
PAWS 2023 – Elliptic Curves with Complex Multiplication. Instructor: Wanlin Li. Problem session
leaders: Tejasi Bhatnagar, Fangu Chen, Robin Huang, Ruofan Jiang

Problem set 2

Below you will find problems for problem set one. We divide the problem sets into three parts -
beginner, intermediate and advanced.

Feel free to go back and forth between the theory and the problems you like. There is absolutely
no pressure to learn all this material at one go. Take your time and keep coming back to it as
you move forward in your learning. Please be kind to yourself and your peers while learning and
discussing the material. Most importantly, have fun :)

Beginner

Problem 1. Recall an Eisenstein series of weight k is given by:

G2k(Λ) := G2k(τ) =
∑

0̸=ω∈Λ

1

ω2k
=

∑
(0,0)̸=(m,n)∈Z

1

(mτ + n)2k

1. Show that G2k(αΛ) = α−2kG2k(Λ) for all α ∈ C∗.

2. Consider the lattice Λ = Z[i]. Show that iΛ = Λ. Moreover, using (a) convince yourself (and
your peers) that G6(Λ) = 0.

3. Similarly let ρ = e2πi/3 be a primitive cube root of unity and let Λ = Z[ρ]. Show that
G4(Λ) = 0.

4. (j-invariant) The j invariant of an elliptic curve C/Λ associated to the lattice Λ is defined by

1728
G4(Λ)

3

G4(Λ)3 −G6(Λ)2

Write down the Weierstrass equations of the elliptic curves given by the lattices in 2. and 3.
and compute their j-invariant.

5. The proposition in [AEC, III 1.4] shows that the field of definition of an elliptic curve over
C (or an algebraically closed field) is Q(j) where j is as above. As we computed in 4. the
j-invariants of these CM elliptic curves are in Q. (In fact note that they lie in Z). Can you
find a model for them over Q?

Remark 1. You can use Sage to figure out whether an elliptic curve has CM and find its j-
invariant. Here is a link with some functions you can implement. Here is a link: CM for elliptic
curves: SAGE. For example here is list of all the j-invariants of CM elliptic curves over Q.

[-262537412640768000, -147197952000, -884736000, -12288000, -884736, -32768, -3375, 0, 1728,
8000, 54000, 287496, 16581375]

In particular, note that all of them lie in Z. This is true in generality. That is if E/C is an
elliptic curve with CM then its j-invariant lies in Z. “Advanced topics in the arithmetic of elliptic
curves” gives three proof of this result. Refer to Chapter 2, section 6 (or wait for lecture 3!)

https://doc.sagemath.org/html/en/reference/arithmetic_curves/sage/schemes/elliptic_curves/cm.html
https://doc.sagemath.org/html/en/reference/arithmetic_curves/sage/schemes/elliptic_curves/cm.html


Problem 2. Let D ∈ Z>0 and E/C be an elliptic curve associated to the lattice Λ = Z+Zτ in C.
Show that E admits an action of the order Z[

√
−D] in the quadratic imaginary field K = Q(

√
−D)

if and only if τ is a fixed point of a 2× 2 matrix γ ∈M2(Z) with Tr(γ) = 0 and det(γ) = D.

Problem 3. Let E1, E2 be elliptic curves over C and assume E1 has CM by an imaginary quadratic
field K. Prove that E1 and E2 are isogenous if and only if End(E1)⊗Q ≃ End(E2)⊗Q, equals K.

Problem 4. For the following problem we recall the definition of a class group: The class group
of a number field K, denoted as Cl(K) is the group of fractional ideals of K, modulo its principle
ideals.

1. Suppose Λ1 and Λ2 are two lattices. Show that j(Λ1) = j(Λ2) if and only if Λ1 = αΛ2 for
some α ∈ C∗.

2. Let a be a fractional ideal of a quadratic number field K. Consider the the elliptic curve
E = C/a. Show that j(E) ∈ R if and only if the the class of a lies in Cl(K)[2], the two torsion
of the ideal class group of K.

Problem 5 (Orders in imaginary quadratic fields). Let K be an imaginary quadratic field of
discriminant dK < 0 with ring of integers OK , and let O be an order of discriminant D in K. Write

α =
dK +

√
dK

2
.

1. The index f = [OK : O] is called the conductor of the order. Show that

O = Z+ fOK = Z[fα].

In particular, the order O has discriminant

D = f2dK .

