OUTLINE OF A COURSE ON ELLIPTIC CURVES AND GROSS-ZAGIER THEOREMS OVER FUNCTION FIELDS

ARIZONA WINTER SCHOOL 2000

DOUGLAS ULMER

- 1. Review of elliptic curves over function fields
- Definitions and examples. Constant, isotrivial, and non-constant curves.
- The Mordell-Weil theorem.
- Constant curves. The lattices of Elkies, Shioda, et. al.
- Torsion is uniformly bounded. Ranks are unbounded.
- *L*-functions.
- Grothendieck's analysis of *L*-functions gives analytic continuation, functional equation.
- *L*-functions should be viewed as functions of characters of the idèle class group.
- Zarhin's theorem: $\chi \mapsto L(E, \chi)$ determines E up to isogeny.
- The conjecture of Birch and Swinnerton-Dyer.
- Work of Tate and Milne: $\operatorname{ord}_{s=1} L(E, s) \geq \operatorname{Rank}_{\mathbb{Z}} E(F)$ with equality if and only if μ is finite.
- Outline of the proof:
 - The elliptic surface \mathcal{E}/\mathbf{F}_q corresponding to E/F.
 - $-L(E,s) = \det(1-q^{-s}\mathrm{Fr}|H)$ for a certain $H \subseteq H^2(\overline{\mathcal{E}}, \mathbf{Q}_\ell)$
 - Points on E correspond to curves on \mathcal{E} . Heights are essentially intersection numbers.
 - Cycle classes of curves give rise to zeroes of the *L*-function.
 - Finiteness of $\mathfrak{ll} \Leftrightarrow$ weak BSD comes from the Kummer sequence on \mathcal{E} and $\mathfrak{ll} = Br$.
- Other work: Brown, Rück-Tipp, Longhi, Pàl.
- References: [Gross], [Zarhin], [Groth], [Milne80], [Tate66], [Milne75], [C-Z], Gross in [Storrs].

Date: March 15, 2000.

DOUGLAS ULMER

- 2. Automorphic forms and analytic modularity
- Additive characters, multiplicative characters, conductors and real parts.
- Definition of $\mathcal{A}(K, \phi)$, automorphic forms of level K and central character ϕ .
- Analogue with functions on upper half plane. The double coset space X where automorphic forms live.
- X is the set of isomorphism classes of rank 2 vector bundles with level structure (up to twisting by a line bundle).
- Structure of X. (Riemann-Roch and stability.)
- Petersson inner product.
- Cusp forms.
- Hecke operators, new and old forms.
- Fourier expansions.
- *L*-functions.
- Functional equations.
- Harmonic forms.
- Constructions of forms, classically and in terms of vector bundles:
 - Eisenstein series
 - Poincaré series
 - Theta functions
 - Converse theorems
 - Deligne's theorem: there is a form f such that L(E,s) = L(f,s)
 - Drinfeld's geometric Langlands construction
- Interesting linear functionals on $\mathcal{A}(K, \phi)$ are represented as PIP with interesting forms $f \in \mathcal{A}(K, \phi)$.
- Half of the Gross-Zagier computation is to find the Fourier expansion of the form representing $f \mapsto L'_K(f, 1)$.
- References: [Weil], [Serre], [Gek], [Del], [Drin83].

- 3. DRINFELD MODULAR CURVES AND GEOMETRIC MODULARITY
- The ring A of functions regular outside ∞
- For k of characteristic p, $\operatorname{End}_k(\mathbf{G}_a)$ is the twisted polynomial ring $k\{\tau\}, \tau a = a^p \tau$.
- Definition of Drinfeld modules. Rank, characteristic, height.
- Examples.
- Morphisms.
- Division points.
- Isogenies.
- Endomorphisms.
- Complex multiplication.
- Level structures.
- Modular curves.
- Analytic description of Drinfeld modular curves.
- The adelic version of the analytic description.
- The building map.
- Drinfeld reciprocity: relating the cohomology of the modular curve to automorphic forms.
- Geometric modularity via Drinfeld reciprocity, Deligne + converse theorems, and Zarhin.
- References: [Drin74], [D-H], [G-R], [AB], [Ohio].

