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Chapter 1136

Introduction137

This lecture series is about the Torelli locus in the moduli space of abelian varieties, with138

applications to Newton polygons of curves in positive characteristic. In general, the lectures139

will cover two topics: the first is about the geometry of the Torelli locus; the second is about140

the arithmetic invariants of abelian varieties that occur for Jacobians of smooth curves in141

positive characteristic.142

This is the draft of this document that we will use for the Arizona Winter143

School in March 2024. I am still planning to make improvements at a later time,144

so comments are welcome.145

I’d like to thank these people for their support and helpful suggestions about this doc-146

ument: Jeff Achter, Dusan Dragutinović, Steven Groen, Valentijn Karemaker, and Soumya147

Sankar. Also thanks to the NSF for their partial support (DMS-22-00418).148

1.1 The Torelli locus149

Let g be a positive integer. Suppose X is a (smooth, projective, connected) curve of genus g.150

The Jacobian JX of X represents the quotient of the group of divisors of degree zero by the151

subgroup of principal divisors. One can show that the Jacobian JX is a (principally polarized)152

abelian variety of dimension g. Many facts about X are determined by its Jacobian; for153

example, the unramified cyclic degree ` covers of X are determined by `-torsion points on154

the Jacobian JX .155

For 1 ≤ g ≤ 3, almost every principally polarized abelian variety is a Jacobian. For156

example, a p.p. abelian variety of dimension g = 1 is an elliptic curve. A p.p. abelian surface157

(resp. threefold) is the Jacobian of a smooth curve of genus 2 (resp. 3) unless it decomposes158

as a product, together with the product polarization.159

For g ≥ 4, the situation is more interesting because not every principally polarized160

abelian variety is a Jacobian. There are several methods to determine which p.p. abelian161

varieties are Jacobians but these are fairly difficult. It is often possible to study Jacobians162

of curves in a more explicit and concrete way than for a typical abelian variety. On the163

other hand, there are techniques for studying families of abelian varieties that do not apply164

when studying families of Jacobians of curves. This leads to a very valuable and rewarding165

exchange between these topics.166
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Consider the moduli space Ag of principally polarized abelian varieties of dimension g.167

Within Ag, we can consider the Torelli locus whose points represent Jacobians of curves.168

This sublocus of Ag has essential importance and plays an important role in many problems.169

Let Mg denote the moduli space of (smooth, projective, connected) curves of genus g. For170

r ≥ 1, we also consider Mg;r, the moduli space of curves of genus g together with r marked171

points.172

The Torelli morphism τ :Mg → Ag takes a curve X to its Jacobian. It is an embedding,173

meaning that X is uniquely determined by JX . The open Torelli locus T ◦g is the image of τ ;174

it is the locus of all principally polarized abelian varieties of dimension g that are Jacobians.175

When g = 1, 2, 3, then T ◦g is open and dense in Ag, meaning that almost every principally176

polarized abelian variety of dimension g ≤ 3 is a Jacobian. For g ≥ 2, the dimension of Mg177

is 3g − 3, while the dimension of Ag is g(g + 1)/2. So, as g increases, the open Torelli locus178

has increasingly high codimension in Ag.179

1.2 The boundary180

Surprisingly, some facts about smooth curves can be proven using singular curves; some facts181

about principally polarized abelian varieties that are indecomposable can be proven using182

principally polarized abelian varieties that decompose. For this reason, it is useful to consider183

compactifications of these moduli spaces, namely the Deligne–Mumford compactificationMg184

of Mg and a toroidal compactification Ãg of Ag.185

The points of the boundary of Mg represent stable singular curves, which are either of186

compact or non-compact type. When the dual graph of a curve is a tree, we say that the187

curve has compact type. To construct a singular curve of compact type, we take two curves188

(which are smooth, or of compact type); we choose a point on each, and identify these points189

in an ordinary double point. If g1 + g2 = g, this yields a morphism:190

κg1,g2 :Mg1;1 ×Mg2;1 →Mg.

The Jacobian of a singular curve of compact type is an abelian variety, although it does191

decompose together with the product polarization.192

To construct a singular curve of non-compact type, we take a curve, choose two points193

on it, and identify these in an ordinary double point. This yields a morphism:194

κ0 :Mg−1;2 →Mg.

The Jacobian of a singular curve of non-compact type is a semi-abelian variety. Later notes195

will include more description of semi-abelian varieties, including the toric rank of a semi-196

abelian variety and the toroidal compactification Ãg.197

Historically, many statements about the geometry of Mg use the morphisms κg1,g2 , κ0,198

which are called clutching morphisms. The Torelli map extends to a map τ : Mg → Ãg.199

However, τ is no longer an embedding; in fact, some of its fibers have positive dimension.200

8



Rachel Pries The Torelli locus and Newton polygons

1.3 Arithmetic invariants201

Let k be an algebraically closed field of positive characteristic p. An elliptic curve over k can202

be ordinary or supersingular. We say that an elliptic curve is ordinary if it has point of order203

p; alternatively, an elliptic curve is ordinary if its Newton polygon has slopes of zero and204

one. Otherwise, the elliptic curve is supersingular. There are many results about ordinary205

and supersingular elliptic curves, due to Deuring [Deu41] and Igusa [Igu58]; for example, for206

a fixed prime p, most elliptic curves are ordinary and the number of isomorphism classes of207

supersingular elliptic curves is approximately p/12. See also [Man61].208

For a p.p. abelian variety A defined over k, the action of Frobenius determines important209

information. To keep track of this information, there are combinatorial invariants called the210

p-rank, the Newton polygon, the Ekedahl–Oort type, and the a-number. The p-rank is the211

integer f such that the number of p-torsion points on A equals pf . The Newton polygon212

is determined by the characteristic polynomial of Frobenius on the crystalline cohomology;213

when A = JX for a curve X defined over a finite field F, the Newton polygon keeps track214

of the number of points on X defined over finite extensions of F. The Ekedahl–Oort type215

is an invariant that classifies the structure of the p-torsion group scheme A[p] of A; when216

A = JX , this is the same as the structure of the de Rham cohomology as a module under217

Frobenius F and Verschiebung V . The a-number is the number of generators of A[p] as a218

module under F and V .219

The possibilities for the Newton polygon and Ekedahl–Oort type of a p.p abelian variety220

are well understood. In contrast, in most cases it is not known which Newton polygons and221

Ekedahl–Oort types occur for Jacobians of curves for a given prime p. Some Newton polygons222

and Ekedahl–Oort types have been shown to occur for Jacobians and some Ekedahl–Oort223

types have been ruled out. More generally, the stratifications of Ag by these invariants224

are well understood; however, it is not understood how these stratifications intersect the225

Torelli locus. As applications of the theory covered in this lecture series, I will show how the226

geometric techniques used to study moduli spaces can shed light on these questions.227

Lectures:228

Here is a tentative schedule of lectures. These lectures are about abelian varieties defined229

over an algebraically closed field. The first half of each lecture includes material that makes230

sense for fields of any characteristic; the second half of each lecture includes applications for231

abelian varieties in positive characteristic.232

1. The Torelli locus and arithmetic invariants233

In the first half of this lecture, I will give several descriptions of the Torelli locus in234

the moduli space Ag of abelian varieties of dimension g. With a dimension count, we235

can see that the Torelli locus is open and dense inside Ag when 1 ≤ g ≤ 3, and has236

positive codimension for g ≥ 4.237

In the second half of this lecture, I will describe some arithmetic invariants of abelian238

varieties in positive characteristic p. These include: the p-rank, the Newton polygon,239

the Ekedahl–Oort type, and the a-number, see [Pri19] for a survey. As some applica-240

tions, we can see the proofs of these facts, for every prime p:241

(i) there exists an ordinary smooth curve of every genus g, [Mil72];242
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(ii) there exists a non-ordinary smooth curve of every genus g; and243

(iii) there exists a supersingular curve of genus 2 [Ser83], [IKO86].244

The proofs make use of the Cartier operator.245

2. The boundary of the moduli spaces of curves and abelian varieties246

In the first half of this lecture, I will describe the boundary of the moduli space of247

curves and the clutching morphisms, as described in Section 5.2. The boundary is the248

image of the clutching morphisms, whose domain consists of products of moduli spaces249

of curves with marked points. Then we will cover some results of Diaz [Dia84] and250

Looijenga [Loo95a] that show that a subspace S ⊂Mg having codimension at most g251

must intersect the boundary.252

In the second half of this lecture, I will describe the purity result of de Jong and253

Oort [dJO00a] for the Newton polygon stratification of Ag. As an application, for254

every prime p, this yields a proof that there exists a supersingular curve of genus255

3 [Oor91a], and a supersingular curve of genus 4 [KHS20], [Pri]. We will see that this256

proof does not extend to curves of higher genus. I will also explain how the boundary257

technique can be used to study the p-rank stratification of Mg [FvdG04].258

3. Special families of abelian varieties259

In the first half of this lecture, I will describe the situation for abelian varieties having260

additional structure; namely, whose automorphism group contains a cyclic group. The261

moduli spaces of these provide examples of Deligne–Mostow Shimura varieties. We262

say this moduli space is special if an open and dense subset of a component of the263

Shimura variety is contained in the Torelli locus. In particular, we consider families of264

Jacobians of curves that are cyclic covers of the projective line. The families that have265

special moduli spaces were classified by Moonen [Moo10]. The situation for Jacobians266

of abelian covers of the projective line is not fully understood and is related to a267

conjecture of Coleman and Oort.268

In the second half of this lecture, I will describe constraints on the Newton polygon and269

Ekedahl–Oort type of an abelian variety in these special families. As an application,270

this shows that there exist supersingular curves of genus 5, 6, and 7, under certain271

congruence conditions on the prime p [LMPT19]. Furthermore, I will describe the rate272

of growth of the number of non-ordinary curves in these families [CP].273

4. Torsion points and unramified covers274

In the first part of this lecture, I will describe the correspondence between `-torsion275

points on the Jacobian of a curve C and unramified Z/`Z-covers of C. In the second276

half of this lecture, we will see how the p-torsion and the `-torsion on Jacobians are277

independent of each other, in a way that can be made precise using `-adic monodromy278

groups of the p-rank stratification [AP08].279
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1.3.1 Outline of the lecture notes280

Three of these chapters are written for abelian varieties and curves over any algebraically281

closed field, such as C; these are Chapters 2, 5, and 7. The other chapters are about invariants282

that are defined only in positive characteristic.283
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Chapter 2284

The Torelli locus285

2.1 Overview286

The main focus of these talks is the Torelli locus Tg within the moduli space Ag of principally287

polarized (p.p.) abelian varieties of dimension g ≥ 1.288

In writing (or reading) this chapter, there is a basic dilemma. It is important to start289

with a good foundation. On the other hand, with limitations on time and space, it is not290

possible to improve on references such as these books (and others):291

Analytic theory of abelian varieties by Swinnerton-Dyer, [SD74];292

Abelian varieties by Mumford [Mum08]293

Abelian varieties by Milne, [Mil];294

Complex abelian varieties by Birkenhake and Lange, [BL04];295

Abelian varieties by Lange [Lan23]296

Abelian varieties (preliminary version) by Edixhoven, van der Geer, and Moonen, [EvdGM]297

Curves and their Jacobians by Mumford [Mum75]298

Geometry of algebraic curves by Arbarello, Cornalba, Griffiths, Harris [ACGH85], [ACG11].299

Algebraic curves and Riemann surfaces by Miranda [Mir95].300

Moduli of Curves by Harris and Morrison [HM98]301

In addition, most of these books were written with a complex analytic viewpoint, which302

provides a lot of intuition but which is not sufficient for many of the topics in the later303

chapters. In this chapter, we work over k = C, although much of the content also applies304

for any algebraically closed field k.305

So, the goal for this chapter is modest: to introduce the main concepts, so that we can306

continue with the key themes of the lecture series. The main concepts are:307

The Jacobian of a curve of genus g is a p.p. abelian variety of dimension g.308

The Torelli morphism maps the moduli space Mg of curves of genus g into the moduli309

space Ag of p.p. abelian varieties of dimension g. This map is injective on k-points.310

The dimension of Ag is g(g + 1)/2 and the dimension of Mg is 3g − 3 (for g ≥ 2). This311

implies that most p.p. abelian varieties of dimension g ≥ 4 are not Jacobians.312

At a later time, I will return to this chapter to expand on the most important aspects.313

and add additional examples, citations, and precision.314
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2.2 Background on abelian varieties315

There is a lot of foundational material here. It may be difficult to absorb it all on the first316

reading. It may be helpful to focus on the examples.317

We follow [BL04, Chapters 4,8,11].318

Let g ≥ 1 be an integer. We denote complex conjugation with an overline.319

2.2.1 Complex tori320

Example 2.2.1. A complex torus of dimension 1 is isomorphic to C/Λ where Λ is a lattice.321

After adjusting by the action of SL2(Z), we can suppose Λ is generated by 1 and τ , where322