2. Suppose τ = −b+
√
D

2a is a root of a quadratic polynomial ax2 + bx + c, a, b, c ∈ Z with
discriminant b2 − 4ac = D. Show that

O = Z[aτ ].

Moreover, if a, b, c are relatively prime, show that Z+ Zτ is a proper fractional ideal for the
order Z[aτ ].

3. We say two integral quadratic polynomials g(x) and h(x) are equivalent if

g(x) = (rx+ s)2h

(
px+ q

rx+ s

)

for some

(
p q
r s

)
∈ SL2(Z). Show that the map sending g(x) = ax2 + bx+ c to Z+Z−b+

√
D

2a

induces a bijection between the equivalence classes of primitive (i.e., a, b, c are relatively
prime) positive definite quadratic polynomials of discriminant D (i.e., b2 − 4ac = D < 0 and
a > 0) and the ideal class group C(O).



Intermediate

Problem 6. Let N ≥ 1. An elliptic curve over C with a level-N structure is a pair (E,α) where
α : Z

N ⊕
Z
N → E[N ] is an isomorphism. An automorphism of (E,α) is an automorphism f : E → E

such that α = f ◦ α. Show that, when N ≥ 3, an elliptic curve with a level-N structure doesn’t
admit nontrivial automorphisms. What happens when N = 1 or 2?

Problem 7. Let E = C/Λ be an elliptic curve. Suppose that Λ = Λ. Show that

1. E is isomorphic to an elliptic curve defined over R.

2. ∆(Λ) := 603G4(Λ)
3 − 33 · 1402G6(Λ)

2 is a real number.

3. E(R) is connected if and only if ∆(Λ) < 0.

4. If E[2] ⊆ E(R), then Λ = Za+ Zbi for some a, b ∈ R.

Problem 8 (Hecke operators). For n ≥ 0, define Hecke operator Tn to be a linear operator on
the free abelian group of rank 2 full lattices Λ ⊆ C by the relation

Tn(Λ) =
∑

[Λ:Λ′]=n

Λ′.

Also define the homethety operator Rα by Λ→ αΛ, for all α ∈ C∗. Show that

1. For all n and α, Tn commutes with Rα.

2. For all gcd(m,n) = 1, Tmn = TmTn.

3. For all primes p and r ≥ 1, Tpr+1 = TprTp − pTpr−1Rp.

4. For all m,n, Tm commutes with Tn.

5. Let E = C/Λ be a complex elliptic curve and let n ≥ 1 be an integer. Show that there are∑
d|n d many isomorphism classes of degree n isogenies E′ → E (two isogenies φ′ : E′ → E

and φ′′ : E′′ → E are called isomorphic, if there exists an isomorphism f : E′ → E′′ with
φ′′ ◦ f = φ′).

Advanced

Problem 9 (Étale fundamental groups). Let k be an algebraically closed field. One easy way of
defining the étale fundamental group of a smooth algebraic curve C/k is as follows. Define πét

1 (C) :=
lim←−K′ Gal(K ′/K), where K is the function field of C and K ′ runs over all Galois extensions of K
such that the corresponding curve C ′ is a finite étale cover of C.

1. Use the results from earlier worksheets to compute the étale fundamental group of P1.

2. Use the results from earlier worksheets to compute the étale fundamental group of an el-
liptic curve E (you might assume that chark = 0. In positive characteristic, this is more
challenging).

3. (Galois correspondence) Show that the category of finite étale covers of E is equivalent to the
category of finite πét

1 (E)-sets.



Problem 10 (Modular curves). There is an SL2(Z)-action on the upper half plane H given by:[
a b
c d

]
◦ τ =

aτ + b

cτ + d
, τ ∈ H.

The action factors through PSL2(Z) := SL2(Z)/{±I}. So we will freely switch between SL2(Z) and
PSL2(Z) actions. The action admits a fundamental domain Σ 1, which is the grey region of the
following graph2:

More precisely, it is the open set {|z| > 1} ∩ {Re z| < 1
2} together with the boundary on the left

plus half the arc on the bottom including the point i. In the following, let ω = −1+
√
3i

2 .

1. Check that Σ is a fundamental domain, i.e., its points are in bijection with SL2(Z)-orbits.

2. Let Σ′ = Σ − {i, ω}. Show that the PSL2(Z)-stabilizer of any points in Σ′ is trivial. Show
that for g, h ∈ PSL2(Z), g ◦Σ′ = h ◦Σ′ if and only if g = h. Compute the stablizers of ω and
i, respectively, and use this to give a conceptual reason why there are three arcs 3 passing
through ω. What are the angles between the three arcs?

