\right)
$$

$M_{k}\left(\Gamma_{0}(p), K_{0}\right)=($ old part $) \oplus($ new part $) . U_{p}$ acts differently on these two parts:
(1) if $f \in$ (old part), then $U_{p}(f)=a_{p} f$ and U_{p} has eigenvalues as roots of $X^{2}-a_{p} X+p^{k-1}$, both of which have valuation $\leq k-1$,
(2) if $f \in$ (new part), then U_{p} has eigenvalues $\pm p^{\frac{p-2}{2}}$. Therefore if λ is a U_{p}-eigenvalue on the classical forms, then $v(\lambda) \leq k-1$. The converse is almost true!

Theorem 3 (Coleman). Assume $f \in \mathbb{M}_{k}\left(K_{0}, \rho\right)$ is an eigenform for U_{p}, T_{l}, and the U_{p}-eigenvalue is λ. If $v(\lambda)<k-1$ then $f \in$ the image of $M_{k}\left(\Gamma_{0}(p), K_{0}\right)$.
Definition. $v(\lambda)$ is called the slope of the overconvergent form f.
Hence one can retrieve classical forms as being "overconvergent forms of small slope".
Gouvea-Mazur Conjecture. Let $k \in 2 \mathbb{Z}, \alpha \in \mathbb{Q}, \mathbb{M}_{k}\left(K_{0}, \rho\right)$, and $d(k, \alpha)=\sharp\left\{\right.$ eigenvalues of U_{p} with valuation $\alpha\}$. Then $k_{1} \equiv k_{2}\left(\bmod (p-1) p^{m}\right)$, for $m \geq \alpha$, will imply that $d\left(k_{1}, \alpha\right)=d\left(k_{2}, \alpha\right)$.

Theorem 4 (Coleman). If $P_{k}(X)=$ char power series of U_{p} acting on $\mathbb{M}_{k}\left(K_{0}, \rho\right)$, then P_{k} varies analytically with k.

This theorem implies that $d(k, \alpha)$ is a "locally constant" function of k.
Proposition 2. If $k_{1} \equiv k_{2}\left(\bmod (p-1) p^{m}\right)$, and $\alpha<O(\sqrt{m})$, then $d\left(k_{1}, \alpha\right)=d\left(k_{2}, \alpha\right)$.

Example of the Spectrum of U_{p}.

Let's seek the structure of U_{2} on $\mathbb{M}_{0}\left(K_{0}, \rho\right)$ (i.e. $\left.k=0, N=1\right)$. Let the char power series of U_{2} be

$$
\sum_{n \geq 0} a_{n} X^{n}=\prod_{i \geq 0}\left(1-\lambda_{i} X\right)
$$

The question is: what are the valuations of λ_{i} ?
Inspired by a method of Kilford, we find that:
Theorem 5. (Buzzard, Calegari) The valuations are 3,7,13,15,17,..., where the ith term is given by

$$
1+2 v_{2}\left(\frac{(3 i)!}{i!}\right)
$$

Proof. Let's write down a basis for $\mathbb{M}_{0}\left(K_{0}, \rho\right)$ (the basis depends on ρ although the characteristic p.s. of ρ does not), say,

$$
1, \alpha f, \alpha^{2} f^{2}, \alpha^{3} f^{3}, \cdots
$$

where

$$
f=\frac{\Delta\left(q^{2}\right)}{\Delta(q)}=q+24 q^{2}+\cdots
$$

and $\alpha=\alpha(\rho), \alpha \in \overline{\mathbb{Q}}_{2},|\alpha|<1$.
The matrix of U_{2} is:

$$
U_{2}\left(f^{m}\right)=\sum_{n=\left\lceil\frac{m}{2}\right\rceil}^{2 m} s_{m, n} f^{n}
$$

where

$$
s_{m, n}=2^{8 n-4 m-1} \cdot 3 m(m+n-1)!/(2 n-m)!(2 m-n)!
$$

Write $U_{2}=A \cdot B$, where A is lower triangular, B is upper triangular, with 1 's on both diagonals. Actually we can compute the entries $A_{i j}$ and $B_{i j}$.
Now let $A=C \cdot D$ with D diagonal, then

$$
D_{i i}=2^{1+2 v((3 i)!/ / i!)}
$$

Once we take $\alpha=2^{6}$: it changes $C_{i j}$ and $B_{i j}$ by $2^{6(j-i)}$. Then the following lemma concludes the proof.
Lemma 3. After making the change if $C \equiv B \equiv I d$ mod 2, then the slopes of the characteristic power series of U_{2} and D are the same.

