
Hodge Theory

January 5, 2001

Lecture 1

1.1 Some Sample Theorems

We begin with the broad goal of gaining an understanding of the topology and geometry
of complex algebraic varieties.

Let Pn denote complex n-dimensional projective space, which is the space of lines
in Cn+1 and which can also be thought of as the union of Cn and an a copy of Pn−1. In
the case n = 1, the latter interpretation gives us the union of C and a point at infinity
∞, and we obtain the Riemann sphere.

We consider algebraic varieties inside Pn. These may be hypersurfaces defined by
F (x0, . . . , xn) = 0. For example, we have the smooth Fermat hypersurface given by
the zero locus of xd

0 + . . . + xd
n = 0 in Pn. On the other hand, the cone defined by

xd
1 + . . . + xd

n = 0 in Pn is singular. The latter two examples are both projective
varieties, defined by homogeneous equations in projective space. An algebraic variety
may also be open, obtained for example by removing a finite number of points from a
projective variety.

In this section, X will denote a smooth complex projective variety. That is, X is
both a smooth complex manifold and a projective algebraic variety. On such manifolds,
we have homology and cohomology groups. In homology, our classes are generally
defined by cycles, such as geodesics or algebraic cycles. In cohomology, the classes
come from differential forms.

Our theme will be to look for differential forms of minimum size. They will be
unique and have special properties, allowing one to prove powerful results. For example,
we will be able to give restrictions on the topology of algebraic varieties. Below, we
list some sample theorems and hint at their proofs.

The dth Betti number bd(X) of X is defined as the rank of Hd(X,Z).

Theorem 1.1. The first Betti number b1(X) is even.
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Theorem 1.1 does not hold for all manifolds. For example, consider the Hopf surface
S = (C2 − 0)/Z where the action of n ∈ Z on z ∈ C2 − 0 is given by n · z = 2nz.

Exercise. Show that S is homeomorphic to S1 × S3 and use the Künneth formula to
conclude that b1(S) = 1.

Corollary 1.2. The Hopf surface S cannot be defined by algebraic equations.

We have the following corollary, the proof of which we also leave as an exercise.

Corollary 1.3. The fundamental group π1(X) is not a free group.

Exercise. Prove the corollary. Hint: Suppose that π1(X) is a free group of rank n > 1.
Consider a two-fold cover X̃ of X. What is b1(X̃)? Use the fact that is X is a complex
projective algebraic manifold then so is X̃.

Theorem 1.4. The second Betti number b2(X) is nonzero.

Theorem 1.5. Let M ⊂ X be an algebraic submanifold of complex dimension m.
Then [M ] = 0 in H2m(X,Z).

Theorem 1.5 does not hold for an arbitrary submanifold. For instance, if X is is a
two-holed torus then M may have a geodesic which is trivial in homology.

1.2 Differential forms and the Hodge Decomposition

Let Ek =
∑

φIdxI be the space of differential k-forms. That is, if I ⊂ {1, . . . , n} is a
subset of k elements then we have a k-form dxI = dxi1 ∧ dxi2 ∧ . . . ∧ dxik . We have
the exterior derivative dφ =

∑ ∂φI

∂xk
dxk ∧ dxI . Note that d2 = 0. The kth de Rham

cohomology group Hk
dR(X) is equal to closed k-forms, i.e. satisfying dφ = 0, modulo

exact k-forms, i.e. those in dEk−1. The de Rham isomorphism theorem says that de
Rham cohomology is isomorphic to singular cohomology H∗

dR(X) ∼= H∗(X,C) via the
map φ 7→ [c 7→ ∫

C
φ].

For complex manifolds, it is more convenient to use complex coordinates. From
zk = xk + iyk we obtain 1-forms dzk and dz̄k.

Exercise. Show that the subspace of 1-forms spanned by the dzk (and also the sub-
space spanned by the dz̄k) is invariant under complex change of coordinates.

We then have a basis of k-forms dzI ∧ dz̄J , and if I has order p and J has order
q, the form is said to be of type (p, q). The general form of type (p, q) can then be
written

∑
φIJdzI ∧dz̄J with I of order p, J of order q, and φIJ ∈ C∞(X). Letting Ep,q

denote the space of (p, q)-forms, we have a direct sum decomposition

Ek = ⊕p+q=kEp,q.



