
Elliptic Curves and their Endomorphism Rings

1 Elliptic curve as a pointed algebraic curve

The blue curve in the picture contains points (x, y), x, y ∈ R satisfying equation y2 = x3 − 432x + 8208.
This picture is obtained from “The L-functions and modular forms database”. (LMFDB, https://www.lmfdb.org/)
It shows the set of real points on the elliptic curve labelled 11.a3.

By an elliptic curve, we mean a smooth genus 1 algebraic curve with a marked point. Every equation
y2 = x3 + Ax + B satisfying 4A3 + 27B2 ̸= 0 defines an elliptic curve. Namely, there is a smooth projective
model corresponding to this affine curve with the marked point the single point at ∞.

Definition 1.1. An elliptic curve defined over a field K is a pair (E, O), where E is a smooth curve of genus
1 defined over K and O ∈ E(K).

When the characteristic of the field K is not 2 or 3, then any elliptic curve (E, O) satisfies an affine
defining equation of the form y2 = x3 + Ax + B, A, B ∈ K, with O placed at ∞. A defining equation of the
form y2 = f (x) with deg f = 3 is called a Weierstrass equation for the associated elliptic curve.

Since an elliptic curve E/K is an algebraic curve of genus 1, the set of holomorphic differentials on E is
a 1-dimensional K vector space which we simply denote by V.

If E is given by the affine equation y2 = x3 + Ax + B, then the differential

ω =
dx
y

is both holomorphic and non-vanishing. Thus, the vector space V = {aω | a ∈ K}.

2 Elliptic curve as an algebraic group

For an algebraic curve C/K, let Pic0(C) be its divisor class group, defined as the set of degree 0 divisors
over K modulo its subset of principal divisors. The Galois group Gal(K/K) acts on Pic0(C) via its action on
C(K).
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Definition 2.1. The map ϕ : E(K) → Pic0(E) : P 7→ (P − O) from the curve to its divisor class group is a
bijection. The group law

E × E → E : (P1, P2) 7→ ϕ−1(ϕ(P1) + ϕ(P2))

and E → E : P 7→ ϕ−1(−ϕ(P)) induced on E is an algebraic morphism defined over K.

This group law makes elliptic curves projective group schemes of dimension 1. Higher dimensional
projective varieties with an algebraic group structure are called abelian varieties which is the topic of AWS
2024.

Remark 2.2. For any field L/K and an elliptic curve E/K, the group law makes the set E(L) into an abelian
group. Then it is natural to ask whether E(L) is a finitely generated abelian group. The Mordell–Weil
theorem states that when L is a number field, E(L) is finitely generated. On the other hand, when L = Q,
even the torsion part of E(L) is not finitely generated. Given an elliptic curve E/K, for which L/K is E(L)
finitely generated is a problem among current study in the realm of Diophantine stability.

3 Morphisms between elliptic curves: Isogenies

After introducing the objects which we call elliptic curves, our next goal is to study morphisms between
elliptic curves. These morphisms will be regular maps between algebraic curves which are also group
homomorphisms. Such a morphism is called an isogeny.

Definition 3.1. An isogeny between elliptic curves (E1, O1) and (E2, O2) is an algebraic map E1 → E2 which
maps O1 to O2. The map ϕ : E1 → O2 is called the trivial isogeny. Any nontrivial isogeny is a group
homomorphism with finite kernel.

Since isogenies are regular maps between algebraic curves, they induces maps between their divisor
class groups Pic0 and their sets of holomorphic differentials V. Both of the induced maps are very important
tools in our study of isogenies.

Definition 3.2. Let ϕ : E1 → E2 be a nontrivial isogeny. Then it induces a map ϕ∗ : Pic0(E2) → Pic0(E1). By
composing isomorphisms Ei ≃ Pic0(Ei), we obtain an isogeny ϕ̂ : E2 → E1 which is called the dual isogeny
of ϕ.

The next lemma follows from the definition of the group law on elliptic curves and the dual isogeny. It
will play an important role in studying the structure of the endomorphism ring End(E).

Lemma 3.3. ϕ̂ ◦ ϕ = [deg ϕ].

4 The structure of the endomorphism ring End(EK)

We write Hom(E1, E2) to be the set of isogenies between E1 and E2 over K and End(E) the set of isogenies
from E to itself over K. We will denote by End(EK) the set of endomorphisms from E to itself base changed
to the algebraic closure K. Next we discuss some properties of the set of isogenies between two elliptic
curves E1, E2.