τ is in the upper half plane h. The Hermitian form H : C × C → C is given by H(v, w) =323

v · w/Im(τ). This is a positive definite form.324

More generally, consider a complex torus X = V/Λ where V is a complex vector space325

of dimension g and Λ is a lattice. We choose a Z-basis λ1, . . . , λ2g for Λ in terms of a basis326

e1, . . . , eg for V . Writing the former in terms of the latter gives a g× 2g-matrix Π called the327

period matrix.328

Proposition 2.2.2. [BL04, Proposition 1.1.2] A g× 2g-matrix Π is the period matrix of a329

complex torus if and only if the 2g × 2g-matrix

(
Π
Π

)
is invertible.330

2.2.2 Complex abelian varieties331

A good reference for complex abelian varieties is Birkenhake and Lange [BL04, Chapter 4].332

See also [Mum08].333

Definition 2.2.3. A complex abelian variety is a complex torus admitting an ample line334

bundle.335

Suppose X = V/Λ is a complex torus. Then X is a projective complex analytic space,336

and thus a projective complex algebraic variety.337

The condition of having an ample line bundle can be described in several different ways.338

First, here are the Riemann relations.339

Theorem 2.2.4. [BL04, Theorem 4.2.1] The complex torus Cg/ΠZ2g is an abelian variety if340

and only if there exists a non-degenerate 2g×2g alternating matrix A such that the following341

Riemann relations are true:342

(i) ΠA−1TΠ = 0; and343

(ii) iΠA−1TΠ > 0.344

In this context, A is the matrix of the alternating form E defining the polarization.345

The second interpretation involves Hermitian forms. A Hermitian form on V is a map346

H : V × V → C which is C-linear in the first argument and such that H(v, w) = H(w, v)347

for all v, w ∈ V . A Hermitian form is positive semi-definite if H(v, v) ≥ 0 for all v ∈ V ; it348

is positive definite if it is positive semi-definite and H(v, v) = 0 if and only if v = 0; it is349

non-degenerate if H(u, v) = 0 for all v ∈ V implies u = 0.350
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Definition 2.2.5. A Riemann form on X = V/Λ is a positive definite non-degenerate351

Hermitian form H on V such that the restriction of E = Imaginary(H) to Λ is integer352

valued.353

Theorem 2.2.6. A complex torus is isomorphic to an abelian variety X over C if and only354

if it has a Riemann form.355

A third interpretation is as follows. Suppose X = V/Λ is a complex torus and let X∗ be356

its dual. Let Ω = HomC(V,C) be the vector space of C-antilinear forms. Given an analytic357

representation F : V → Ω, consider the form F : V × V → C given by (v, w) 7→ F (v)(w).358

A polarization is an isogeny X → X∗ whose analytic representation is a positive definite359

Hermitian form. A principal polarization is a polarization that is an isomorphism.360

In [BL04, Section 2.4], there is a description of how a line bundle L onX determines a map361

φL : X → X∗; it is an isogeny if and only if L is ample. Conversely, by [BL04, Theorem 2.5.5],362

if X = V/Λ is a complex torus and φ : X → X∗ is a polarization, then X is an abelian363

variety.364

2.2.3 Polarized abelian varieties, with a sympletic basis365

This next part will be important for defining the Siegel upper half space.366

Suppose X = V/Λ is a p.p. abelian variety of dimension g and H is a Hermitian form367

defining a principal polarization. We choose a symplectic R-basis λ1, . . . , λg, µ1, . . . , µg of Λ368

for H; this means that H(λi, µj) = δi,j. The vectors µ1, . . . , µg form a C-basis for V . The369

alternating form E = Im(H) is given by the matrix

(
0 Ig
−Ig 0

)
, with respect to this basis.370

The period matrix is given by Π = (Z, Ig) for some g × g matrix Z.371

Proposition 2.2.7. [BL04, Proposition 8.1.1] (a) TZ = Z and Im(Z) > 0; and372

(b) (Im(Z))−1 is the matrix of H with respect to the basis µ1, . . . , µg.373

2.2.4 Moduli spaces of abelian varieties374

Let Ag,C be the moduli space of complex p.p. abelian varieties of dimension g.375

Example 2.2.8. Abelian varieties of dimension g = 1 are parametrized by τ ∈ h, up to the376

action of SL2(Z). The condition of having a principal polarization is automatically satisfied.377

This shows that dim(A1) = 1.378

We follow [BL04, Chapter 8]. Recall the material in Section 2.2.3.379

Definition 2.2.9. The Siegel upper half space hg is the set of g×g complex-valued matrices380

satisfying TZ = Z and Im(Z) > 0.381

Then hg has dimension g(g+1)/2 because it is an open submanifold of the vector space of382

symmetric g× g matrices. By [BL04, Proposition 8.1.2], hg is a moduli space for principally383

polarized abelian varieties with symplectic basis. By [BL04, Theorem 8.2.6], Ag is a quotient384

of hg by the sympletic group Sp2g(Z). This shows the following.385

Theorem 2.2.10. The moduli space Ag is irreducible and has dimension g(g + 1)/2.386

See [MFK94] by Mumford, Fogarty, and Kirwan for some other constructions of Ag.387
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2.2.5 Algebraic definition of abelian varieties388

A complex torus is an abelian variety if and only if it is an algebraic variety. In this section,389

we give a fully algebraic definition.390

Definition 2.2.11. An abelian variety is a smooth irreducible projective algebraic variety391

X that is also a group. This means that it has a group law m : X × X → X and both m392

and the inverse map are morphisms. A principal polarization is an isomorphism X → X∗,393

satisfying an additional property.394

2.3 Background on curves395

We work over an algebraically closed field k.396

2.3.1 Curves397

Definition 2.3.1. A curve is a connected projective variety of dimension 1.398

Example 2.3.2. Let P1 denote the projective line. This is the unique curve of genus 0. An399

elliptic curve is given by the vanishing of a smooth cubic in P2.400

The easiest way to describe a curve of positive genus is with an affine equation. Fre-401

quently, we consider an affine curve C ′ ⊂ A2 given by the vanishing of a polynomial equation402

h(x, y) = 0. It is no loss of generality to work with affine curves because of this fact:403

Fact 2.3.3. For every affine curve C ′ ⊂ A2, there exists a unique smooth projective curve404

C such that C ′ ⊂ C.405

Sometimes, the curve C can be embedded in P2.406

Example 2.3.4. Suppose f(x) = x3 + ax + b has distinct roots for some a, b ∈ k. (Here407

p 6= 2, 3). Consider the elliptic curve with affine equation y2 = f(x). It is the projective408

curve in P2 given by the vanishing of the homogeneous equation y2z = x3 + axz2 + bz3.409

Sometimes, the curve C cannot be smoothly embedded in P2. Every curve can be410

smoothly embedded in P3, but this is not always helpful. It is often a hassle to find the411

equations that resolve the singularities of a curve. In light of Fact 2.3.3, we usually work412

with affine curves.413

Example 2.3.5. Let C ′ be the curve with affine equation y2 = x5− 2x (here p 6= 2, 5). The414

homogenization y2z3 = x5− 2xz4 has a singularity when z = 0. To find another affine patch415

for the curve that includes the points missing on this patch, we define x̄ = 1/x and ȳ = yx̄3.416

The other affine patch is given by the affine equation ȳ2 = x̄− 2x̄5.417
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2.3.2 Curves with automorphisms418

Definition 2.3.6. A hyperelliptic curve is a curve C that admits a cyclic cover π : C → P1.419

Fact 2.3.7. If char(k) 6= 2, a hyperelliptic curve has an affine equation y2 = f(x) for some420

separable polynomial f(x). The hyperelliptic involution ι acts by ι((x, y)) = (x,−y). There is421

a unique hyperelliptic involution on a hyperelliptic curve C and it is contained in the center422

of the automorphism group of C.423

Definition 2.3.8. A superelliptic curve is a curve C that admits a cyclic cover π : C → P1.424

Fact 2.3.9. If char(k) does not divide the degree m of π, then the superelliptic curve has an425

affine equation ym =
∏N

i=1(x− bi)ai, with the following data:426

the degree of the cover is m ≥ 2;427

the number of branch points is N ≥ 3;428

the inertia type is a tuple (a1, . . . , aN) with 1 ≤ ai ≤ m− 1 and
∑N

i=1 ai ≡ 0 mod m;429

the branch points {b1, . . . , bN} are a set of N distinct points in P1.430

Sometimes ∞ is one of the branch points (say the last one); in which case the last term431

(x− bN)aN is removed from the equation.432

The µm-action on C is given by φ((x, y)) = (x, ζy) for ζ ∈ µm.433

Definition 2.3.10. An Artin–Schreier curve is a curve C that admits a degree p cyclic cover434

π : C → P1, where p = char(k).435

Fact 2.3.11. An Artin–Schreier curve has an affine equation yp− y = h for some h ∈ k(x);436

the curve is connected if and only if h 6= zp − z for any rational function z ∈ k(x). Without437

loss of generality, we can suppose that the order of the poles of h are relatively prime to p.438

The Z/pZ-action on C is given by φ((x, y)) = (x, y + 1). This cover is wildly ramified at439

each of the poles of h.440

2.3.3 Holomorphic 1-forms and the genus441

Suppose C is a smooth projective curve. A 1-form ω is a smooth section of the cotangent442

bundle. The 1-form is holomorphic if it has no poles.443

For a local description of ω near a point P , we consider a function z on an affine subset444

U of C containing P such that z vanishes with order 1 at P . Then ω has an expression of445

the form f(z)dz where f(z) is a rational function on U .446

Example 2.3.12. The 1-form dx on P1 has a pole of order 2 at ∞. So div(dx) = −2[∞].447

For the elliptic curve y2 = x3+ax+b from Example 2.3.4, the 1-form dx/y is holomorphic.448

Let Ω1 denote the sheaf of 1-forms on C.449

Definition 2.3.13. Let H0(C,Ω1) denote the vector space of holomorphic 1-forms. The450

genus g of C is the dimension of H0(C,Ω1).451

Finding the orders of poles of a 1-form is a delicate process. The following lemma is452

useful.453
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Lemma 2.3.14. [Mir95, IV, Lemma 2.6] Suppose π : C1 → C2 is a cover of curves. If ω454

is a 1-form on C2, then the pullback π∗ω is a 1-form on C1. If π is not wildly ramified, and455

if η ∈ C1 is a point, then ordη(π
∗ω) = (1 + ordπ(η)(ω))multη(π)− 1.456

The following examples can be checked using Lemma 2.3.14.457

Example 2.3.15. Let p 6= 2. Suppose f(x) is a separable polynomial of degree 2g + 1 or458

2g + 2. The hyperelliptic curve C with affine equation y2 = f(x) has genus g. A basis for459

H0(C,Ω1) is given by {dx/y, xdx/y, . . . , xg−1dx/y}.460

Example 2.3.16. Consider the Artin–Schreier curve C with affine equation yp−y = h where461

h ∈ k[x] is a polynomial of degree j and p - j. Then the genus of C is g = (p− 1)(j − 1)/2.462

This can be proven with the wild Riemann–Hurwitz formula. A basis for H0(C,Ω1) is given463

by464

{yrxbdx | 0 ≤ r ≤ p− 2, 0 ≤ b ≤ j − 2, rj + bp ≤ pj − j − p− 1}.

2.3.4 The Riemann–Hurwitz formula465

The Riemann–Hurwitz formula provides a good way to compute the genus.466

Theorem 2.3.17. (Riemann–Hurwitz formula) Suppose φ : C → D is a degree d cover of467

curves. (If char(k) > 0, assume the cover is tamely ramified.) For η ∈ C, let eη denote the468

ramification index of φ at η. Then the genus gC of C and the genus gD of D are related by469

the formula:470

2gC − 2 = d(2gD − 2) +
∑
η∈C

(eη − 1).

Example 2.3.18. Let p - m. Consider the superelliptic curve C with affine equation ym =471 ∏N
i=1(x − bi)ai . Above the point x = bi, the curve C has gi = gcd(m, ai) points, each with472

inertia group of order m/gi. By the Riemann–Hurwitz formula, the genus of C satisfies:473

2gC − 2 = m(−2) +
N∑
i=1

gi(
m

gi
− 1).