Hodge Theory 3

For example, E1 = E1,0⊕E0,1, which is to say that every φ ∈ E1 has a unique expression
of the form φ =

∑
fidzi +

∑
gidz̄i. Note that Ep,q = ¯Eq,p.

We can ask the question of whether or not our direct sum decomposition passes to
cohomology. That is, if we let Hpq denote the image of Ep,q in Hk

dR with k = p+q, do we
have a Hodge decomposition Hk

dR = ⊕Hp,q? In fact, do we even have that Hp,q = H̄q,p?
The answer in general is no, because this would force b1 to be even, whereas b1 = 1 for
the Hopf manifold. However, if we think about harmonic theory, we can find conditions
under which we do have a Hodge decomposition. In particular, this will immediately
imply Theorem 1.1.

1.3 Harmonic Theory

Let M denote a smooth Riemannian manifold with metric g = 〈· , ·〉 on TM . Since a
basis of TpM gives rise to a dual basis on T ∗

p M , we obtain a metric on ΛkT ∗M . This
gives rise to an inner product on Ek via

(φ, ψ) =

∫

M

〈φ, ψ〉dV,

where dV denotes the volume form on M . This allows us to define a norm on Ek given
by ‖φ‖ = (φ, φ).

We seek closed forms of minimum norm in [φ]. We note that

‖φ + tdψ‖2 = ‖φ‖2 + 2t(φ, dψ) + O(t2).

Therefore, if ‖φ‖2 is a minimum then (φ, dψ) = 0 for any ψ ∈ Ek−1. Suppose d has an
adjoint d∗, so we have (d∗φ, ψ) = 0 for all ψ. In other words, we have d∗φ = 0. Thus,
a closed form of minimum norm satisfies both dφ = 0 and d∗φ = 0. It therefore also
satisfies Laplace’s equation ∆φ = 0, where ∆ = dd∗ + d∗d is the self-adjoint operator
associated to d. That is to say, φ is harmonic.

Exercise. Show that if ∆φ = 0 then dφ = 0 and d∗φ = 0 and that ‖φ‖2 is minimal.

Exercise. Let M = S1. Show that for (f, g) =
∫ 2π

0
fgdθ, we have ∆f = −d2f

dθ2 . What
are the harmonic functions on the circle? Answer this question again using harmonic
series. What about for S1 × · · · × S1?

Theorem 1.6 (Harmonic Theorem). Let Hk
∆ denote the space of harmonic k-forms.

Then the natural map Hk
∆M → Hk

dRM is an isomorphism.
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1.4 The Laplacian on a Complex Manifold

We now study the Laplacian ∆ on a complex manifold. The operator d can be written
as a sum d = ∂ + ∂̄, where ∂ is an operator of type (1, 0), ∂̄ is an operator of type
(0, 1), and ∂ and ∂̄ satisfy the relations ∂2 = ∂̄2 = 0 and ∂∂̄ + ∂̄∂ = 0. In coordinates,
on a 1-form φ =

∑
fidzi +

∑
gjdz̄j, we have

∂φ =
∑ ∂fi

∂zk

dzk ∧ dzi +
∑ ∂gj

∂zk

dzk ∧ dz̄j,

∂̄φ =
∑ ∂fi

∂z̄k

dz̄k ∧ dzi +
∑ ∂gj

∂z̄k

dz̄k ∧ dz̄j.

The operators ∂ and ∂̄ have corresponding adjoints ∂∗ and ∂̄∗ of type (−1, 0) and
(0,−1), respectively, and we have the relation d∗ = ∂∗ + ∂̄∗. Mimicking the relation,
∆ = dd∗ + d∗d, we set

∆∂ = ∂∂∗ + ∂∗∂ and ∆∂̄ = ∂̄∂̄∗ + ∂̄∗∂̄.

We then have

∆ = (∂ + ∂̄)(∂∗ + ∂̄∗) + (∂∗ + ∂̄∗)(∂ + ∂̄) = ∆∂ + ∆∂̄ + cross terms. (1)

Suppose that the cross terms in (1) vanish, so that ∆ = ∆∂ + ∆∂̄ is an operator of
type (0, 0). If φ =

∑
φp,q is harmonic, then so are the components φp,q. Moreover, if φ

is real then we have φp,q = φq,p. Therefore, we obtain a Hodge decomposition on the

space of harmonic k-forms: Hk
∆ = ⊕p+q=kH

p,q and Hp,q
∆ = Hq,p

∆ .