Lemma 4.1. The of isogenies Hom(E1, E2) is a free abelian group under the addition law (ϕ + ψ)(P) := ϕ(P) +
ψ(P) and the identity element being the trivial isogeny.

Proof. The multiplication by m map (denoted as ϕm) is an isogeny and mϕ = ϕm ◦ ϕ. The composition of
two dominant maps is dominant. Thus, Hom(E1, E2) is torsion-free.

Lemma 4.2. The endomorphisms ring End(E) with multiplication being composition is an integral domain.

Proof. The composition of two dominant maps is dominant.
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Let E1, E2 be elliptic curves given by Weierstrass equations. Let ω1, ω2 be the holomorphic differentials
given by dx/y on E1, E2 respectively and let Vi be the K-vector space of holomorphic differentials on Ei. For
an isogeny ϕ : E1 → E2, we look at the induced map ϕ∗ : V2 → V1.

Proposition 4.3. Let E be an elliptic curve given by a Weierstrass equation y2 = x3 + Ax + B and let ω = dx/y.
The differential ω is invariant under translation maps on E.

Theorem 4.4. Let ϕ, ψ : E1 → E2 be two isogenies and ϕ∗, ψ∗ : V2 → V1 the induced maps, then

(ϕ + ψ)∗ω = ϕ∗ω + ψ∗ω.

Moreover, the map End(E) → End(V) ≃ K : ϕ → ϕ∗ is a ring homomorphism with kernel being the inseparable
morphisms (morphisms whose induced map on the function fields is an inseparable field extension).

Corollary 4.5. If K is a field of characteristic 0, then End(EK) is a commutative subring of K.

Recall that following the set of isomorphism theorems for groups, every group homomorphism ϕ : G →
H is determined by its kernel Ker ϕ which is a normal subgroup of G (up to an isomorphism of H).

To study End(EK), we next look at the finite subgroups of E(K).

Lemma 4.6. When m is coprime to the characteristic of the field K, we have E(K)[m] ≃ (Z/mZ)2 where E(K)[m]
denotes the kernel of the multiplication by m map ϕm : E → E, P 7→ mP.

Proof. First note that the dual isogeny to the multiplication by m map is itself, ϕ̂m = ϕm. Since ϕm is
separable by assumption, we conclude |E/mE| = deg ϕm = m2.

Any isogeny ϕ : E1 → E2 induces a map E1[m] → E2[m] for any m ∈ Z>0. For any prime ℓ coprime to
the characteristic of the field K, there is an injection

Hom(E1, E2) ↪→ Hom(E1[ℓ
∞], E2[ℓ

∞]).

Moreover, the following map is also injective.

Hom(E1, E2)⊗ Zℓ ↪→ Hom(E1[ℓ
∞], E2[ℓ

∞]).

Lemma 4.7. End(EK) is a free Z-module of rank at most 4.

Proof. Using the injectivity of the above map, we have

rankZ End(EK) = rankZℓ
End(EK)⊗ Zℓ ≤ rankZℓ

Hom(E[ℓ∞], E[ℓ∞]) = 4.

Theorem 4.8. For an elliptic curve E defined over a field K. The endomorphism ring End(EK) is either isomorphic
to Z, an order of a quadratic imaginary field, or an order of a quaternion algebra over Q.

If K is of characteristic 0, then End(EK) is commutative.
If K is a finite field, then End(EK) strictly contains Z.

Proof. The endomorphism ring End(EK) satisfies the following statements:

1. End(EK) is a free Z-module of rank at most 4, and an integral domain;

2. there is an involution End(EK) → End(EK) : ϕ 7→ ϕ̂;

3. For any isogeny ϕ ∈ End(EK), the product ϕϕ̂ is a non-negative integer, and ϕϕ̂ = 0 ⇒ ϕ = 0.

A ring satisfying these three conditions can only be one of the three types stated above.
When K is of characteristic 0, End(EK) is commutative following from Theorem 4.4.
When K is a finite field Fq, the Frobenius morphism is purely inseparable of degree q and it is different

from the multiplication by
√

q map even when q is a square.

For an elliptic curve E/K where K has characteristic 0, if End(EK) strictly contains Z, we say E has
complex multiplication.
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