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1. Review of elliptic curves over function fields

• Definitions and examples. Constant, isotrivial, and non-constant
curves.

• The Mordell-Weil theorem.
• Constant curves. The lattices of Elkies, Shioda, et. al.
• Torsion is uniformly bounded. Ranks are unbounded.
• L-functions.
• Grothendieck’s analysis of L-functions gives analytic continuation,

functional equation.
• L-functions should be viewed as functions of characters of the

idèle class group.
• Zarhin’s theorem: χ 7→ L(E,χ) determines E up to isogeny.
• The conjecture of Birch and Swinnerton-Dyer.
• Work of Tate and Milne: ords=1 L(E, s) ≥ RankZE(F ) with

equality if and only if is finite.
• Outline of the proof:

– The elliptic surface E/Fq corresponding to E/F .
– L(E, s) = det(1− q−sFr|H) for a certain H ⊆ H2(E ,Q`)
– Points on E correspond to curves on E . Heights are essentially

intersection numbers.
– Cycle classes of curves give rise to zeroes of the L-function.
– Finiteness of ⇔ weak BSD comes from the Kummer se-

quence on E and = Br.
• Other work: Brown, Rück-Tipp, Longhi, Pàl.
• References: [Gross], [Zarhin], [Groth], [Milne80], [Tate66], [Milne75],

[C-Z], Gross in [Storrs].
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2. Automorphic forms and analytic modularity

• Additive characters, multiplicative characters, conductors and real
parts.

• Definition of A(K,φ), automorphic forms of level K and central
character φ.

• Analogue with functions on upper half plane. The double coset
space X where automorphic forms live.

• X is the set of isomorphism classes of rank 2 vector bundles with
level structure (up to twisting by a line bundle).

• Structure of X. (Riemann-Roch and stability.)
• Petersson inner product.
• Cusp forms.
• Hecke operators, new and old forms.
• Fourier expansions.
• L-functions.
• Functional equations.
• Harmonic forms.
• Constructions of forms, classically and in terms of vector bundles:

– Eisenstein series
– Poincaré series
– Theta functions
– Converse theorems
– Deligne’s theorem: there is a form f such that L(E, s) =

L(f, s)
– Drinfeld’s geometric Langlands construction

• Interesting linear functionals on A(K, φ) are represented as PIP
with interesting forms f ∈ A(K, φ).

• Half of the Gross-Zagier computation is to find the Fourier expan-
sion of the form representing f 7→ L′K(f, 1).

• References: [Weil], [Serre], [Gek], [Del], [Drin83].
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3. Drinfeld modular curves and geometric modularity

• The ring A of functions regular outside ∞
• For k of characteristic p, Endk(Ga) is the twisted polynomial ring

k{τ}, τa = apτ .
• Definition of Drinfeld modules. Rank, characteristic, height.
• Examples.
• Morphisms.
• Division points.
• Isogenies.
• Endomorphisms.
• Complex multiplication.
• Level structures.
• Modular curves.
• Analytic description of Drinfeld modular curves.
• The adelic version of the analytic description.
• The building map.
• Drinfeld reciprocity: relating the cohomology of the modular curve

to automorphic forms.
• Geometric modularity via Drinfeld reciprocity, Deligne + converse

theorems, and Zarhin.
• References: [Drin74], [D-H], [G-R], [AB], [Ohio].
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4. Overview of the Gross-Zagier computation and
application to elliptic curves

• Heegner points on X0(n): existence, construction, Galois action.
The Heegner point PK ∈ J0(n)(K).

• Goal: L′K(f, 1) = c ht(PK,f ) (c a non-zero constant) for new eigen-
forms f ∈ A(Γ0(n∞), | · |−2).

• Key reduction: do it for all f at once.
– Let han be the form such that (f, han)PIP = L′K(f, 1).
– Let halg be the form with Fourier coefficients 〈PK , TmPK〉ht.
– A formal Hecke algebra argument shows that the goal is equiv-

alent to the equality han = c hht. Prove this coefficient by
coefficient.

• The analytic computation.
– Rankin’s method shows that LK(f, s) = (f, hs)PIP where hs

is the product of a CM form (theta series) and an Eisenstein
series which is a function of s.

– Compute a trace to make the level of hs n∞.
– Take the derivative at s = 1: h = d

ds
h|s=1.

– Do a “harmonic projection”: find han harmonic such that
(f, han)PIP = (f, h)PIP for all harmonic forms f .

• The algebraic computation
– Interpret height as a sum of local intersection numbers.
– At finite places, intersection number counts the number of

isogenies between certain Drinfeld modules x, y over finite
rings Ov/(π

n
v ). (Use the moduli interpretation of points.)

– Count these isogenies using the ideal theory of the quaternion
ring End(x).

– At ∞ there is no convenient moduli interpretation. Compute
the local height using a Green’s function, exactly as in the
original G-Z. This is a very analytic way to calculate a ratio-
nal number, but it meshes well with analytic aspects of the
harmonic projection calculation.

• Application to elliptic curves. Show ords=1 L(E, s) ≤ 1 ⇒ BSD
for E/F by using G-Z formula and non-vanishing results for L-
functions. In function field case, non-vanishing results are used
for some useful preliminary reductions, and to find a good K/F .

• References: [G-Z].
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[Tate75] Tate, J.: Algorithm for determining the type of a singular fiber in an

elliptic pencil. In “Modular Forms of One Variable IV” (Lecture Notes
in Math. 476) (1975), 33–52

[Weil] Weil, A.: “Dirichlet series and automorphic forms” (Lecture Notes in
Math. 189) Springer, Berlin, 1971

[Zarhin] Zarhin, Ju. G.: A finiteness theorem for isogenies of abelian varieties
over function fields of finite characteristic (Russian) Funkcional. Anal. i
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