Lecture 2

2.1 Kähler Manifolds

A Kähler manifold is a complex manifold M with a Riemannian metric compatible with
the complex structure on M . We will see that the cross-terms in (1) vanish for Kähler
manifolds. Hence, Kahler manifolds have Hodge decompositions. One way of defining
a complex structure on X is via an operator J on the tangent bundle TM , which
satisfies J2 = −1, J(dx) = dy and J(dy) = −dx. Let g = 〈· , ·〉 denote the Riemannian
metric on a Kahler manifold M , and let ∇ denote the Levi-Cevita connection. By
compatibility with the complex structure, we mean one of two equivalent statements:

1. ∇J = 0, which is to say that ∇(JX) = J∇X for a vector field X.

2. Set ω(X,Y ) = g(X, JY ). Then ω is a positive definite (1, 1)-form and dω = 0.
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Both Cn and Pn are Kahler manifolds, with

ω = i
∑

dzk ∧ dz̄k

and

ω = i∂∂̄ log(1 + ‖z‖2),

respectively. As a consequence, all projective algebraic manifolds are Kähler.

Exercise. Defining ω as in condition 2 (and assuming condition 1 in part c), show
that

a. ω(X, Y ) = −ω(Y,X)

b. ω is a (1, 1)-form. Hint: Show that ω(X, Y ) = 0 if X and Y are both of type
(1, 0).

c. ω is locally of the form

ω =
√−1

∑
hi,jdzi ∧ dz̄j,

where hi,j is locally Hermitian and positive definite. Conclude that dw = 0.

2.2 The Kähler Identity and Positivity Considerations

We define an operator L of type (1, 1) by L(x) = ω ∧ x and denote its adjoint by Λ.
By definition, we have (Lx, y) = (x, Λy). Later, we shall prove the following Kähler
identity:

[Λ, ∂] = i∂̄∗.

It follows immediately from this identity that [Λ, ∂̄] = −i∂∗ as well. Now it is not hard
to see that the cross-terms in (1) vanish. For instance,

∂∂̄∗ + ∂̄∗∂ = −√−1(∂Λ∂ − ∂2Λ + Λ∂2 − ∂Λ∂) = 0.

Exercise. The following identities hold for a compact Kähler manifold: ∆∂ = ∆∂̄ and
∆ = 2∆∂. (We refer to these identities as proportionality).

As a consequence of the Hodge decomposition resulting from the vanishing of the
cross-terms in (1), we see that the first Betti number is even. Therefore, Theorem 1.1
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holds for all Kähler manifolds. We shall now see that Theorem 1.4 holds as well. On
a small local neighborhood U , we may consider ω = i

∑
dzk ∧ dz̄k. We define

Ω = (idz1 ∧ dz̄1) ∧ (idz2 ∧ dz̄2) ∧ . . . ∧ (idzn ∧ dz̄n)

Note that Ω > 0 in the sense that
∫

U
Ω > 0. As ωn = n!Ω, we conclude that

∫
M

ωn > 0.
Hence the class [ωi] 6= 0 for all i with 0 ≤ i ≤ n. In particular, the second Betti number
b2(M) is nontrivial.

We now prove the Kähler identity for (1, 1)-forms.

Idea of proof of the Kähler Identity. We first describe local formulas for Λ, ∂̄∗ and ∂.
Note that

(1, Λ(dzk ∧ dz̄k)) = (L(1), dzk ∧ dz̄k) = (
√−1

∑
dzl ∧ dz̄l, dzk ∧ dz̄k) =

√−1.

So we obtain the formula

Λ = −√−1
∑

Int(
∂

∂zk

) Int(
∂

∂z̄k

), (2)

where Int denotes interior multiplication. Next, we check that

(g, ∂̄∗(fdz̄k)) = (∂̄g, fdz̄k) =

∫
∂g

∂z̄k

f̄ = −
∫

g
∂f

∂zk

= −(g,
∂f

∂zk

).

Hence we have seen that

∂̄∗(fdz1) =
∑ ∂f

∂zl

dzl ∧ dz1. (3)

Finally, we note that

∂ =
∑

Ext(dzk)
∂

∂zk

, (4)

where Ext denotes exterior multiplication. Putting together equations (2), (3) and (4),
we see that

Λ∂(fdz̄1) = Λ(
∑ ∂f

∂zk

dzk ∧ dz̄k) = −√−1
∂f

∂zk

=
√−1∂̄∗(fdz̄1)

and ∂Λ(fdz̄1) = 0, from which follows the Kähler identity on (1,1)-forms.
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2.3 Consequences of Proportionality

The fact that ∆ = 2∆∂ = 2∆∂̄ on a Kähler manifold has interesting consequences.