In particular, if gi = 1 for 1 ≤ i ≤ N (e.g., if m is prime), then gC = (N − 2)(m− 1)/2.474

2.3.5 Moduli spaces of curves475

Let Mg be the moduli space of smooth curves of genus g. Let Hg be the moduli space of476

smooth hyperelliptic curves of genus g. In [MFK94], Mumford and Fogarty give three con-477

structions ofMg, using geometric invariant theory, covariants of points, and theta constants.478

The main goal of this section is to determine the dimensions of Mg and Hg.479

Let n ≥ 3. Let Pn denote the space parametrizing unordered sets of n distinct points in480

P1, up to automorphisms of P1.481

Proposition 2.3.19. (See for example, [Mir95, page 213]) If n ≥ 3, then dim(Pn) = n− 3.482
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Proof. There is a map (P − {0, 1,∞})n−3 − ∆W → Pk, where ∆W is the weak diagonal of483

tuples with repeated entries, where the map sends an ordered n − 3 tuple (x1, . . . , xn−3) to484

the set {0, 1,∞, x1, . . . , xn−3}. This map is surjective because of the triply transitive action485

of Aut(P1). It has finite fibers because there are only a finite number of ways to order a set486

of n points and only finitely many automorphisms sending the first three to 0, 1, and∞.487

Corollary 2.3.20. If g ≥ 1, then dim(Hg) = 2g − 1.488

Proof. Every hyperelliptic curve of genus g is determined by its set of 2g + 2 branch points.489

By Proposition 2.3.19, it follows that dim(Hg) = 2g − 1 for each g ≥ 1.490

Theorem 2.3.21. If g ≥ 2, the moduli space Mg is irreducible and has dimension 3g − 3.491

If g = 1, the moduli space M1;1 is irreducible and has dimension 1.492

For the irreducibility, see [DM69]. We sketch two proofs for the dimension.493

Proof. (Sketch, following [Mir95, VII, Section 2])494

Since every curve of genus 1 or 2 is hyperelliptic, Corollary 2.3.20 shows that dim(M1;1) =495

1 and dim(M2) = 3.496

Let g ≥ 3. We consider extra data on a curve C of genus g and investigate the moduli497

spaces of these objects is turn. The proof makes extensive use of divisors, linear systems,498

and the Riemann–Roch theorem.499

1. The data of (C,D), where D is a divisor of degree 2g − 1.500

Every curve C of genus g has an effective divisor D of degree 2g − 1. The number501

of parameters for this divisor is 2g − 1. So it suffices to show that the number of502

parameters for (C,D) is (3g − 3) + (2g − 1) = 5g − 4.503

2. The data of (C, |D|) where |D| is a complete linear system of degree 2g − 1.504

We move from (C,D) to (C, |D|) by taking D to its complete linear system |D|. Note505

that dim(|D|) = deg(D)− g = g− 1. So the number of parameters of the choice of an506

effective divisor E in |D| is g− 1. So it suffices to show that the number of parameters507

for (C, |D|) is (5g − 4)− (g − 1) = 4g − 3.508

3. The data of (C,Q) where Q is a base-point free pencil of degree 2g − 1.509

Given the complete linear system |D| of degree 2g− 1, we add the data of a pencil, or510

linear subspace, Q. Conversely, given a pencil Q, we can consider its complete linear511

system. Given |D|, the number of parameters for the choice of Q is the number of512

parameters for a line in a projective space of dimension g− 1. This is the dimension of513

the Grassmanian G(1, g − 1), which is 2g − 4. So it suffices to show that the number514

of parameters for (C,Q) is (4g − 3) + (2g − 4) = 6g − 7.515

4. The data of (C,F ) where F : C → P1 is a map of degree 2g − 1, branched at 6g − 7516

points. The data for Q and F is equivalent, so it suffices to show that the number of517

parameters for (C,F ) is 6g − 7.518

19



Rachel Pries The Torelli locus and Newton polygons

5. The data of 6g − 7 unordered points in P1.519

Given (C,F ), we can forget all the data except for the unordered set of 6g − 7 branch520

points. Conversely, given a unordered set of 6g − 7 points, there are a non-zero finite521

number of maps F : C → P1 of degree 2g − 1 that are branched at those points such522

that C has genus g. So it suffices to show that the number of parameters for the 6g−7523

points is 6g − 4, which we stated at the beginning of this remark.524

525

Here is a sketch of another proof.526

Proof. Let C be a complex analytic space. A direct cocycle calculation, as in Kodaira-527

Spencer theory, shows that first order deformations are parametrized by a subspace of528

H1(C, TC), the first cohomology group with coefficients in the tangent sheaf. The same529

is true in the category of algebraic schemes.530

For a curve C, then dim(C) = 1. In this case, H2(C, TC) = 0, so deformations are531

unobstructed. Thus the deformation space of C is isomorphic to H1(C, TC). Also TC532

is the dual of the canonical bundle ΩC . By the Riemann–Roch theorem, if g ≥ 2, then533

dim(H1(C, TC)) = 3g − 3.534

2.4 Background on the Torelli map535

2.4.1 The Jacobian536

We loosely follow Miranda [Mir95, Chapter VIII], working over C.537

A linear functional is an element of the dual space H0(C,Ω1)∗, namely a linear transfor-538

mation H0(C,Ω1)→ C.539

Loops c in C can be represented by homology classes. The homology group H1(C,Z)540

is a free abelian group of rank 2g. Every homology class [c] defines a linear functional541 ∫
[c]

: H0(C,Ω1) → C, which takes a holomorphic 1-form ω to its integral over c. The linear542

functionals that occur in this way are called periods. The set Λ of periods is a subgroup of543

H0(C,Ω1)∗.544

Definition 2.4.1. The Jacobian of C is Jac(C) = H0(C,Ω1)∗/Λ.545

By definition, Jac(C) is an abelian group. By choosing a basis for H0(C,Ω1), one can546

see that Jac(C) ∼= Cg/Λ, which is a complex torus of dimension g. With additional work,547

one can show that the periods satisfy the Riemann relations. Thus there is a principal548

polarization on Jac(C). Thus Jac(C) is a principally polarized abelian variety.549

2.4.2 The Picard group550

Let Div(C) denote the group of divisors on C, namely finite sums of the formD =
∑

P∈C nP [P ],551

where nP is an integer for each point P ∈ C. The degree of D is
∑

P∈C nP . The group Div(C)552

contains the subgroup Div0(C) of divisors of degree 0.553
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A divisor D is principal if it is the divisor of a rational function f on C. This means554

that nP is the order of vanishing of f at the point P . The degree of a principal divisor is555

0. Let PDiv(C) be the set of principal divisors. Note that div(fg) = div(f) + div(g) and556

div(1/f) = −div(f). This shows that PDiv(C) is a subgroup of Div0(C).557

Definition 2.4.2. The Picard group of C is Pic(C) = Div(C)/PDiv(C). Denote by Pic0(C)558

the subgroup of Pic(C) given by classes of divisors of degree 0.559

Remark 2.4.3. Another definition of the Jacobian is the connected component of the iden-560

tity in the Picard group of divisors of degree 0.561

2.4.3 The Abel–Jacobi map562

Choose a base point p◦ on C. For each point x ∈ C, choose a path γx from p◦ to x. This is563

possible because C is connected (and this implies that Pic0(C) is also connected). There is564

a map C → H0(C,Ω1)∗, sending x to the linear functional
∫
γx

of integration along γx. This565

map is not well-defined because different paths from p◦ to x may not be homotopic. However,566

there is a well-defined map, still depending on the base point p◦, called the Abel–Jacobi map:567

A : C → Jac(C).

The Abel–Jacobi map can be extended to Div(C) or to Div0(C). The Abel–Jacobi map568

A0 : Div0(C)→ Jac(C) on divisors of degree 0 is independent of the chosen base point p◦.569

Theorem 2.4.4. 1. (Abel’s Theorem) A divisor D of degree 0 on C is the divisor of a570

rational function on C if and only if A0(D) is trivial in Jac(C).571

2. (Jacobi’s Theorem) The map A0 : Div0(C)→ Jac(C) is surjective.572

3. Thus, there is an isomorphism:573

Pic0(C) ∼= Jac(C).

In light of Theorem 2.4.4, we will identify Pic0(C) and Jac(C) without comment in later574

chapters.575

2.4.4 Variations on the Abel–Jacobi map576

Let Symg(C) be Cg/Sg where Sg denotes the symmetric group on g letters. The objects in577

Symg(C) are unordered sets {x1, . . . , xg} of g points of C. Define a map578

ψg : Symg(C)→ Pic0(C),

taking {x1, . . . , xg} to the class of
∑g

i=1[xi]− g[p◦].579

These facts follow from the Riemann–Roch theorem:580

If D is any divisor of degree 0 on C, then there exist points x1, . . . , xg on C such that D581

is equivalent to [x1] + · · · [xg]− g[P0]. As a result, ψg is surjective.582

It also follows from the Riemann–Roch Theorem that ψg is generically injective.583

Similarly, there is a map α : C → Pic0(C), which takes x to the class of [x]− [p◦], which584

is equivalent to the Abel–Jacobi map.585

Theorem 2.4.5. The map α : C → Pic0(C) is an embedding.586

21



Rachel Pries The Torelli locus and Newton polygons

2.4.5 Torelli’s Theorem587

Every smooth curve X over k is uniquely determined by its Jacobian.588

Theorem 2.4.6. (Torelli’s Theorem) Suppose C and C ′ are two smooth projective curves589

of genus g. If Jac(C) and Jac(C ′) are isomorphic as principally polarized abelian varieties,590

then C and C ′ are isomorphic as curves.591

2.4.6 The Torelli morphism592

The Torelli morphism τg :Mg → Ag takes a curve X to its Jacobian JX .593

Theorem 2.4.7. (Torelli’s Theorem, see [MFK94, Section 7.4]) If k is an algebraically594

closed field, then the Torelli map T :Mg(k)→ Ag(k) is injective.595

Definition 2.4.8. The open Torelli locus T ◦g is the image of Mg under τ . it is the locus of596

all principally polarized abelian varieties of dimension g that are Jacobians of smooth curves.597

2.5 Related results598

2.5.1 Compactifications599

A (marked) nodal curve is stable if its automorphism group is finite.600

We say that C has compact type if each irreducible component of C is smooth and if the601

dual graph of C is a tree. Curves which are not of compact type correspond to points of a602

component ∆0 (defined in Section 5.2.1) of the boundary ∂M̄g.603

In Section 5.2.1, we define the Picard group (or Jacobian) of a singular stable curve. The604

Picard variety Pic0(C) is an abelian variety if and only if C has compact type. If not, then605

Pic0(C) is a semi-abelian variety.606

Let Ãg be a toroidal compactification of Ag.607

Let M̄g denote the Deligne-Mumford compactification ofMg. Its points represent stable608

curves of genus g. Let Mct
g denote the subspace whose points represent curves of compact609

type.610

The Torelli morphism extends to a morphism τ : M̄g → Ãg. It is no longer injective, as611

seen in Fact 2.5.1.612

Fact 2.5.1. Torelli’s Theorem 2.4.6 is false for stable curves.613

Example 2.5.2. Consider a curve C of genus 3 that has two components: C1, an elliptic614

curve; and C2, a curve of genus 2. These are identified (clutched together) at the identity on615

C1 and a point P ∈ C2. There is a one-parameter family of such curves, as the point P ∈ C2616

varies. However, Jac(C) is isomorphic to Jac(C1) × Jac(C2), and this does not depend on617

the choice of P .618

The closed Torelli locus Tg is the image of Mct
g under τ .619
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2.5.2 A stacky perspective620

To summarize, we defined several moduli spaces of abelian varieties and curves. Technically,621

these are categories, each of which is fibered in groupoids over the category of k-schemes in622

its étale topology:623

Ag principally polarized abelian schemes of dimension g;624

Ãg principally polarized semi-abelian schemes of dimension g;625

Mg smooth connected proper relative curves of genus g;626

M̄g stable relative curves of genus g.627

For each positive integer r, there is also (see [Knu83, Def. 1.1,1.2]):628

M̄g;r the moduli space of r-labeled stable relative curves (C;P1, . . . , Pr) of genus g.629

Each of the moduli spaces above is a smooth Deligne-Mumford stack. Furthermore, M̄g630

and M̄g;r are proper [Knu83, Theorem 2.7]. Likewise, Ãg is proper.631

For a moduli space M and a k-scheme T , by definition M(T ) = Mork(T,M) is the632

category of T -objects in M defined over T .633

There is a tautological abelian variety Xg over the moduli stack Ag. If s ∈ Ag(k), let Xg,s634

denote the fiber of Xg over s, which is the principally polarized abelian variety represented635

by the point s : Spec(k) → Ag. There is a tautological curve Cg over the moduli stack636

Mg [DM69, Section 5]. If s ∈ Mg(k), let Cg,s denote the fiber of Cg over s, which is the637

curve represented by the point s : Spec(k)→Mg.638

2.5.3 The Schottky problem639

The Schottky problem asks for a characterization of the p.p. abelian varieties that are Ja-640

cobians of curves. There is a lot of important work on this problem; for example, see641

Welters [Wel83, Wel84], Shiota [Shi86], Krichever [Kri06], [Kri10] and Arbarello, Krichever,642

& Marini [AKM06].643

2.6 Open questions644

Ekedahl and Serre asked the following question. They provided examples for numerous645

values of g up to 1297.646

Question 2.6.1. [ES93] Given g ≥ 2, does there exist a smooth curve X of genus g such647

that the Jacobian JX is isogenous to a product of g elliptic curves?648

The recent paper by Paulhus and Rojas [PR17] shows that the question has an affirmative649

answer for a lot of new values of g. It also includes references to other papers on this topic.650

At that time, the smallest genus for which the answer was not known was g = 38 but recently651

that genus was resolved using a modular curve https://beta.lmfdb.org/ModularCurve/Q/60.540.38.bk.1/652

It seems that the smallest genus for which the answer is not known is g = 59, with the next653

smallest genus being g = 66.654
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Chapter 3655

Arithmetic Invariants656

3.1 Overview657

Let k be an algebraically closed field of positive characteristic p. An elliptic curve over658

k can be ordinary or supersingular, depending on how many p-torsion points it has, see659

Sections 3.1.1 and 3.1.2. This section describes several ways to generalize the distinction660

between ordinary and supersingular for abelian varieties of dimension greater than 1.661

Suppose X is a principally polarized abelian variety of dimension g defined over k. This662

section contains the definition of these arithmetic invariants: the p-rank, the Newton663

polygon, the a-number, and the Ekedahl–Oort type. If C is a curve of genus g, the664

invariants of C are defined to be that of its Jacobian.665

A more complete description of the material in this section can be found in these refer-666

ences: [LO98], [Oor01b], or the chapter Moduli of Abelian Varieties by Chai and Oort.667

3.1.1 Collapsing of p-torsion points modulo p668

Suppose E is an elliptic curve over k. In this expository section, we show through some669

examples that the number of p-torsion points on E is either p or 1.670

If ` 6= p is prime, then there are `2 points of order dividing ` on E. One of these is the671

point at infinity OE. The x-coordinates of the other points are the roots of the `-division672

polynomial of x.673

Example 3.1.1. Write E : y2 = x3 + ax2 + bx + c. Let ` = 3. A point Q has order 3 if674

and only if 3Q = 0E, equivalently 2Q = −Q, equivalently x(2Q) = x(Q). Using this, we can675

show that Q has order 3 if and only if x(Q) is a root of the 3-division polynomial:676

d3(x) = 3x4 + 4ax3 + 6bx2 + 12cx− b2 + 4ac.