DOUGLAS ULMER

4. Overview of the Gross-Zagier computation and application to elliptic curves

- Heegner points on $X_0(\mathfrak{n})$: existence, construction, Galois action. The Heegner point $P_K \in J_0(\mathfrak{n})(K)$.
- Goal: $L'_K(f, 1) = c \operatorname{ht}(P_{K,f})$ (*c* a non-zero constant) for new eigenforms $f \in \mathcal{A}(\Gamma_0(\mathfrak{n}\infty), |\cdot|^{-2})$.
- Key reduction: do it for all f at once.
 - Let h_{an} be the form such that $(f, h_{an})_{PIP} = L'_K(f, 1)$.
 - Let h_{alg} be the form with Fourier coefficients $\langle P_K, T_{\mathfrak{m}} P_K \rangle_{ht}$.
 - A formal Hecke algebra argument shows that the goal is equivalent to the equality $h_{an} = c h_{ht}$. Prove this coefficient by coefficient.
- The analytic computation.
 - Rankin's method shows that $L_K(f,s) = (f,h_s)_{PIP}$ where h_s is the product of a CM form (theta series) and an Eisenstein series which is a function of s.
 - Compute a trace to make the level of $h_s \mathfrak{n}\infty$.
 - Take the derivative at s = 1: $h = \frac{d}{ds}h|_{s=1}$.
 - Do a "harmonic projection": find h_{an} harmonic such that $(f, h_{an})_{PIP} = (f, h)_{PIP}$ for all harmonic forms f.
- The algebraic computation
 - Interpret height as a sum of local intersection numbers.
 - At finite places, intersection number counts the number of isogenies between certain Drinfeld modules x, y over finite rings $\mathcal{O}_v/(\pi_v^n)$. (Use the moduli interpretation of points.)
 - Count these isogenies using the ideal theory of the quaternion ring $\operatorname{End}(x)$.
 - At ∞ there is no convenient moduli interpretation. Compute the local height using a Green's function, exactly as in the original G-Z. This is a very analytic way to calculate a rational number, but it meshes well with analytic aspects of the harmonic projection calculation.
- Application to elliptic curves. Show $\operatorname{ord}_{s=1} L(E, s) \leq 1 \Rightarrow BSD$ for E/F by using G-Z formula and non-vanishing results for *L*-functions. In function field case, non-vanishing results are used for some useful preliminary reductions, and to find a good K/F.
- References: [G-Z].

References

- [AB] Gekeler, E.-U. et al., Eds: "Drinfeld Modules, Modular Schemes, and Applications" (Proceedings of a workshop at Alden-Biesen, Belgium 1996) World Scientific, Singapore, 1997
- [C-Z] Cox, D. and Zucker, S.: Intersection numbers of sections of elliptic surfaces Inventiones Math. 53 (1979), 1–44
- [Del] Deligne, P.: Les constantes des équations fonctionnelles des fonctions L In "Modular functions of one variable, II" (Lecture Notes in Math. 349) (1973) 501–597
- [D-H] Deligne, P. and Husemoller, D.: Survey of Drinfeld modules. Contemporary Math. 67 (1987), 25–91
- [Drin74] Drinfeld, V.G.: Elliptic modules (Russian) Mat. Sb. (N.S.) 94 (136) (1974), 594–627, 656.
- [Drin83] Drinfeld, V.G.: Two-dimensional l-adic representations of the fundamental group of a curve over a finite field and automorphic forms on GL(2) Amer. J. Math. 105 (1983), 85–114
- [Gek] Gekeler, E.-U.: Automorphe Formen über $F_q(T)$ mit kleinem Führer. Abh. Math. Sem. Univ. Hamburg **55** (1985), 111–146
- [G-R] Gekeler, E.-U., and Reversat, M.: Jacobians of Drinfeld modular curves.
 J. Reine Angew. Math 476 (1996), 27–93
- [Gross] Gross, B. H.: Group representations and lattices J. Amer. Math. Soc. 3 (1990), 929–960
- [Groth] Grothendieck, A.: Formule de Lefschetz et rationalité des fonctions L Séminaire Bourbaki 1965/66, Exposé 279
- [G-Z] Gross, B. and Zagier, D.: Heegner points and derivatives of L-series Invent. Math. 84 (1986), 225–320
- [Milne75] Milne, J.S.: On a conjecture of Artin and Tate Annals of Math. 102 (1975), 517–533
- [Milne80] Milne, J.S.: "Etale Cohomology" Princeton University Press, Princeton, 1980
- [Ohio] Goss, D. et al. Eds: "The Arithmetic of Function Fields" (Proceedings of a conference at Columbus, OH 1991) de Gruyter, Berlin, 1992
- [Serre] Serre, J.-P.: "Trees" Springer, Berlin, 1980
- [Storrs] Cornell, G. and Silverman, J. Eds.: "Arithmetic Geometry" (Proceedings of a conference at Storrs, CT 1985), Springer, 1986
- [Tate66] Tate, J.: On the conjecture of Birch and Swinnerton-Dyer and a geometric analog. Séminaire Bourbaki 1965/66, Exposé 306
- [Tate75] Tate, J.: Algorithm for determining the type of a singular fiber in an elliptic pencil. In "Modular Forms of One Variable IV" (Lecture Notes in Math. 476) (1975), 33–52
- [Weil] Weil, A.: "Dirichlet series and automorphic forms" (Lecture Notes in Math. 189) Springer, Berlin, 1971
- [Zarhin] Zarhin, Ju. G.: A finiteness theorem for isogenies of abelian varieties over function fields of finite characteristic (Russian) Funkcional. Anal. i Priložen. 8 (1974), 31–34