Theorem 2.7. On a compact Kähler manifold, holomorphic p-forms are closed.

The motivation for the proof of this theorem comes from the case of a Riemann
surface. Let φ = fdz, where f is holomorphic. Then

dφ =
∂f

∂z
dz ∧ dz +

∂f

∂z̄
dz̄ ∧ dz = 0.

Proof. Let φ be a holomorphic p-form. Then ∂̄φ = 0. We also have ∂̄∗φ = 0 as
φ has type (p, 0) and ∂̄∗ is an operator of type (0,−1). Hence ∆∂̄φ = 0 and, by
proportionality, ∆φ = 0. Note also that

(∆φ, φ) = (dd∗φ + d∗dφ, φ) = ‖d∗φ‖2 + ‖dφ‖2.

Therefore we conclude that dφ = 0.

Let Ω denote the space of holomorphic p-forms on M .

Theorem 2.8 (Dolbeaut Theorem). We have Hp,q(X) ∼= Hq(X, Ωp).

Proof. Let Ep,q denote the space of differential (p, q)-forms on M . The qth cohomology
group Hq(Ωp) of the complex

Ωp → Ep,0 ∂̄−→Ep,1 ∂̄−→Ep,2 ∂̄−→· · ·

is equal to the group of ∂̄-closed (p, q) forms modulo exact forms. As in the proof of
the Harmonic Theorem, this is isomorphic to the group of ∆∂̄-harmonic (p, q)-forms.
By proportionality, this is the same as the group of harmonic (p, q)-forms.

Lecture 3

3.1 Algebraic Cycles and the Hodge Conjecture

Let Z denote an algebraic submanifold of dimension k of a complex projective algebraic
manifold X of dimension m. We have the following two statements about the integrals
of closed 2k-forms over Z.

Exercise. Prove the following two statements.

1. The class [Z] is nontrivial in H2k(X,Z). In fact, the integral
∫

Z
ωk is positive.
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2. Let φ be a representative of an algebraic class on X of type (p, q) with p+q = 2k.
Then

∫
Z

φ = 0 if p 6= q.

The Hodge Conjecture is the converse of the second statement of Exercise 3.1. Note
that if c is an algebraic class, then c can be represented as a sum of integer multiples
of algebraic cycles, so we can define

∫
c

by the appropriate sum.

Conjecture 3.9 (Hodge Conjecture). If c is a nonzero class in H2m(X,Z) and∫
c
φ = 0 for every closed form φ with [φ] ∈ Hp,q

Z = Hp,q(X,Z) for some (p, q) 6= (m, m)
then some multiple of c is represented by an algebraic cycle.

We may rephrase the Hodge conjecture using Poincaré duality. If Z is an algebraic
cycle of complex dimension k and φ is a closed form of type (n− k, n− k) then [φ] is
said to be Poincaré dual to [Z] if

∫

Z

ψ =

∫

X

φ ∧ ψ

for all 2k-forms ψ. The Hodge conjecture thus states that every integral [φ] is Poincaré
dual to an algebraic homology class.

The Hodge Conjecture has been proven in certain cases.

Theorem 3.10. The Hodge conjecture is true in dimension and codimension 1.

We first prove Theorem 3.10 in dimension 1.

Proof of the Hodge Conjecture in dimension 1. Let φ ∈ H1,1
Z . We shall construct a line

bundle L such that φ = c1(L), the first Chern class of L. Then Z will be taken as the
divisor of a meromorphic section of L.

The exponential sheaf sequence

0 → Z → OX
exp 2π

√−1−−−−−−→ O∗
X → 1

yields a long exact sequence in cohomology containing the sequence

H1(X,O∗
X) → H2(X,Z) → H2(X,OX). (5)

The first map in (5) takes a line bundle to its Chern class. We remark that H2(OX) ∼=
H0,2(X) by Theorem 2.8.

We leave it to the reader to check that the following diagram commutes:

H2(X,Z) //

²²

H2(X,OX)

H2(X,C) // H0,2,

(6)
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where the bottom map is projection. Noting also equation (5), we see by (6) that any
φ ∈ H1,1

Z maps trivially to H2(OX) and therefore is the image of the Chern class of
some line bundle.