If p 6= `, then d3(x) has 4 distinct roots in k and these are the x-coordinates of points of677

order 3 on E. For each x-coordinate, there are two choices for y, so E has 8 points of order678

3. Together with OE, this gives 9 points that are 3-torsion points.679

Now suppose that p = 3. Note that d3(x) ≡ ax3 − b2 + ac. This has one (triple) root if680

a 6≡ 0 mod 3 and has no roots if a ≡ 0 mod 3. So the number of 3-torsion points is either 3681

or 1, not 9.682
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Example 3.1.2. Write E : y2 = x3 + bx + c. The reduction of the 5-division polynomial683

modulo 5 is 2bx10 − b2cx5 + b6 − 2b3c2 − c4. This has either 2 or zero roots, so the number684

of 5-torsion points is either 5 or 1.685

The reduction of the 7-division polynomial modulo 7 is686

3cx21 + 3b2c2x14 + (−b7c− 2b4c3 + 3bc5)x7 − b12 − b9c2 + 3b6c4 − b3c6 + 2c8.

This has either 3 or zero roots, so the number of 7-torsion points is either 7 or 1.687

More generally, the reduction of the p-division polynomial modulo p has either (p− 1)/2688

or zero roots. As a result, the p-torsion points on E : y2 = f(x) collapse to either p points689

or 1 point modulo p. However, it is not easy to show this explicitly for larger p because the690

p-division polynomials become more and more complicated.691

3.1.2 Supersingular elliptic curves692

Suppose that E is an elliptic curve defined over a finite field Fq where q = pr. Let a ∈ Z be693

such that #E(Fq) = q + 1− a. The zeta function of E/Fq is694

Z(E/Fq, T ) =
1− aT + qT 2

(1− T )(1− qT )
.

The supersingular condition was studied by Deuring [Deu41]. As seen in [Sil09, Theorem695

V.3.1], there are many equivalent ways to define what it means for E to be supersingular.696

In this section, we say E/Fq is supersingular when p | a, see [Sil09, page 142]; otherwise E697

is ordinary.698

If p = 2, then E : y2 + y = x3 is supersingular, see Lemma 4.4.1. In fact, this is an699

equation for the unique isomorphism class of supersingular elliptic curve over F2.700

By [Sil09, Example V.4.4], the elliptic curve E : y2 = x3+1 (j-invariant 0) is supersingular701

if and only if p ≡ 2 mod 3 and p is odd. By [Sil09, Example V.4.5], the elliptic curve702

E : y2 = x3 + x (j-invariant 1728) is supersingular if and only if p ≡ 3 mod 4. When p = 3,703

this is an equation for the unique isomorphism class of supersingular elliptic curve over F3.704

Suppose p is odd and E : y2 = h(x), where h(x) is a cubic with distinct roots. Then E705

is supersingular if and only if the coefficient cp−1 of xp−1 in h(x)(p−1)/2 is zero.706

As we will see in Example 4.2.8. this coefficient vanishes if and only if the Cartier operator707

trivializes dx
y
∈ H0(E,Ω1). As seen in [Sil09, Theorem V.4.1], for p odd, Igusa proved that708

Eλ : y2 = x(x− 1)(x− λ)

is supersingular for exactly (p − 1)/2 choices of λ ∈ Fp; this shows that the number of709

isomorphism classes of supersingular elliptic curves is b p
12
c + ε with ε = 0, 1, 1, 2 when p ≡710

1, 5, 7, 11 mod 12 respectively.711

Also, every supersingular elliptic curve which is defined over a field of characteristic p is,712

in fact, defined over Fp2 .713
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3.1.3 Ordinary and supersingular elliptic curves714

To begin, we revisit the case of elliptic curves and describe the distinction between ordinary715

and supersingular elliptic curves from several other points of view.716

Let E/k be an elliptic curve and let ` be prime. The `-torsion group scheme E[`] of E is717

the kernel of the multiplication-by-` morphism [`] : E → E. Then718

#E[`](k) =


`2 if ` 6= p

` if ` = p, E ordinary

1 if ` = p, E supersingular

.

In a later section, we will define the following terms and show that the following conditions719

are equivalent to E being ordinary: E has p points of order dividing p; the Newton polygon720

of E has slopes 0 and 1; or the group scheme E[p] is isomorphic to L := Z/p⊕ µp.721

The following conditions are equivalent to E being supersingular:722

(A)’ The only p-torsion point of E is the identity: E[p](k) = {id}.723

(B)’ The Newton polygon of E is a line segment of slope 1/2.724

(C)’ The group scheme E[p] is isomorphic to I1,1, the unique local-local symmetric BT1725

group scheme of rank p2.726

Conditions (A)’ and (B)’ are equivalent by [Sil09, Theorem V.3.1 and page 142].727

More information about group schemes and condition (C)’ can be found in [Gor02, Ap-728

pendix A, Example 3.14]. Briefly, consider the group scheme αp which is the kernel of Frobe-729

nius on Ga. As a k-scheme, αp ' Spec(k[x]/xp) with co-multiplication m∗(x) = x⊗1 + 1⊗x730

and co-inverse inv∗(x) = −x. The group scheme I1,1 fits in a non-split exact sequence731

0→ αp → I1,1 → αp → 0. (3.1)

Let D1,1 be the mod p Dieudonné module of I1,1, see Example 3.2.7.732

3.2 Background733

Let k be an algebraically closed field of characteristic p > 0. Let X be a principally polarized734

abelian variety of dimension g defined over k.735

In this section, we will define the following arithmetic invariants of X:736

A. p-rank - the integer f , with 0 ≤ f ≤ g, such that #X[p](k) = pf .737

B. Newton polygon - the data of slopes for the p-divisible group X[p∞].738

C. Ekedahl-Oort type - the data defining the symmetric BT1 group scheme X[p].739

3.2.1 The p-torsion group scheme740

The multiplication-by-p morphism [p] : X → X is a finite flat morphism of degree p2g. There741

is a canonical factorization [p] = Ver◦F , where F : X → X(p) denotes the relative Frobenius742

morphism and Ver : X(p) → X is the Verschiebung morphism. The morphism F comes from743
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the p-power map on the structure sheaf; it is purely inseparable of degree pg. Also V is the744

dual of FXdual .745

The p-torsion group scheme of X is746

X[p] = Ker[p].

In fact, X[p] is a symmetric BT1 group scheme as defined in [Oor01b, 2.1, Definition 9.2]. It747

has rank p2g. It is killed by [p], with Ker(F ) = Im(Ver) and Ker(Ver) = Im(F ).748

The principal polarization on X induces a principal quasipolarization (pqp) on X[p], i.e.,749

an anti-symmetric isomorphism ψ : X[p]→ X[p]D, where D denotes the Cartier dual. (This750

definition needs to be modified slightly if p = 2.) Thus, X[p] is a symmetric BT1 group751

scheme together with a principal quasipolarization.752

We will define the return to this topic in Section 3.2.7 when defining the Ekedahl–Oort753

type.754

3.2.2 The p-rank and a-number755

The p-rank of X is756

f = dimFpHom(µp, X),

where µp is the kernel of Frobenius on Gm. The advantage of this definition is that it is also757

valid for semi-abelian varieties.758

When X is an abelian variety, then the p-rank determines the number of p-torsion points759

on X; namely pf is the cardinality of X[p](k). The reason is that the multiplicity of the760

group schemes Z/p and µp in X[p] is the same because of the symmetry induced by the761

polarization.762

The a-number of X is763

a = dimkHom(αp, X),

where αp is the kernel of Frobenius on Ga. It is known that 0 ≤ f ≤ g and 1 ≤ a+ f ≤ g.764

Definition 3.2.1. The abelian variety X is ordinary if f = g; equivalently, X is ordinary if765

a > 0.766

Since µp and αp are both simple group schemes, the p-rank and a-number are additive;767

f(X1 ×X2) = f(X1) + f(X2) and a(X1 ×X2) = a(X1) + a(X2). (3.2)

The p-rank and a-number can also be defined for a p-torsion group scheme, p-divisible768

group, or Dieudonné module.769

3.2.3 The p-divisible group770

For each n ∈ N, consider the multiplication-by-pn morphism [pn] : X → X and its kernel771

X[pn]. The p-divisible group of X is X[p∞] = lim−→X[pn].772

For each pair (c, d) of non-negative relatively prime integers, fix a p-divisible group Gc,d773

of codimension c, dimension d, and thus height c+d. By the Dieudonné-Manin classification774

[Man63], there is an isogeny of p-divisible groups775

X[p∞] ∼ ⊕λ= d
c+d
Gmλ
c,d , (3.3)
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where (c, d) ranges over pairs of non-negative relatively prime integers.776

Definition 3.2.2. A principally polarized abelian variety X is supersingular if λ = 1/2 is777

the only slope of its p-divisible group X[p∞].778

Letting G1,1 denote the p-divisible group of dimension 1 and height 2, then X is super-779

singular if and only X[p∞] ∼ Gg
1,1 [LO98, Section 1.4].780

There are several other ways to characterize the supersingular property for an abelian781

variety X defined over a finite field Fq. Write q = pn. Consider the characteristic polynomial782

P (X/Fq, T ) of Frobenius on X (or its `-adic Tate module, for ` 6= p). It is a monic polynomial783

of degree 2g with integer coefficients. Then P (X/Fq, T ) =
∏2g

i=1(T − αi) where |αi| =
√
q.784

These facts imply that there are integers a1, . . . , ag such that785

P (X/Fq, T ) = T 2g + a1T
2g−1 + · · ·+ agT

g + qag−1T
g−1 + · · ·+ qg. (3.4)

Theorem 3.2.3. A principally polarized abelian variety X/Fq is supersingular if and only786

if:787

1. the integer ar is divisible by pdrn/2e for 1 ≤ r ≤ g (Manin) [Oor74, page 116];788

2. EndFq(X) ⊗ Q ' Matg(Dp), where Dp is the quaternion algebra ramified only over p789

and ∞ [Tat66, Theorem 2d];790

3. X is geometrically isogenous to Eg for some supersingular elliptic curve E/Fp [Oor74,791

Theorem 4.2], which relies on [Tat66, Theorem 2d].792

3.2.4 The Newton polygon793

The Newton polygon is an invariant of X[p∞], and thus an invariant of X. Recall (3.3).794

The Newton polygon ν(X) is the multi-set of values of λ, which are called the slopes. It is795

determined by the multiplicities mλ.796

Lemma 3.2.4. The p-rank of X is the multiplicity of the slope 0 in ν(X).797

For λ ∈ Q∩ [0, 1], the multiplicity mλ is the multiplicity of λ in the multi-set; if c, d ∈ N798

are relatively prime integers such that λ = c/(c + d), then (c + d) divides mλ. The Newton799

polygon is symmetric if mλ = m1−λ for every λ ∈ Q ∩ [0, 1]. The Newton polygon is800

typically drawn as a lower convex polygon, with slopes equal to the values of λ occurring801

with multiplicity mλ. The Newton polygon of a g-dimensional abelian variety X is symmetric802

and, when drawn as a polygon, it has endpoints (0, 0) and (2g, g) and integral break points.803

There is a partial ordering on Newton polygons of the same height 2g: one Newton804

polygon is smaller than a second if the lower convex hull of the first is never below the805

second. We write ν1 ≤ ν2 if ν1, ν2 share the same endpoints and ν1 lies on or above ν2. This806

defines a partial ordering on Newton polygons for abelian varieties of dimension g. In this807

partial ordering, the ordinary Newton polygon is maximal and the supersingular Newton808

polygon is minimal.809

If X1 and X2 are isogenous, then they have the same Newton polygon.810
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3.2.5 The Newton polygon, version 2811

Suppose X is defined over an algebraic closure F of Fp. Then there exists a finite subfield812

F0 ⊂ F such that X is isomorphic to the base change to F of an abelian scheme X0 over813

F0. Let W (F0) denote the Witt vector ring of F0. Consider the action of Frobenius ϕ on814

the crystalline cohomology group H1
cris(X0/W (F0)). There exists an integer n, for example815

n = [F0 : Fp], such that the composition of n Frobenius actions ϕn is a linear map on816

