
2 Canonical Heights on Abelian Varieties

1. Lecture 1: Construction and

Properties of Canonical Heights

K is a characteristic 0 field, typically:
• a number field or 1-dim’l function field.
• a complete local field.

Heights on PN

Informal (see notes for formal) definition:

h : PN(K) �! [0,1),

hPN (P ) ⇡ # of bits needed to describe P .

Weil Height Machine Overview
• X/K, a smooth projective variety.
• D,D0, . . . , divisors (on X).

(a) Normalization:
✓
D very ample,
fD : X ,! PN

◆
=) hD(P ) = hPN

�
fD(P )

�
+O(1).

(b) Linear equivalence:

D0 ⇠ D =) hD0 = hD +O(1).

(c) Functoriality:

' : X ! Y =) hX,'⇤D(P ) = hY,D

�
'(P )

�
+O(1).

(d) Additivity:

hD1+D2
= hD1

+ hD2
+O(1).

“ (b), (c), (d) convert geometry into arithmetic”
(e) Finiteness (Northcott Property): D ample.

�
P 2 X(K) : hD(P )  B

 
is finite.
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Canonical Height: Construction

A/K is an abelian variety

Def : D is symmetric if [�1]⇤D ⇠ D.
D is anti-symmetric if [�1]⇤D ⇠ �D.

Abelian varieties satisfy all sorts of interesting di-
visor relations, including:

[m]⇤D ⇠ m2 +m

2
D +

m2 �m

2
[�1]⇤D

=

(
m2D if D is symmetric,

mD if D is anti-symmetric.

Thus for symmetric D, get

hD

�
[m]P

�
= h[m]⇤D(P ) +O(1) functoriality,

= hm2D(P ) +O(1) linear equivalence,

= m2hD(P ) +O(1) additivity. (⇤)

Intuition : [m]P is about m2 as complicated as P .
Observation : That O(1) is annoying! ,

Theorem (Néron–Tate): D 2 Div(A) symmetric.

(a) ĥD(P ) := limn!1
1

4n
hD

�
[2n]P

�
converges.

(b) ĥD(P ) = hD(P ) +O(1) for P 2 A(K).

(c) ĥD

�
[m]P

�
= m2·ĥD(P ) for P 2 A(K), m 2 Z.

(d) D0 ⇠ D =) ĥD0 = ĥD.
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4 Canonical Heights on Abelian Varieties

Proof . (a) Claim:
⇣ 1

4n
hD

�
[2n]P

�⌘

n�0
is Cauchy, hence converges.

From (⇤) with m = 2 and P  [2i]P , we get

hD

�
[2i+1]P

�
= 4hD

�
[2i]P

�
+O(1). (⇤⇤)

Telescoping sum argument:
���
1

4n
hD

�
[2n]P

�
� 1

4k
hD

�
[2k]P

����

=

����
n�1X

i=k

⇣ 1

4i+1
hD

�
[2i+1]P

�
� 1

4i
hD

�
[2i]P

�⌘���� telescoping sum,


n�1X

i=k

1

4i+1

���hD

�
[2i+1]P

�
� 4hD

�
[2i]P

���� triangle inequality,


n�1X

i=k

1

4i+1
· C from (⇤⇤),

 1

4k
· C
3
�! 0 as n � k !1. (⇤⇤⇤)

(b) In (⇤⇤⇤), taking

k = 0 and let n!1

yields ���ĥD(P )� hD(P )
��� 

C

3
.
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(c) We compute

ĥD

�
[m]P

�
:= lim

n!1
4�n · hD

�
[2nm]P

�

= lim
n!1

4�n ·
⇣
m2hD

�
[2n]P

�
+

Independent of n and P .z}|{
O(1)

⌘

= m2ĥD(P ).

(d) Follows from hD = hD0 +O(1).

Remark. There is a similar construction for anti-
symmetric divisors, and then for general divisors, by
writing

D =
D + [�1]⇤D

2| {z }
symmetric

+
D � [�1]⇤D

2| {z }
anti-symmetric

.

We will (mostly) use symmetric divisors.

Theorem (Néron–Tate): D 2 Div(A) ample and symmetric.
(a) ĥD : A(K)! R is a quadratic form.
(b) ĥD(P ) � 0 for all P 2 A(K).
(c) ĥD(P ) = 0 if and only if P 2 A(K)tors.
(d) ĥD extends to a positive definite quadratic form
on

A(K)⌦ R ⇠= RrankA(K).

Proof sketch at end if there’s time, but first:
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Definition. The canonical (Néron–Tate) height
pairing is

h · , · iD : A(K̄)⇥ A(K̄) �! R,

hP,QiD =
1

2

⇣
ĥD(P +Q)� ĥD(P )� ĥD(Q)

⌘
.

Definition. The Néron–Tate regulator of

P1, . . . , Pr 2 A(K)

is

RegD(P1, . . . , Pr) = det
⇣
hPi, PjiD

⌘

1i,jr
.

We also let

RegD(A/K) = RegD(P1, . . . , Pr)

for any basis P1, . . . , Pr of A(K)/A(K)tors.

Remark. ĥD makes A(K) ⌦ R into a Euclidean
space, where the norm

kPkD :=
q

ĥD(P )

measures of the arithmetic complexity of the point P 2
A(K), where we can measure “complexity” angles

hP,QiD := kPkD · kQkd · cos ✓D(P,Q),

and where RegD(A/K) is the co-volume of the lattice

A(K)/A(K)tors ⇠= ZrankA(K) sitting in

the Euclidean space A(K)⌦ R ⇠= RrankA(K).
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Proof Sketch . [As Time Allows]
We’ll start with (b) and (c), since they tie in with
Lecture #3.

(b) [ĥD(P ) � 0]

D ample =) hD(Q) � �C for all Q 2 A(K),
by positivity,

=) ĥD(P ) = lim
n!1

1

4n
hD

�
[2n]P

�

� lim
n!1

1

4n
· (�C)

= 0.

(c)
h
P 2 A(K)tors =) ĥD(P ) = 0

i

P 2 A(K)tors =) ĥD(P ) := lim
n!1

4�nhD

�
[2n]P| {z }

Only finitely many possible values

�
= 0.

(c)
h
ĥD(P ) = 0 =) P 2 A(K)tors

i

ĥD(P ) = 0

=) ĥD

�
[m]P

�
= m2ĥD(P ) = 0 for all m � 1,

=) hD

�
[m]P

�
 C with C independent of m,

using ĥD = hD +O(1),

=)
�
[m]P : m � 1

 
✓
�
Q 2 A(K) : hD(Q)  C

 
| {z }

Finite set, since D is ample.

=) [m1]P = [m2]P for some m1 > m2 � 1
(pigeonhole principle),

=) P 2 A(K)tors.
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(a) [ĥD(P ) is a quadratic form on A(K)]
This is a computation using the Theorem of the
Cube. See the lecture notes.

(d) [ĥD(P ) is positive definite on A(K)⌦ R]
The positive definiteness on A(K)/A(K)tors follows
from (b) & (c). But more is needed for A(K) ⌦ R,
with the Northcott property playing a crucial role.
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