Finally, we apply the fact that if D is a divisor of a meromorphic section of a line
bundle L, then

∫
D

= c1(L). That is, for any 2n− 2 form ψ, we have

∫

D

ψ =

∫

X

α ∧ ψ

where α is a (1, 1)-form of class c1(L). This follows from an explicit description of α
and an application of Stokes’ theorem.

To prove Theorem 3.10 in codimension 1, we shall need the Lefschetz Theorem.
We define Hk

0 , the primitive cohomology of dimension k, to be the kernel of the map
Ln−k+1 : Hk → H2n−k+2 given by the exterior product with ωn−k+1.

Theorem 3.11 (Lefschetz Theorem). Let X be an n-dimensional compact Kähler
manifold.

1. The map Ln−k is an isomorphism for k ≤ n.

2. There is a direct sum decomposition

Hk ∼= Hk
0 ⊕ LHk−2

0 ⊕ . . . .

3. If φ is a primitive cohomology class, then so are its Hodge components φp,q.

We shall not prove the Lefschetz Theorem, but we will try to illustrate the ideas
with key examples. We remark that statement 3 follows from the fact that L has type
(1, 1).

First, we reduce the problem to the level of forms by proving that [∆, L] = 0. It
suffices to show that [L, ∆∂] = 0 by proportionality. We remark first that [L, ∂] = 0
and [L, ∂̄] = 0. Therfore, we see that

[L, ∆∂] = [L, ∂∂∗] + [L, ∂∗∂]

= L∂∂∗ − ∂∂∗L + L∂∗∂ − ∂∗∂L

= ∂(L∂∗ − ∂∗L) + (L∂∗ − ∂∗L)∂

= ∂[L, ∂∗] + [L, ∂∗]∂.

The Kähler identity yields that [Λ∗, ∂∗] =
√−1∂̄ and therefore [L, ∂∗] =

√−1∂̄. We
therefore conclude that

[L, ∆∂] =
√−1(∂∂̄ + ∂̄∂) =

√−1(d2 − ∂2 − ∂̄2) = 0.
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Exercise. Show that the identity [L, Λ] = −1 holds on E2 for n = 3.

Proof of Theorem 3.11a for n = 3 and k = 2. Since E2 and E4 are vector bundles of
the same fiber dimension, it suffices to show that L is injecitve. Assume that Lα = 0
for some α ∈ E2. Then [L, Λ]α = −α implies that LΛα = −α. That is, there exists a
β ∈ E0 with Lβ = α. Finally, note that

0 = L3β = ω3 ∧ β.

Since ω3 is the volume form, we have β = 0. Hence α = 0, and first statement of the
Lefschetz Theorem is proven in this case.

Proof of Theorem 3.11b for n = 3 and k = 3. Let α ∈ E3. Then Lα ∈ E5, so Lα =
L2α1 for some α1 ∈ E1 by Theorem 3.11a for n = 3 and k = 2. Then

L(α− Lα1) = 0,

so α0 = α− Lα1 is primitive. Therefore

α = α0 + Lα1

with α0 primitive. But L3α1 = 0 as it is in E7, so α1 is primitive as well. Hence a
primitive decomposition exists.

Now suppose that α0 + Lα1 = 0. Applying L, we see that L2α1 = 0, so α1 = 0 by
the first part of the Lefschetz Theorem for n = 3 and k = 2. Thus α0 = 0 as well, and
the decomposition is unique.

We may now prove the Hodge conjecture in codimension 1.

Proof of the Hodge Conjecture in codimension 1. We shall show that any α ∈ Hn−1,n−1
Z

is Poincaré dual to an algebraic homology class. By the Lefschetz Theorem, we have
that α = Ln−2β with β ∈ H1,1

Q . By the Hodge Conjecture in dimension 1, we have that
β is Poincaré dual to a divisor D. Then α is Poincaré dual to the intersection class of
D with n − 2 hyperplane sections, as we recall that ω is given by intergrating over a
hyperplane.

Lecture 4

4.1 Hodge-Riemann Bilinear Relations

The Hodge Riemann bilinear relations deal with the behavior of cohomology of a Kähler
manifold X with respect to the bilinear form Q defined on Hk by

Q(α, β) =

∫

X

α ∧ β ∧ ωn−k.
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The form Q is skew-symmetric if k is odd and symmetric if k is even. We also define
a bilinear form h on Hk by

h(α, β) = εQ(α, β̄)

where

ε =

{√−1 k odd

1 k even.