H1
cris(X0/W (F0)).817

In this situation, the Newton polygon ν(X) of X is the multi-set of rational numbers λ818

such that nλ are the valuations at p of the eigenvalues of ϕn. Note that the Newton polygon819

is independent of the choice of X0, F0, and n.820

Notation 3.2.5. We use ⊕ to denote the union of multi-sets. For any multi-set ν, and821

n ∈ N, we write νn for the union of n copies of ν.822

Let ord denote the Newton polygon {0, 1} and ss denote the Newton polygon {1/2, 1/2}.823

Let σg denote the supersingular Newton polygon of height 2g. Thus an ordinary (resp.824

supersingular) abelian variety of dimension g has Newton polygon ordg (resp. σg = ssg).825

For s, t ∈ N, with s ≤ t/2 and gcd(s, t) = 1, let (s/t, (t−s)/t) denote the Newton polygon826

with slopes s/t and (t− s)/t, each with multiplicity t.827

3.2.6 Dieudonné modules828

The p-divisible group X[p∞] and the p-torsion group scheme X[p] can be described using829

covariant Dieudonné theory, see e.g., [Oor01b, 15.3]. Differences between the covariant and830

contravariant theory do not cause a problem in this manuscript since all objects we consider831

are principally quasipolarized and thus symmetric.832

Briefly, let σ denote the Frobenius automorphism of k and its lift to the Witt vectors833

W (k). Consider the semi-linear operators F and V on X[p] where F is σ-linear and V is834

σ−1-linear. Let Ẽ = Ẽ(k) = W (k)[F, V ] denote the non-commutative ring generated by F835

and V with relations836

FV = V F = p, Fτ = τσF, τV = V τσ, (3.5)

for all τ ∈ W (k).837

There is an equivalence of categories D∗ between p-divisible groups over k and Ẽ-modules838

which are free of finite rank over W (k). For example, the Dieudonné module Dλ := D∗(Gc,d)839

is a free W (k)-module of rank c + d. Over FracW (k), there is a basis x1, . . . , xc+d for Dλ840

such that F dxi = pcxi.841

We now consider Dieudonné modules modulo p. Let E = Ẽ⊗W (k)k be the reduction of the842

Cartier ring modulo p; it is a non-commutative ring k[F, V ] subject to the same constraints843

as (4.1), except that FV = V F = 0 in E. Again, there is an equivalence of categories D∗844

between finite commutative group schemes I (of rank 2g) annihilated by p and E-modules845

of finite dimension (2g) over k.846

For elements w1, . . . , wr ∈ E, let E(w1, . . . , wr) denote the left ideal
∑r

i=1 Ewi of E gen-847

erated by {wi | 1 ≤ i ≤ r}.848

The mod p Dieudonné module of X is an E-module of finite dimension (2g).849
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Example 3.2.6. If E is an ordinary elliptic curve, then E[p] ∼= µp ⊕ Z/pZ and the mod p850

Dieudonné module for E is isomorphic to L := E/E(F, V − 1)⊕ E/E(V, F − 1).851

Example 3.2.7. The group scheme I1,1. There is a unique symmetric BT1 group scheme852

of rank p2 and p-rank 0, which we denote I1,1. It is a non-split extension of αp by αp as in853

(3.1). The mod p Dieudonné module of I1,1 is D1,1 := D∗(I1,1). Then D1,1 ' E/E(F + V ).854

If E is a supersingular elliptic curve, then E[p] ∼= I1,1 and the mod p Dieudonné module855

for E is D1,1.856

Remark 3.2.8. If M = D∗(I) is the Dieudonné module over k of I, then a principal857

quasipolarization ψ : I → ID induces a a nondegenerate symplectic form 〈·, ·〉 : M ×M → k858

on the underlying k-vector space of M , subject to the additional constraint that, for all x859

and y in M ,860

〈Fx, y〉 = 〈x, V y〉σ.

3.2.7 The Ekedahl-Oort type861

The p-torsion X[p] of X is a symmetric BT1-group scheme (of rank 2g) annihilated by p.862

Isomorphism classes of pqp BT1 group schemes over k have been completely classified863

in terms of Ekedahl-Oort types [Oor01b, Theorem 9.4 & 12.3], see Section 3.2.7. This864

builds on work of Kraft [Kra] (unpublished, which did not include polarizations) and of865

Moonen [Moo01] (for p ≥ 3). (When p = 2, there are complications with the polarization866

which are resolved in [Oor01b, 9.2, 9.5, 12.2].)867

As in [Oor01b, Sections 5 & 9], the isomorphism type of a symmetric BT1 group scheme868

I over k can be encapsulated into combinatorial data. If I is symmetric with rank p2g, then869

there is a final filtration N1 ⊂ N2 ⊂ · · · ⊂ N2g of D∗(I) as a k-vector space which is stable870

under the action of V and F−1 such that i = dim(Ni) [Oor01b, 5.4].871

The Ekedahl-Oort type of I is872

ν = [ν1, . . . , νg], where νi = dim(V (Ni)).

Lemma 3.2.9. The p-rank is max{i | νi = i} and the a-number equals g − νg.873

There is a restriction νi ≤ νi+1 ≤ νi+1 on the Ekedahl-Oort type. There are 2g Ekedahl-874

Oort types of length g since all sequences satisfying this restriction occur. By [Oor01b, 9.4,875

12.3], there are bijections between (i) Ekedahl-Oort types of length g; (ii) pqp BT1 group876

schemes over k of rank p2g; and (iii) pqp Dieudonné modules of dimension 2g over k.877

By [EvdG09], the Ekedahl-Oort type can also be described by its Young type µ. Given878

ν, for 1 ≤ j ≤ g, consider the strictly decreasing sequence879

µj = #{i | 1 ≤ i ≤ g, i− νi ≥ j}.

There is a Young diagram with µj squares in the jth row. (Unlike in combinatorics, we880

draw the Young diagrams to look like a staircase, ascending to the right.) The Young type881

is µ = {µ1, µ2, ...}, where one eliminates all µj which are 0.882

Lemma 3.2.10. The p-rank is g − µ1 and the a-number is a = max{j | µj 6= 0}.883
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The Ekedahl-Oort type places restrictions on the Newton polygon and vice-versa, see884

[Har07a,Har10].885

Example 3.2.11. Let r ∈ N. There is a unique symmetric BT1 group scheme of rank p2r886

with p-rank 0 and a-number 1, which we denote Ir,1. The Dieudonné module of Ir,1 has the887

property that D∗(Ir,1) ' E/E(F r + V r). For Ir,1, the Ekedahl-Oort type is [0, 1, 2, . . . , r− 1]888

and the Young type is {r}.889

3.3 Main theorems890

3.3.1 The difference between p-rank 0 and supersingular891

Let X be a principally polarized abelian variety of dimension g over k. Let X[p] be the892

kernel of the multiplication-by-p morphism of A. The following conditions are all different893

for g ≥ 3.894

(A) p-rank 0 - The only p-torsion point of X is the identity: A[p](k) = {id}.895

(B) supersingular - The Newton polygon of X is a line segment of slope 1/2.896

(C) superspecial - The group scheme X[p] is isomorphic to (I1,1)
g.897

Proposition 3.3.1. For conditions (A), (B), (C) as defined above, there is an implication:898

(C)⇒ (B)⇒ (A), but (A)
g≥3
6⇒ (B)

g≥2
6⇒ (C).

Proof. (Sketch)899

1. For the implication (C) ⇒ (B): if the p-torsion of a p-divisible group G satisfies900

(C), then F 2G ⊂ [p]G. By the basic slope estimate in [Kat79, 1.4.3], the slopes of the901

Newton polygon are all at least 1/2; so the slopes all equal 1/2, because the polarization902

forces the Newton polygon to be symmetric. Thus X is supersingular. Alternatively,903

the implication (C)⇒ (B) follows from [Oor75, Theorem 2] and [Oor74, Theorem 4.2].904

2. For the non-implication (B) 6⇒ (C) when g ≥ 2: an abelian variety can be isogenous905

but not isomorphic to a product of supersingular elliptic curves; for example, quotients906

of a superspecial abelian variety by an αp-subgroup scheme have this property when907

g ≥ 2.908

3. For the implication (B)⇒ (A): more generally, the p-rank of a p-divisible group is the909

multiplicity of the slope 0 in the Newton polygon, so if all the slopes equal 1/2, then910

the p-rank is 0; Alternatively, if X is the Jacobian of a curve defined over a finite field,911

then the p-rank equals the number of roots of the L-polynomial that are p-adic units,912

which equals the multiplicity of the slope 0 in the Newton polygon.913

4. For the non-implication (A) 6⇒ (B) when g ≥ 3: there exists a principally polarized914

abelian variety whose Newton polygon has slopes 1/g and (g − 1)/g; it has p-rank 0915

but is not supersingular when g ≥ 3.916

917
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3.4 Related results918

3.4.1 Examples for low dimension919

In this section, we include data for g = 2, 3, 4. See Example 3.2.11 for the definition of Ir,1.920

The tables in this section previously appeared in [Pri08].921

The case g = 2922

The following table shows the 4 symmetric BT1 group schemes that occur for principally923

polarized abelian surfaces. They are listed by name, together with their codimension in A2,924

p-rank f , a-number a, Ekedahl-Oort type ν, Young type µ, Dieudonné module, and Newton925

polygon slopes. Recall that L = Z/p⊕ µp.926

Name cod f a ν µ Dieudonné module Newton polygon

L2 0 2 0 [1, 2] ∅ D(L)2 0, 0, 1, 1

L⊕ I1,1 1 1 1 [1, 1] {1} D(L)⊕D1,1 0, 1
2
, 1
2
, 1

I2,1 2 0 1 [0, 1] {2} E/E(F 2 + V 2) 1
2
, 1
2
, 1
2
, 1
2

(I1,1)
2 3 0 2 [0, 0] {2, 1} (D1,1)

2 1
2
, 1
2
, 1
2
, 1
2

The last two rows contain all the supersingular objects.927

The case g = 3928

The following table shows the 8 symmetric BT1 group schemes that occur for principally929

polarized abelian threefolds.930

Name cod f a ν µ Dieudonné module

L3 0 3 0 [1, 2, 3] ∅ D(L)3

L2 ⊕ I1,1 1 2 1 [1, 2, 2] {1} D(L)2 ⊕D1,1

L⊕ I2,1 2 1 1 [1, 1, 2] {2} D(L)⊕ E/E(F 2 + V 2)

L⊕ (I1,1)
2 3 1 2 [1, 1, 1] {2, 1} D(L)⊕ (D1,1)

2

I3,1 3 0 1 [0, 1, 2] {3} E/E(F 3 + V 3)

I3,2 4 0 2 [0, 1, 1] {3, 1} E/E(F 2 + V )⊕ E/E(V 2 + F )

I1,1 ⊕ I2,1 5 0 2 [0, 0, 1] {3, 2} D1,1 ⊕ E/E(F 2 + V 2)

(I1,1)
3 6 0 3 [0, 0, 0] {3, 2, 1} (D1,1)

3

The objects in the last two rows are always supersingular but the situation for I3,1 and931

I3,2 is more subtle. By [Oor91b, Theorem 5.12], if A[p] ' I3,1, then the p-divisible group932

is usually isogenous to G1,2 ⊕ G2,1 (slopes 1/3, 2/3) but it can also be isogenous to G3
1,1933

(supersingular). This shows that the Ekedahl-Oort stratification does not refine the Newton934

polygon stratification for g ≥ 3.935

3.5 Open questions936

The motivation for this question will be clarified later.937
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Question 3.5.1. For 5 ≤ g ≤ 10, determine the Newton polygons (resp. Ekedahl–Oort938

types) having p-rank 0 with this property: in the partial ordering of Newton polygons (resp.939

Ekedahl–Oort types), the distance to the ordinary type is at most 2g − 2.940
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Chapter 4941

Existence of curves with given942

invariants943

4.1 Overview944

Suppose C is a smooth projective curve of genus g defined over an algebraically closed field945

k of characteristic p. The arithmetic invariants of C are defined to be those of its Jacobian.946

This chapter contains some existence results for smooth curves with certain Newton polygons947

or Ekedahl–Oort types. More general results about the p-rank are contained in Section 6.3.3.948

Here is the motivating question.949

Question 4.1.1. If p is prime and g ≥ 2, which p-ranks, Newton polygons, a-numbers, and950

Ekedahl-Oort types occur for the Jacobians of smooth curves C/Fp of genus g? In particular,951

does there exist a smooth curve C/Fp of genus g whose Jacobian (A) has p-rank 0; (B) is952

supersingular; or (C) is superspecial?953

In Question 4.1.1, the answer to part (A) is yes for all g and p, see Theorem 6.3.3; as954

seen in this section, the answer to part (B) is sometimes yes, but most often is not known;955

the answer to part (C) most often is not known, but is sometimes no when p is small relative956

to g, see Theorem 4.4.2.957

In this chapter, we survey some of the results and techniques on this topic. In particular,958

we focus on the techniques that use cohomological calculations or decomposition of the959

Jacobian.960

4.2 Background961

4.2.1 The Newton polygon of a curve962

In Sections 3.2.4 and 3.2.5, we defined the Newton polygon of an abelian variety. Here is963

another definition that applies for a curve over a finite field Fq of characteristic p. Let C/Fq964

be a smooth projective curve of genus g and let Jac(C) denote its Jacobian.965
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Definition 4.2.1. For an integer s ≥ 1, let Ns = #C(Fqs) be the number of points of C966

defined over Fqs . The zeta function of C/Fq is967

Z(C/Fq, T ) = exp(
∞∑
s=1

NsT
s

s
).