3. Show that the isomorphic classes of elliptic curves over C are in bijection with Σ (or equivalent,
with the quotient set H/ SL2(Z)). What is the relation between the stabilizer of a τ ∈ Σ and
the automorphism group of the corresponding elliptic curve ?(Compare Problem 4 of PSET
2).

4. For N ≥ 1, define the congruence subgroup of level N , denoted Γ(N), to be the kernel of
the natural map SL2(Z)→ SL2(Z/N). Show that the isomorphic classes of elliptic curves with
a level-N structure is in bijection with H/Γ(N). What can you say about the fundamental
domain of the action of Γ(N) on H?

5. (Background story) The quotient H/ SL2(Z) is not only a set, but a geometric object. In
complex geometry, it is usually termed an orbifold. With more efforts, it can be shown to be
algebraic, and algebraic geometers call it an algebraic stack. Indeed, it is the fine moduli
space of elliptic curves over C, and is called the modular curve of level 1, denoted Y (1). If
you don’t like to work with orbifolds or stacks, you can take a more classical approach: put a
natural structure of complex manifold on H/ SL2(Z). As a complex manifold, it is isomorphic
to A1

C (it is called the j-line). By doing this, you obtain the coarse moduli space of elliptic
curves over C. Use your browser, try to understand what these terminologies mean.

1Loosely speaking, a fundamental domain is a region in H that is in bijection with the SL2(Z)-orbits.
2The graph is taken from en.wikipedia.org/wiki/Fundamental_domain.
3We also view a line as an arc of infinite radius. In fact, these are geodesics of H as a hyperbolic space.

en.wikipedia.org/wiki/Fundamental_domain


6. (More background story) Similarly, the quotient H/Γ(N) is not only a set, but a geometric
object. It is the fine moduli space of elliptic curves with a level-N structure, and is called the
modular curve of level N , denoted Y (N). For N ≥ 3, H/Γ(N) is even a smooth algebraic
curve. The quotient map Y (N) → Y (1) is an étale cover. Y (N) is an example of Shimura
variety.

7. (Modular forms) Now let’s take for granted that Y (1) := H/ SL2(Z) is a dimension 1 smooth
orbifold (you don’t need to know what this really means). The quotient map H→ Y (1) can
be thought of as a universal cover with deck group PSL2(Z). Consider the cotangent bundle
ΩY (1). The way to think about ΩY (1) is to view it as ΩH with PSL2(Z)-action (why?). The
global sections of ΩY (1) are then global sections of ΩH invariant under PSL2(Z)-action (why?).
In other words:

H0(Y (1),ΩY (1)) = H0(H,ΩH)
PSL2(Z).

Show that H0(Y (1),Ω⊗k
Y (1)) is isomorphic to the space of meromorphic modular forms

of weight 2k. Here, a meromorphic modular form of weight n is a moromorphic function

f : H→ C such that f(gτ) = (cτ + d)nf(τ) for all g =

[
a b
c d

]
∈ SL2(Z).

8. A Tn-Hecke correspondence Tn ⊆ Y (1)×Y (1) is a divisor parametrizing isomorphic classes
of a pair of elliptic curves (E1, E2) with a degree n isogeny E1 → E2. Check that T1 is nothing
other than the diagonal. Pick a point E ∈ Y (1), which corresponds to an elliptic curve.

Use your intuition (it is OK to be non-rigorous): how many intersection points (counting
multiplicities) are there in (Y (1)×E) ∩ Tn ? How many intersection points (counting multi-
plicities) are there in (E × Y (1)) ∩ Tn ? (Compare Problem 8).

9. (Special divisors) A CM point of Y (1)n is a point corresponding to a product of n CM elliptic
curves. A irreducible divisor D ⊆ Y (1) × Y (1) is called special, if it is either Y (1) × E1 or
E2 × Y (1) (where E1, E2 are CM), or a component of a Hecke correspondence. Show that a
special divisor contains a Zariski dense collection of CM points.

The converse is also true: if a irreducible divisor D ⊆ Y (1) × Y (1) contains a Zariski dense
collection of CM points, then it must be special. This is a baby case of the André–Oort
conjecture, which is solved recently, see arxiv.org/abs/2109.08788.

arxiv.org/abs/2109.08788