Theorem 4.12 (HRB). Let X be a compact Kähler manifold, and let Q and h be as
above.

1. We have Q(α, β) = 0 if α ∈ Hp,q and β ∈ Ha,b with (a, b) 6= (q, p).

2. The bilinear form h is definite on Hp,q
0 and its sign alternates as q increases

(positive on Hk,0
0 ).

The relation HRB1 follows immediately from the type of the forms.

Exercise. Show that the Lefschetz decomposition is h-orthogonal and that, as a con-
sequence of the Hodge-Riemann bilinear relations, Q is nondegenerate on Hk.

We shall prove HRB2 for Riemann surfaces and for algebraic surfaces with k = 2.

Proof of HRB2 in two cases. Assume that X is a Riemann surface. On H1, we have

h(α, β) =
√−1

∫

X

α ∧ β̄.

Let α ∈ H1,0, so α has the form α = fdz. Then

h(α, α) =
√−1

∫

X

|f |2dz ∧ dz̄ > 0.

On H0,1, it follows similarly that for α = fdz̄ we have h(α, α) < 0.
Now assume that X is an algebraic surface. Since the Lefschetz decomposition is

orthogonal, we have

H2
0 = H2,0 ⊕H1,1

0 ⊕H0,2.

If α ∈ H2 then

h(α, α) =

∫

X

α ∧ ᾱ.
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An element α ∈ H2,0 has the local form α = fdz ∧ dw for local coordinates z and w.
Hence

α ∧ ᾱ = |f |2(√−1dz ∧ dz̄) ∧ (
√−1dw ∧ dw̄),

from which it is clear that h(α, α) > 0. The positivity on H0,2 follows similarly.
Now choose α ∈ H1,1

0 . At a point P ∈ X, we have

ωP =
√−1(dz ∧ dz̄ + dw ∧ dw̄)

and

αP = Adz ∧ dz̄ + Bdw ∧ dw̄

Since α is primitive, [w] ∪ [α] = 0 and hence w ∧ α = 0 (for a harmonic representative
α). But

ωP ∧ αP = (A + B)dz ∧ dz̄ ∧ dw ∧ dw̄,

so A + B = 0. Hence αP has the form

αP = A(dz ∧ dz̄ − dw ∧ dw̄).

Therefore, we have that

αP ∧ ᾱP = 2|A|2dz ∧ dz̄ ∧ dw ∧ dw̄,

and we see that h(α, α) < 0.

Using the Hodge-Riemann bilinear relations, we may define an abstract notion of
a Hodge structure (with a group H replacing H0).

Definition. A polarized Hodge structure of weight k is

1. a module H over Z, R or C,

2. a nondegenerate bilinear form Q on H which is symmetric for k even and skew
for k odd,

3. a decomposition H = ⊕p+q=kH
p,q,

4. the Hodge-Riemann bilinear relations.
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4.2 Variations of Hodge Structure

We consider a family X
π−→ S of projective algebraic manifolds, with π holomorphic

and dπ of maximal rank. The fiber Xs of a point s ∈ S is a smooth projective variety,
and these fibers are all mutually isomorphic.

The set {Hk(Xs)} of Z, R or C-modules forms a local system V over S. (More
precisely, the local system of, say, C-modules is defined by V = Rkπ∗C, where
Rkπ∗C(U) = Hk(π−1(U)) for U open in S, so that Vs = Hk(Xs).) That is, we can
represent π1(S) in the outer automorphism group of this vector bundle. That V → S
forms a local system is equivalent to the fact that the transition matrices fαβ between
trivializations on small open neighborhoods Uα can be chosen to be constant.

Another equivalent notion of a local system is the existence of a flat connection. In
our case, the connection ∇ : V → V ⊗ E1, is defined by (∇s)α = dsα for a section sα

on Uα. The facts that dsβ = fαβdsα on Uα∩Uβ and d2sα = 0 force the flatness ∇2 = 0.
The local system VC has a direct sum decomposition VC = V p,q where

V p,q
s = Hp,q

0 (Xs)

and V p,q = V q,p. We also have a flat bilinear form Q on Vs, which is to say that if α, β
are locally constant so that ∇α = ∇β = 0, then Q(α, β) is also locally constant. The
bilinear form Q satisfies the necessary conditions to make (Vs,⊕V p,q

s , Q) a polarized
Hodge structure of weight k for each s.