Here is the famous theorem of Weil.968

Theorem 4.2.2. (Weil conjectures for curves [Wei48a, §IV, 22], [Wei48b, §IX, 69]) There969

is a polynomial L(C/Fq, T ) ∈ Z[T ] of degree 2g such that970

Z(C/Fq, T ) =
L(C/Fq, T )

(1− T )(1− qT )
.

Furthermore,971

L(C/Fq, T ) =

2g∏
i=1

(1− αiT ),

where the reciprocal roots αi of L(C/Fq, T ) have the property that |αi| =
√
q.972

So the roots of L(C/Fq, T ) all have archimedean absolute value 1/
√
q in C.973

Lemma 4.2.3. The characteristic polynomial of the Frobenius endomorphism of Jac(C) is974

P (Jac(C)/Fq, T ) = T 2gL(C/Fq, T−1).975

The Newton polygon keeps track of the p-adic valuations of the roots or, equivalently,976

of the coefficients of L(C/Fq, T ). Let vi be the p-adic valuation of the coefficient of T i in977

L(C/Fq, T ). Let vi/r be its normalization for the extension Fq/Fp, where q = pr. The978

Newton polygon is the lower convex hull of the points (i, vi/r) for 0 ≤ i ≤ 2g. The Newton979

polygons of C/Fq and Jac(C) are the same.980

The Newton polygon consists of finitely many line segments, which break at points with981

integer coefficients, starting at (0, 0) and ending at (2g, g). If the slope λ appears with982

multiplicity m, then so does the slope 1− λ.983

Definition 4.2.4. The curve C/Fq is supersingular if the Newton polygon of L(C/Fq, T ) is984

a line segment of slope 1/2.985

There are several ways to characterize the supersingular property for curves, in addition986

to those already described in Lemma 3.2.3.987

Lemma 4.2.5. Consider a curve C/Fq of genus g. The following properties are equivalent:988

1. C is supersingular;989

2. the normalized Weil numbers αi/
√
q are all roots of unity [Man63, Theorem 4.1];990

3. the curve C is minimal (meaning that it satisfies the lower bound in the Hasse-Weil991

bound for the number of points) over Fqs for some s ≥ 1.992
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4.2.2 Computing the zeta function993

Many people worked on finding fast algorithms to compute the zeta function of a curve over994

a finite field. There is not space to give a complete description of the literature in this area.995

Here are a few highlights:996

In 1985, Schoof published a deterministic polynomial time algorithm for counting points997

on elliptic curves [Sch85].998

In 2001, Kedlaya published an algorithm to compute the zeta function of a hyperelliptic999

curve [Ked01]. For a hyperelliptic curve of genus g over Fpn , this algorithm is polynomial in1000

g and n. The strategy is to compute a p-adic approximation of Frobenius in the Monsky–1001

Washnitzer cohomology. In [Har07b], Harvey made some improvements to this algorithm1002

for large primes.1003

4.2.3 The Hasse–Witt and the Cartier–Manin matrices1004

Fix a basis for H0(C,Ω1). From Serre duality, this fixes a basis for the dual space H1(C,O).1005

The Hasse–Witt matrix is the matrix for the action of Frobenius F on H1(C,O) with respect1006

to that basis. The Cartier–Manin matrix is the matrix for the action of Vershiebung V on1007

H0(C,Ω1) with respect to that basis.1008

By [Car57], [Man63], the matrix for V on H0(C,Ω1) is the same as the Cartier–Manin1009

matrix which is the matrix for the (unmodified) Cartier operator. The (modified) Cartier1010

operator C is the semi-linear map C : H0(C,Ω1)→ H0(C,Ω1) satisfying these rules:1011

(i) C(ω1 + ω2) = C(ω1) + C(ω2);1012

(ii) C(fpω) = fC(ω); and1013

(iii) C(fn−1df) =

{
df if n = p,

0 if 1 ≤ n < p.
1014

Lemma 4.2.6. The p-rank of C is the stable rank of the Cartier operator. The a-number of1015

C is the corank of the Cartier operator.1016

The p-rank can be computed as the rank of the product of twists of M̃ (or M) but this1017

needs to be done very carefully as described in Remark 4.2.9.1018

Suppose β = {ω1, . . . , ωg} is a basis for H0(C,Ω1). For each ωj, let mi,j ∈ k be such1019

that C(ωj) =
∑g

i=1mi,jωi. The g × g-matrix M = (mi,j) is the (modified) Cartier–Manin1020

matrix and it gives the action of the (modified) Cartier operator. The Cartier–Manin matrix1021

is M̃ := M (p), where each entry is raised to the pth power.1022

Example 4.2.7. A formula for the Cartier operator on plane curves is given in [SV87].1023

Example 4.2.8. Let p be odd. Let C be a hyperelliptic curve with equation y2 = h(x).1024

Consider the basis {dx/y, . . . , xg−1dx/y} of H0(C,Ω1). By [Yui78], see also [AH19, Sec-1025

tion 3.1], with respect to this basis, the entry mi,j of M is given by the coefficient of xpi−j1026

in f(x)(p−1)/2. This is because1027

C(xj
dx

y
) = C(xj

yp−1dx

yp
) =

1

y
C(xjh(x)(p−1)/2dx) =

g∑
i=1

(cip−j)
1/pdx

y
.
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Remark 4.2.9. Warning: if C is defined over a field field other than Fp, it’s important1028

to be extremely careful when using Lemma 4.2.6. There are numerous mistakes in the1029

literature about this, which were corrected in [AH19]. Because of the semi-linear property,1030

when iterating M̃ , the coefficients of the matrix need to be modified by pth powers. The p-1031

rank is the rank of M̃M̃ (1/p) · · · M̃ (pg−1), which is the same as the rank of M̃ (pg−1) · · · M̃ (p)M̃ .1032

This may not be the same as the rank of M̃M̃ (p) · · · M̃ (pg−1). The ambiguity of acting on the1033

left or the right caused several mistakes in the literature. We refer to [AH19] for a careful1034

analysis of this.1035

Example 4.2.10. In [IKO86], Ibukiyama, Katsura, and Oort count the number of su-1036

perspecial curves of genus 2 in terms of p, together with the sizes of their automorphism1037

groups. The strategy is to compute the Cartier–Manin matrix. They use Igusa’s descrip-1038

tion of (families of) curves of genus 2 having extra automorphisms. For example, the curve1039

y2 = (x3−1)(x3− t) has an action of S3, while the curve y2 = x(x2−1)(x2− t) has an action1040

of D4. For these two families, the Cartier–Manin matrix is either invertible or is the zero1041

matrix. In the latter case, the curve is superspecial, and thus supersingular. Using Igusa’s1042

approach with hypergeometric differential equations, they count the number of values of t1043

for which the curve is superspecial.1044

Example 4.2.11. In [Mil72], Miller proved that there exists an ordinary curve of genus g1045

over F̄p for all primes p and g ≥ 2. Specifically: he proved that y2 = x2g+1 + txg+1 + x1046

is ordinary for a generic t if p - g; and y2 = x2g+2 + txg+1 + 1 is ordinary for a generic t1047

if p | g. The strategy is to find a basis for H0(C,Ω1) for which the Cartier–Manin matrix1048

is a permutation matrix. The result follows by showing that the determinant is a non-zero1049

polynomial in t.1050

4.2.4 The de Rham cohomology1051

The Ekedahl–Oort type of a curve over k can be computed from its de Rham cohomology.1052

If C is a curve of genus g over k, then the de Rham cohomology group H1
dR(C) is a vector1053

space of dimension 2g, with semi-linear operators F and V .1054

Recall from Section 3.2.6 that E = E(k) = k[F, V ] is the non-commutative ring generated1055

by semilinear operators F and V with relations1056

FV = V F = 0, F τ = τσF, τV = V τσ, (4.1)

for all τ ∈ k.1057

Oda proved that there is an isomorphism of E-modules between the contravariant Dieudonné1058

module over k of JC [p] and H1
dR(C) by [Oda69, Section 5]. The canonical principal polariza-1059

tion on JC induces a canonical isomorphism D∗(JC [p]) ' H1
dR(C).1060

Example 4.2.12. Suppose p is odd and C is a hyperelliptic curve. The authors of [DH]1061

found a basis for H1
dR(C) and computed the action of F and V with respect to that basis.1062

38



Rachel Pries The Torelli locus and Newton polygons

4.3 Main theorems1063

4.3.1 Small genus1064

When g is small, there are more results about Question 4.1.1. When g = 2 and g = 3,1065

the answer to Question 4.1.1 is known for all p, because the open Torelli locus is open1066

and dense in the moduli space Ag of principally polarized abelian varieties of dimension g.1067

In Section 6.3.4, we indicate how knowledge of invariants of curves of low genus can yield1068

information about invariants of curves of higher genus.1069

The case g = 21070

The open Torelli locus T ◦2 is open and dense inA2. From this, one can check that all 3 Newton1071

polygons and all 4 Ekedahl-Oort types occur for Jacobians of smooth curves of genus 2 over1072

Fp for all p, except for the following case: there does not exist a superspecial smooth curve1073

of genus 2 over Fp when p = 2, 3. This is a special case of [IKO86, Proposition 3.1], in which1074

the authors determine the number of curves X with Jac(X)[p] ' (I1,1)
2.1075

The case g = 31076

The open Torelli locus T ◦3 is open and dense in A3. From this, one can check that all 51077

Newton polygons and all 8 Ekedahl-Oort types occur for Jacobians of smooth curves over1078

Fp, except when p = 2 for (I1,1)
3 and I1,1 ⊕ I2,1.1079

Here are some references for the 4 bottom rows of the table, which are the p-rank 0 cases.1080

There exists a smooth curve C of genus 3 over Fp such that Jac(C) has the given p-torsion1081

group scheme:1082

1. I3,1, for all p by [Oor91b, Theorem 5.12(2)];1083

2. I3,2, [Pri09, Lemma 4.8] for p ≥ 3 and [EP13b, Example 5.7(3)] for p = 2;1084

3. I1,1 ⊕ I2,1, [Pri09, Lemma 4.8] for p ≥ 3 (using [Oor01b, Proposition 7.3]);1085

when p = 2, this group scheme does not occur as the 2-torsion of a hyperelliptic curve1086

by [EP13b] or as the 2-torsion of a smooth plane quartic by [SV87].1087

4. (I1,1)
3, if and only if p ≥ 3 by [Oor91b, Theorem 5.12(1)].1088

The case g = 41089

The following result was proven by Harashita, Kudo, and Senda.1090

Theorem 4.3.1. [KHS20, Corollary 1.2,1.3] For every prime p, there exists a smooth curve1091

of genus 4 that is supersingular and has a-number at least 3.1092

The construction of the proof uses curves that admit two commuting automorphisms of1093

order 2.1094

Using the material in the next chapter, geometric proofs were given for the existence of1095

curves of genus 4 with these Newton polygons:1096
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G1,3 ⊕G3,1 with slopes 1/4, 3/4, by [AP14, Corollary 5.6]; and1097

G1,2 ⊕G2,1 ⊕G1,1 with slopes 1/3, 1/2, 2/3, by [Pri, Corollary 4.1]; and1098

(G1,1)
4 (supersingular), by [Pri, Corollary 1.2], see Theorem 6.3.1.1099

For g = 4, there are 16 symmetric BT1 group schemes of rank p8; see the table in [Pri08,1100

Section 4.4]. There are some open questions about the Ekedahl–Oort types, specifically those1101

with p-rank 0 and a-number at least two. For most p, for it is not known whether there are1102

Jacobians of smooth curves of genus 4 having these Young types:1103

{4}, {4, 1}, {4, 2}, {4, 3}, {4, 2, 1}, {4, 3, 1}, {4, 3, 2}, {4, 3, 2, 1}. (4.2)

Here are some cases in which the answer is known:1104

[Zho20, Theorem 1.2] If p is odd with p ≡ ±2 mod 5, Zhou proved the answer is yes for1105

the Young types {4, 2} and {4, 3}.1106

[Zho20, Theorem 1.2] If p ≡ 4 mod 5, there exists a superspecial curve of genus 4 (Young1107

type {4, 3, 2, 1}).1108

[KHH20, Theorem 1.1], if p < 7 < 20, 000 or p ≡ 5 mod 6, there exists a superspecial curve1109

of genus 4.1110

[Drab, Corollary 6.6] If p = 2, Dragutinovich proved that the answer is yes for {4}, {4, 1},1111

and {4, 2} (and the strata for these curves have the right dimension); and the answer is1112

no for the other strata in (4.2). Similar results for p = 3 are in [Draa, Proposition 6.3].1113

4.4 Related results1114

4.4.1 Hermitian curves are supersingular1115

The Hermitian curve Hq is the curve in P2 defined by the affine equation yq + y = xq+1.1116

Because Hq is a smooth plane curve of degree q + 1, the genus of Hq is g = q(q − 1)/2.1117

Proposition 4.4.1. [Sti09, VI 4.4], [Han92, Proposition 3.3] The Hermitian curve Hq is1118

maximal over Fq2. Also L(Hq/Fq, T ) = (1 + qT 2)g and Hq is supersingular.1119

4.4.2 Non-existence of superspecial curves1120

This is the only non-existence result currently known for Question 4.1.1. Recall that X is1121

superspecial if Jac(X)[p] is isomorphic to (I1,1)
g.1122

Theorem 4.4.2. [Eke87], see also [Bak00] If X/Fp is a superspecial curve of genus g, then1123

g ≤ p(p− 1)/2.1124

Theorem 4.4.2 can be stated as a non-existence result: a smooth curve of genus g defined1125

over Fp cannot be superspecial if g > p(p − 1)/2. The Hermitian curve Hp is superspecial1126

and its genus realizes the bound in Theorem 4.4.2.1127

The superspecial condition is equivalent to a = g (or equivalently, V = 0). In [Re01], Re1128

generalized Theorem 4.4.2, giving a bound on the genus when the a-number is large relative1129

to g or when V r = 0 for some small r.1130
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4.4.3 Artin–Schreier curves1131

The situation for Artin–Schreier curves is quite different from the general case. An Artin–1132

Schreier curve is a curve that admits a Galois cover of P1 that has Galois group Z/pZ. There1133

is a lot to say about Newton polygons of Artin–Schreier curves and only a small selection of1134

results are included here.1135

More generally, suppose π : C1 → C2 is a Galois cover of curves with Galois group1136

Z/pZ such that p divides at least one of the ramification indices. In this context, the wild1137

Riemann–Hurwitz formula [Ser68, IV] determines the genus of C1 in terms of the genus of C21138

and the ramification jumps. Also, the Deuring–Shafarevich formula [Sub75, Theorem 4.2]1139

determines the p-rank of C1 in terms of the p-rank of C2 and the ramification jumps. The1140

relationship between the a-numbers (and the Ekedahl–Oort types) of C1 and C2 is more1141

complicated, but there are some constraints; for example, see [BC20] and [CU].1142

There are supersingular curves of every genus in characteristic 21143

Theorem 4.4.3. [vdGvdV95, Theorem 2.1] If p = 2 and g ∈ N, then there exists a super-1144

singular curve Yg of genus g defined over a finite field of characteristic 2.1145

Example 4.4.4. It is possible that a Newton polygon may occur for a smooth curve in1146

some characteristics but not in others. When p = 2, the Newton polygon of the curve1147

y2 + y = x23 + x21 + x17 + x7 + x5 has slopes 5/11, 6/11. When p = 2, the Newton polygon1148

of the curve y2 + y = x25 + x9 has slopes 5/12, 7/12. It is not known whether these Newton1149

polygons occur for curves in any odd characteristic. See [Oor05, Expectation 8.5.3].1150

There are supersingular curves of arbitrarily large genus for every odd charac-1151

teristic1152

Theorem 4.4.5. [vdGvdV92, Theorem 13.7], [Bla12, Corollary 3.7(ii)], [BHM+16, Proposi-1153

tion 1.8.5] If Fq is a finite field of characteristic p and R(x) ∈ Fq[x] is an additive polynomial1154

of degree ph, then Y : yp − y = xR(x) is supersingular with genus ph(p− 1)/2.1155

We take this opportunity to fix a mistake in a published result [Pri19, Corollary 2.6].1156

Corollary 4.4.6. [Karemaker/Pries] Let p be prime. Let δ ∈ N be such that 0 and 1 are1157

the only coefficients in the base p expansion of δ. If g = δp(p − 1)/2, then there exists a1158

supersingular curve of genus g defined over a finite field of characteristic p.1159

Remark: When p = 2, then Corollary 4.4.6 is the same as Theorem 4.4.3 because the1160

condition on δ is vacuous and g = δ.1161

Proof. The condition on δ implies that, for some t ∈ N,1162

δ =
t∑
i=1

psi(1 + p+ · · · pri), for some ri, si ∈ Z≥0 such that si ≥ si−1 + ri−1 + 2. (4.3)

Let ui = (si + 1)−
∑i−1

j=1(rj + 1) and note ui+1 ≥ ui + 1.1163
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Choose an Fp-linear subspace Li of dimension di := ri + 1 in the vector subspace of Fp[x]1164

of additive polynomials of degree pui , with the requirement that Li ∩ Lj = {0} if i 6= j. Let1165

L = ⊕ti=1Li.1166

For f ∈ L−{0}, let Cf : yp− y = xf . By definition, Cf comes equipped with a preferred1167

map Cf → P1. If f ∈ L− {0} is such that it has a non-zero component in Li, but not from1168

Lj for j > i, then gCf = pui(p− 1)/2. By Theorem 4.4.5, Jac(Cf ) is supersingular.1169

Let P(L) denote the projectivization of the Fp-vector space L. Specifically, there is a1170

diagonal embedding of F∗p in L. If f1, f2 ∈ L − {0}, and if f1 = cf2 for some c ∈ F∗p, then1171

the curves Cf1 and Cf2 are isomorphic over Fp, and this isomorphism is compatible with1172

the preferred maps to P1. With some abuse of notation, we write f ∈ P(L) to denote an1173

equivalence class of f ∈ L−{0} up to scaling by constants in F∗p and we write Cf for f ∈ P(L)1174

to denote the curve Cf for one representative of f ∈ L− {0} in this equivalence class.1175

Let Y be the fiber product of Cf → P1 for all f ∈ P(L). By [KR89, Theorem B],1176

Jac(Y ) is isogenous to ⊕f∈P(L)Jac(Cf ). So Jac(Y ) is supersingular. The genus of Y is1177

gY =
∑

f∈P(L) gCf .1178

There are pdi − 1 non-zero polynomials in Li. The number of f ∈ L which have a non-1179

zero contribution from Li, but not from Lj for j > i is (pdi − 1)
∏i−1

j=1 p
dj . The number of1180

equivalence classes of these f in P(L) is the quotient of this number by p − 1. Thus we1181

obtain:1182

gY =
t∑
i=1

(pdi − 1)

p− 1
(
i−1∏
j=1

pdj)pui(p− 1)/2

=
t∑
i=1

(pri + · · ·+ 1)p
∑i−1
j=1(rj+1)pui−1p(p− 1)/2

=
t∑
i=1

(pri + · · ·+ 1)psip(p− 1)/2 = δp(p− 1)/2.

1183

Ekedahl–Oort types for hyperelliptic curves when p = 21184

Suppose p = 2 and C is a hyperelliptic curve. Then C is an Artin–Schreier curve, with an1185

affine equation of the form y2 +y = f(x), for some f(x) ∈ k(x). The combination of C being1186

both Artin–Schreier and hyperelliptic puts a lot of constraints on its cohomology.1187

Theorem 4.4.7. [EP13a] Suppose p = 2 and C is a hyperelliptic curve. Then H1
dR(C)1188

decomposes as a module under F and V into pieces indexed by the branch points of the1189

hyperelliptic cover. The Ekedahl–Oort type of C depends only on the ramification data and1190

relatively few of the possible Ekedahl–Oort types occur for these curves.1191
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4.5 Open questions1192

4.5.1 Supersingular curves1193

Question 4.5.1. Given a prime p and g ∈ N, does there exist a smooth connected projective1194

curve X of genus g defined over a finite field of characteristic p that is supersingular?1195

When p = 2, the answer to Question 4.5.1 is yes for all g ∈ N, see Theorem 4.4.3. For1196

a fixed odd prime p, the answer is yes for infinitely many g ∈ N, see Proposition 4.4.1,1197

Theorem 4.4.5, and Corollary 4.4.6. In Section 4.3.1, we explain why the answer is yes for1198

all p when g = 1, 2, 3, 4. The first open situation for Question 4.5.1 is when g = 5, for1199

p 6≡ −1 mod 8, 11, 12, 15, 20, and p 6≡ −4 mod 15.1200

4.5.2 Counting the number of non-ordinary curves1201

Here is an open question that might be more tractable. The motivation will be described1202

later.1203

Question 4.5.2. Determine the rate of growth of the number of curves over Fp (up to1204

geometric isomorphism) having the following types as p grows.1205

1. Non-ordinary curves of genus 4 (resp. of genus 5);1206

2. p-rank 0 curves of genus 4 (resp. of genus 5);1207

3. Supersingular curves of genus 4.1208

4.5.3 Double covers of an elliptic curve1209

Question 4.5.3. Let n ≥ 1. Let E be an elliptic curve. Suppose φ : C → E is a double1210

cover branched at 2n points.1211

1. Find a basis for H0(C,Ω1).1212

2. Find the matrix of the Cartier operator on H0(C,Ω1) with respect to that basis.1213

3. Prove that the new part of Jac(C) is ordinary for a generic choice of 2n points.1214

4. Under what conditions does there exist a set of 2n points such that the new part of1215

Jac(C) is not ordinary?1216
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Chapter 51217

Complete subvarieties1218

5.1 Overview1219

The moduli spaceMg is not complete, because there are families of smooth curves that spe-1220

cialize to singular curves. Similarly, the moduli space Ag is not complete, because there are1221

families of abelian varieties that specialize to semi-abelian varieties. In this section, we de-1222

scribe the Deligne–Mumford compactification M̄g ofMg. There are many compactifications1223

of Ag [FC90]; a good reference on this topic is the survey of Hulek and Tommasi [HT18].1224

Specifically, in Section 5.2, we describe the boundary ∂Mg of Mg. Its points represent1225

stable singular curves of genus g. In Section 5.2.1, we describe the clutching morphisms.1226

In Section 5.2.2, we describe the components of the boundary. In Section 5.3, we describe1227

results about complete subvarieties of Mg and Ag.1228

There are open questions about complete subvarieties ofMg, meaning complete families1229

of smooth curves. We end with an open question about the maximal dimension of a complete1230

subvariety of Mg.1231

5.2 Background: The boundary of Mg1232

Recall that Mg;r is the moduli space of smooth curves of genus g together with r marked1233

points. Let M̄g;r denote the Deligne–Mumford compactification of Mg;r.1234

5.2.1 Clutching maps1235

Given two curves (with labeled points), it is possible to clutch them together to obtain1236

a singular curve of higher genus. To set some notation, suppose g1, g2, r1, r2 are positive1237

integers. There is a clutching map1238

κg1;r1,g2;r2 : M̄g1;r1 × M̄g2;r2
// M̄g1+g2;r1+r2−2. (5.1)

Suppose s1 ∈ M̄g1;r1 is the moduli point of a labeled curve (C1;P1, . . . , Pr), and suppose1239

s2 ∈ M̄g2;r2 is the moduli point of a labeled curve (C2;Q1, . . . , Qr2). Then κg1;r1,g2;r2(s1, s2)1240

is the moduli point of the labeled curve (D;P1, . . . , Pr1−1, Q2, . . . Qr2), where the underlying1241
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curve D has components C1 and C2, the sections Pr1 and Q1 are identified in an ordinary1242

double point, and this nodal section is dropped from the labeling. The clutching map is a1243

closed immersion if g1 6= g2 or if r1 + r2 ≥ 3, and is always a finite, unramified map [Knu83,1244

Corollary 3.9].1245

The Jacobian of the resulting curve D is the product of the Jacobians of C1 and C2.1246

Specifically, by [BLR90, Ex. 9.2.8],1247

Pic0(D) ' Pic0(C1)× Pic0(C2). (5.2)

Alternatively, given a curve with two labeled points, it is possible to clutch these points1248

together to obtain a singular curve of higher genus. To set some notation, suppose g and r1249

are positive integers and r ≥ 2. There is a clutching map1250

κg;r : M̄g;r
// M̄g+1;r−2.