Consider the Hodge filtration on our vector bundle V given by

F p = ⊕a≥pV
a,b.

with p ≥ 0.

Theorem 4.13. The following hold for the Hodge filtration (F p) of V .

1. The F p are holomorphic subbundles of VC.

2. (Griffiths transversality) We have the following “horizontality condition”:

∇ : F p → F p−1 ⊗ E1.

The following lemma is the key to the proof of Theorem 4.13.

Lemma 4.14. Let φ be a k-form on X such that dφ = 0 on Xs for all s ∈ S. Let ξ̃
be a vector field on X descending to a vector field ξ on S. Then

∇ξφ = Lξ̃φ = d
(
Int(ξ̃φ)

)
+ Int(ξ̃)dφ.
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Exercise. Prove Lemma 4.14. (Hint: Treat X as a real manifold, choosing coordinates
xi on X. Let ξ̃ = ∂/∂x1 and φ = fdxI . Consider two cases: 1 ∈ I, 1 /∈ I.)

Proof of Theorem 4.13. Let φ be a form of type (p, q), closed on fibers. Note that ∇
may be written as a sum ∇ = ∇′ +∇′′, where

∇′ : V → V ⊗ E1,0

and

∇′′ : V → V ⊗ E0,1.

Note that (∇′′)2 = 0 and ∇′′s = 0 if and only if s is a holomorphic section of V .
To show that F p is a holomorphic subbundle of V , it therefore suffices to show that
∇′′

ξ : F p → F p for every vector field ξ. Note that ∇′′
ξ = 0 for ξ of type (1, 0).

So consider ξ̃ of type (0, 1). We see that Int(ξ̃)φ has type (p, q − 1) and thus
d(Int(ξ̃)φ) is a sum of terms of types (p + 1, q − 1) and (p, q). Similarly, Int(ξ̃)dφ is a
sum of terms of the same form. So by Lemma 4.14, we have

∇ξ : V p,q → V p+1,q−1 ⊕ V p,q ⊆ F p. (7)

Since ∇′
ξ = 0, we have the desired result.

To show Griffiths transversality, we must show that

∇ξ : F p → F p−1

for every vector field ξ. By (7), we know this to be true for forms of type (0, 1), since
F p ⊂ F p−1. So consider ξ̃ of type (1, 0). By considering types, we obtain

∇ξ : V p,q → V p−1,q+1 ⊕ V p,q ⊆ F p−1,

which gives the result.

Lecture 5

5.1 The Period Map

We consider X
π−→ S and VC = Rkπ∗C, similarly to Section 4.2. The bundle VC lifts

to a trivial bundle VC/S̃ ∼= S̃ ×Cn over the universal cover S̃ of S in such a way that
VZ/S̃ ∼= S̃ × Zn. Over a point s̃ ∈ S̃, we have

F p
s̃ Hk(Xs̃) ⊆ Cn,
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and therefore s̃ defines a filtration of Cn. Denoting the space of such filtrations by D,
we have a map S̃ → D. Consider the monodromy group Γ, which is the image of the
representation of π1(S) in GLn(Z) (which depends on a choice of integer basis). The
monodromy group acts on D, and we can take the quotient to obtain the period map
S → D/Γ. By Theorem 4.13a, the period map is holomorphic. (In the general setting,
D is of the form G/V , where G is a Lie group of the form SO(2p, g) or Sp(g,R).)

Let us consider the case where X is a family of Riemann surfaces of genus g. The
period map is defined by

s 7→ {H1,0(Xs) ⊂ C2g}.
Let δi and γi with 1 ≤ i ≤ g be the usual homology classes arising from loops on our
g-holed torus Xs (such that

∏
δiγiδ

−1
i γ−1

i ∼ 1), and let φi with 1 ≤ i ≤ g be a basis of
H1,0. Define matrices A and B of dimension g by

Aij =

∫

δj

φi and Bij =

∫

γj

φi,

respectively. We have

φi =
∑

Aijδj +
∑

Bijγj,

and the period map can now be rewritten as taking a point s to the row space of
P = (A,B) modulo choices of bases, or in other words modulo Sp(g,Z).

The following remarks are left as exercises.

Exercise. Let the basis φi of H1,0 be such that
∫

X
φi∧φj = 0 for i 6= j and i

∫
X

φi∧φi >
0 for all i.

1. Show that the matrix A is nonsingular, so the basis {φi} may be chosen such
that A = I.

2. Show that Z is symmetric, given that A = I and
∫

X
φi ∧ φj = 0 for i 6= j.

3. Use
∫

X
φi ∧ φi > 0 to show that Z has positive imaginary part.

As a consequence of these exercises, we have that

S → Hg/Sp(g,Z),

where Hg is the Siegel upper half space (that is, g-dimensional symmetric complex
matrices with positive imaginary part).

We now give an example of a nonconstant period map for a family over P1 with 3
singular fibers.
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Example. Consider y2 = (x2 − t)(x− 1), and take

φ =
dx

y
=

dx√
(x2 − t)(x− 1)

.

Let δ be loop with winding number 1 about ±√t (and 0 about 1), and let γ be a loop
with winding number 1 about 0 and

√
t (but 0 about −√t). Then

∫

δ

φ ∼ 2π
√−1

and
∫

γ

φ ∼ 2

∫ 1

√
t

dx√
x2 − t

∼ log t.

Therefore the period matrix P is equal to (1, Z) with

Z =
log t

2π
√−1

+ bounded terms.

In fact, any family of Riemann surfaces over P1 must have at least 3 singular fibers.
To see this, assume this is not the case, that there exists a family with just 2 singular
fibers. This follows directly from the complex analytic fact that any holomorphic map
C → Hg must be constant.

5.2 Residue Calculus

Consider a holomorphic function f(z1, . . . , zn) in affine coordinates. Consider the n-
form

φ =
adz1 ∧ . . . dzn

f
(8)

with a a holomorhic function and with simple pole along f . Its residue res(φ) is class
of any holomorphic n− 1 form, also denoted res(φ) such that

φ = res(φ)
df

f
.

We have that

df = f1dz1 + . . . + fndzn,
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and we suppose that fn is never zero along f = 0. Then dzn is df/fn up to terms
involving dzi with i > 1. Pluggin this into equation (8) and using the definition of
res(φ), we obtain

res(φ) =
adz1 ∧ . . . dzn−1

fn

.

Consider now the following more global situation. Let X be an n-dimensional
complex projective algebraic manifold inside Pn+1 We have a “tube map”:

Hn(X)
T−→ Hn+1(P

n+1 −X)

given by taking a cycle γ to the boundary of a small tube around it in Pn+1. By
duality, we obtain an adjoint to T ,

Hn+1(Pn+1 −X)
T ∗−→ Hn(X),

which is the residue map.

Exercise. The image of T ∗ is equal to the primitive cohomology Hn
0 (X).

Exercise. Represent T ∗ on the level of forms. (Hint: Begin in local affine coordinates
as above, and projectivize by zi = Zi/Z0 and

dzi =
dZi

Z0

− Zi
dZ0

Z2
0

.)

We have the following theorem on residues. Let Tε(γ) denote (the boundary of) a
tube of radius ε > 0 around a cycle γ.

Theorem 5.15. Let Φ be a holomorphic (n+1)form and res Φ its residue on X. Then

lim
ε→0

∫

Tε(γ)

Φ = 2π
√−1

∫

γ

res Φ.

Moreover,
∫

Tε(γ)
Φ is independent of ε for sufficiently small ε.

Idea of Proof. In local coordiates, we may consider Tε(γ) ∼= γ×S1 and γ to be defined
by the equation z = 0 for some coordinate function z. The result then follows from the
definition of residue, Fubini’s theorem on integrals and the fact that

∫
dz/z around a

loop of winding number 1 about z = 0 is 2π
√−1.

We apply this discussion to determine the genus of a plane curve of degree d.
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Example. Let F = 0 define a plane curve of degree d in P2. Consider

Ω = Z0dZ1 ∧ dZ2 − Z1dZ0 ∧ dZ2 + Z2dZ0 ∧ dZ1,

coming from the projectivization of dz1 ∧ dz2, as in the above exercise. Then

AΩ

F

is a rational form with first order pole if the degree of A equals d − 3. Then space of
homogeneous polynomials of degree d in n+1 variables has dimension

(
d+n

n

)
. Therefore

the dimension of the space of possible choices of A is

(
d− 1

2

)
=

(d− 1)(d− 2)

2
.

But this space is the space of regular differentials on F = 0, and so its dimension is
the genus of F .