If s ∈ M̄g;r is the moduli point of a labeled curve (C;P1, . . . , Pr) then κg;r(s) is the moduli1251

point of the labeled curve (C̃;P1, . . . , Pr−2) where C̃ is obtained by identifying the sections1252

Pr−1 and Pr in an ordinary double point, and these sections are dropped from the labeling.1253

The morphism κg;r is finite and unramified [Knu83, Corollary 3.9].1254

In this situation, Pic0(C̃) is a semi-abelian variety but not an abelian variety. By [BLR90,1255

Ex. 9.2.8], Pic0(C̃) is an extension of the form1256

0 //W // Pic0(C̃) // Pic0(C) // 0 , (5.3)

where W is a one-dimensional torus. The toric rank of Pic0(C̃) is one more than the toric1257

rank of Pic0(C). The maximal projective quotient of C̃ is the maximal quotient which is an1258

abelian variety; the maximal projective quotients of C̃ and C are isomorphic.1259

5.2.2 Components of the boundary1260

The boundary of Mg is ∂Mg = M̄g −Mg. We will define the following components of the1261

boundary: ∆0, whose points represent stable curves that are not of compact type; and ∆i1262

for 1 ≤ i ≤ g/2, whose points represent stable curves of compact type. The Jacobians of1263

curves represented by points of ∆0 are semi-abelian varieties, rather than abelian varieties;1264

the Jacobians of curves represented by points of ∆i for positive i are abelian varieties that1265

decompose, with the product polarization.1266

Definition 5.2.1. Let 1 ≤ i ≤ g − 1 and write g1 = i and g2 = g − i. Define ∆i = ∆i[M̄g]1267

to be the image of M̄i;1 × M̄g−i;1 under the morphism κi,1;g−i,1, with the reduced induced1268

structure.1269

The generic geometric point of ∆i represents a curve D with two irreducible components1270

C1 and C2, having genera g1 and g2, that intersect in an ordinary double point. Note that1271

∆i and ∆g−i are the same substack of M̄g.1272

Definition 5.2.2. Define ∆0 = ∆0[M̄g] to be the image of M̄g−1;2 under the morphism1273

κg−1;2, with the reduced induced structure. Define Mct
g = M̄g −∆0.1274
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The generic geometric point of ∆0 represents a curve with one irreducible component1275

that self-intersects in an ordinary double point. The points ofMct
g represent curves of genus1276

g having compact type.1277

Theorem 5.2.3. [Knu83, page 190] The locus ∆i is an irreducible divisor in M̄g, and ∂Mg1278

is the union of ∆i for 0 ≤ i ≤ g/2.1279

5.3 Main theorems: Complete subvarieties1280

This section contains results about complete subvarieties of Ag, Mg, and M̄g − ∆0. The1281

proofs of these results use the structure of the Chow ring, which we do not cover here.1282

Theorem 5.3.1. [Dia87a, Theorem 4] (for positive characteristic, see [Loo95b, page 412])1283

Suppose g ≥ 3. If Z ⊂Mg is complete, then dim(Z) ≤ g − 2.1284

Theorem 5.3.2. [Dia87b, page 80] Suppose g ≥ 3. If Z ⊂ Mct
g is complete, then1285

codim(Z,Mct) ≥ g, (so dim(Z) ≤ 2g − 3).1286

Theorem 5.3.3. [vdG99, Corollary 1.7] Suppose g ≥ 3. If Z ⊂ Ag is complete, then1287

codim(Z,Ag) ≥ g, (so dim(Z) ≤ g(g − 1)/2).1288

The following result of Keel and Sadun solved a conjecture of Oort [vdGO99, Conjec-1289

ture 3.5].1290

Theorem 5.3.4. [KS03, Corollary 1.2, 1.2.1] For g ≥ 3, there is no complete codimension1291

g subvariety of Ag,C; thus there is no complete codimension g subvariety of M̄g,C −∆0.1292

Remark 5.3.5. Both parts of Theorem 5.3.4 are false in positive characteristic: over an1293

algebraically closed field k of characteristic p > 0, we will see in the next chapter that the1294

p-rank 0 locus of Ag,k and the p-rank 0 locus of M̄g,k−∆0 each have codimension g and are1295

complete.1296

5.4 Related results1297

There are many results about different compactifications of Ag that we do not have time to1298

cover here. We consider Ãg to be a smooth toroidal compactification of Ag as defined by1299

Faltings and Chai [FC90]. See the survey of Hulek and Tommasi [HT18].1300

5.5 Open questions: complete subvarieties1301

Question 5.5.1. If g ≥ 3, what is the maximum dimension of a complete subspace of Mg?1302

It is possible that the answer to Question 5.5.1 depends on the characteristic.1303

The answer to this question is at least one because of the following result.1304

Theorem 5.5.2. [GDH91] If g ≥ 3, there exists a complete curve in Mg.1305
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Proof. Construction: Take E : y2 = x3 − 1 an elliptic curve and X : y2 = x6 − 1 which1306

has genus 2. The double cover τ : X → E is branched above (0, i) and (0,−i). Let r be1307

even. Choose points Q1 = 0E, Q2, . . . , Qr ∈ E such that Qi − Qj is not a 2-torsion point.1308

Let W = {(P, P +E Q2, . . . , P +E Qr) | P ∈ E}. Note that W ⊂ Er −∆ and W ∼= E. Let1309

T ⊂ Xr −∆ be the set of points ~x = (x1, . . . , xr) such that τ(xi) = τ(x1) +E Qi. Then T is1310

complete and dim(T ) ≥ 1.1311

Now take r = 2(g− 3). For each point ~x ∈ T , consider the cover Z → X branched at the1312

r coordinates of ~x. By the Riemann–Hurwitz formula, Z has genus g. The curves are not1313

isomorphic (by Riemann’s existence theorem). Thus we have produced a complete curve in1314

Mg.1315

The first open case of Question 5.5.1 is g = 4, because it is not known if there exists a1316

complete surface in M4.1317
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Chapter 61318

Intersection of the Torelli locus with1319

arithmetic strata1320

6.1 Overview1321

In this chapter, we work over an algebraically closed field k of positive characteristic p. We1322

take a more geometric approach to the question of which invariants occur for Jacobians of1323

curves.1324

Let Ag denote the moduli space of principally polarized abelian varieties of dimension g1325

in characteristic p. There are deep results about the stratifications of Ag by p-rank, Newton1326

polygon, or Ekedahl Oort type; however, there are very few results about how the open1327

Torelli locus intersects these strata.1328

This leads to a geometric analogue of Question 4.1.1.1329

Question 6.1.1. If p is prime and g ≥ 4, does the open Torelli locus intersect the strata of1330

Ag by p-rank, Newton polygon, or Ekedahl-Oort type? If so, what are the geometric properties1331

of the intersection?1332

The background Section 6.2 in this chapter is important. Section 6.2.1 contains two1333

facts of major significance: the first is that the Newton polygon can only go up under1334

specialization; the second is the purity result about the dimension of the sublocus where the1335

Newton polygon goes up. In Section 6.2.3, we briefly include results about the dimensions of1336

the arithmetic strata in Ag. In Section 6.2.4, we describe how finding curves with an unusual1337

Newton polyon can be viewed as an unlikely intersection problem.1338

Section 6.3 contains several results about the geometry of the stratifications of the Torelli1339

locus. The proofs of these results rely on information about the boundary ∂Mg.1340

Section 6.3.3 contains a proof of [FvdG04, Theorem 2.3] by Faber and Van der Geer,1341

about the dimension of the p-rank strata.1342

In Section 6.3.4, I describe Theorem 6.3.9 which shows that questions about the geometry1343

of the Newton polygon and Ekedahl-Oort strata can be reduced to the case of p-rank 0. This1344

is an inductive result, similar in spirit to earlier results in the literature, but which allows1345

for more flexibility with the Newton polygon and Ekedahl-Oort type.1346
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6.2 Background1347

6.2.1 Specialization and purity1348

Many of the techniques used to study the stratifications on Ag are not available on the Torelli1349

locus. This includes techniques about deformation (Serre-Tate theory and Dieudonné theory)1350

and Hecke operators. This section includes two major facts known about the behavior of1351

the invariants in families.1352

The first is that the Newton polygon can only go up under specialization. Specifically,1353

building on Grothendieck’s specialization theorem, Katz proved the following:1354

Theorem 6.2.1. [Kat79] If A is an Fp-algebra. the set of points in Spec(A) at which the1355

Newton polygon goes up is Zariski-closed, and is locally on Spec(A) the zero-set of a finitely1356

generated ideal.1357

Theorem 6.2.1 provides a way to study Newton polygons in families. This was used by1358

Koblitz in [Kob75].1359

The second is a very important tool: the purity result for Newton polygons proved by de1360

Jong and Oort. Here is the exact statement.1361

Theorem 6.2.2. (Purity Theorem [dJO00b, Theorem 4.1]) Let (A,mA) be a Noetherian1362

local ring of characteristic p. Let S be an F -crystal over Spec(A). Assume that the Newton1363

polygon of S is constant over Spec(A)\{mA}. Then either dim(A) < 1 or the Newton polygon1364

of S is constant over Spec(A).1365

In practice, the purity theorem is used as follows.1366

Corollary 6.2.3. Suppose X is a semi-abelian scheme of dimension g defined over a reduced1367

and irreducible scheme V . Suppose the generic geometric fiber of X has Newton polygon ν.1368

Then the sublocus of points of V whose Newton polygon is not ν is either empty or has1369

codimension 1 in V .1370

More generally, if ν, ν ′ are symmetric Newton polygons with ν ′ < ν, let d(ν ′, ν) denote1371

the number of symmetric Newton polygons ν ′′ such that ν ′ ≤ ν ′′ < ν in the partial ordering1372

of symmetric Newton polygons of dimension g. Then Corollary 6.2.3 implies the following:1373

Corollary 6.2.4. Suppose X is a semi-abelian variety of dimension g defined over a reduced1374

and irreducible scheme V . Suppose the generic geometric fiber of X has Newton polygon1375

ν. Then the sublocus of points of V whose Newton polygon is ν ′ is either empty or has1376

codimension at most d(ν ′, ν) in V .1377

In general, it is not possible to conclude that the codimension is exactly d(ν ′, ν) in1378

Corollary 6.2.4 because some of the Newton polygons ν ′′ between ν and ν ′ may not occur1379

on V .1380
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6.2.2 Notation for the strata1381

In this section, let ν denote an arithmetic invariant (such as the p-rank, Newton polygon,1382

Ekedahl–Oort type, or a-number).1383

Definition 6.2.5. Consider a semi-abelian scheme X of relative dimension g over a Deligne–1384

Mumford stack S. Define S[ν] to be the locally closed reduced substack of S such that for1385

each field k′ ⊃ k and point s ∈ S(k′), then s ∈ S[ν](k′) if and only if the arithmetic invariant1386

of Xs is ν.1387

In the literature, the p-rank f stratum is often denoted with a superscript f . For example,1388

Afg and Mf
g denote the locally closed reduced substacks of Ag and Mg, respectively, whose1389

geometric points correspond to objects with p-rank f . Similary, M̄f
g := (M̄g)

f .1390

Remark 6.2.6. Note that (M̄g)
f is the p-rank f stratum of M̄g, while (Mf

g ) is the closure1391

of the p-rank f stratum ofMg. The former may be strictly contained in the latter since the1392

latter may contain points representing curves whose p-rank is strictly less than f .1393

6.2.3 Dimensions of the strata1394

This section briefly includes information about the dimensions of the strata in Ag. Let g ≥ 1.1395

The dimension of Ag is g(g + 1)/2. Here is some information about the dimensions of the1396

strata plus a partial list of some valuable references.1397

(A) The p-rank strata:1398

For 0 ≤ f ≤ g, let Afg denote the p-rank f stratum whose points represent curves of1399

genus g and p-rank f . By [NO80], Afg is non-empty and pure of codimension g − f in Ag.1400

Oort, Subvarieties of moduli spaces [Oor74]1401

Norman and Oort, Moduli of abelian varieties [NO80]1402

(B) Newton polygon strata:1403

Let ξ be a symmetric Newton polygon of height 2g. Consider the stratum Ag[ξ] of Ag1404

whose points represent principally polarized abelian varieties with Newton polygon ξ. As1405

in [Oor00, 3.3] or [Oor01a, 1.9], define1406

sdim(ξ) = #∆(ξ),

where1407

∆(ξ) = {(x, y) ∈ Z× Z | y < x ≤ g, (x, y) on or above ξ}.

By [Oor01a, Theorem 4.1], the dimension of Ag[ξ] is1408

dim(Ag[ξ]) = sdim(ξ).

By [CO11], Ag[ξ] is irreducible if ξ is not the supersingular Newton polygon σg. This1409

implies that Afg is irreducible, except when g = 1, 2 and f = 0.1410

Koblitz p-adic variation of the zeta-function over families of varieties defined over finite1411

fields, [Kob75]1412

Katz, Slope filtration of F -crystals, [Kat79]1413
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de Jong and Oort, Purity of stratification by Newton polygons [dJO00b]1414

Chai and Oort, Monodromy and irreducibility of leaves [CO11]1415

(C) Ekedahl-Oort strata:1416

Let ξ be a symmetric BT1 group scheme with Ekedahl-Oort type ν = [ν1, . . . , νg]. By1417

[Oor01b, Theorem 1.2], the stratum of Ag whose points represent abelian varieties with1418

Ekedahl-Oort type ν is locally closed and quasi-affine with dimension
∑g

i=1 νi.1419

Kraft, Kommutative algebraische p-Gruppen [Kra]1420

Oort, A stratification of a moduli space of abelian varieties [Oor01b]1421

Moonen and Wedhorn, Discrete invariants of varieties in positive characteristic [MW04]1422

Ekedahl and Van der Geer, Cycle classes of the E-O stratification on the moduli of abelian1423

varieties [EvdG09]1424

6.2.4 Unlikely intersections1425

Oort observed the following in [Oor05, Expectation 8.5.4]. The moduli space Ag has di-1426

mension g(g + 1)/2. Its supersingular locus Ag[σg] has dimension bg2/4c. The difference1427

δg := g(g + 1)/2 − bg2/4c is the length of a chain which connects the ordinary Newton1428

polygon νg to the supersingular Newton polygon σg in the partially ordered set of Newton1429

polygons of dimension g.1430

Remark 6.2.7. If g ≥ 9, then δg > 3g − 3 = dim(Mg).1431

Because of Remark 6.2.7, at least one of the following is true:1432

1. EitherMg does not admit a perfect stratification by Newton polygon: this means that1433

there are two Newton polygons ξ1 and ξ2 such that Ag[ξ1] is in the closure of Ag[ξ2],1434

but Mg[ξ1] is not in the closure of Mg[ξ2];1435

2. or some Newton polygons do not occur for Jacobians of smooth curves.1436

At this time, no Newton polygon has been excluded from occurring for a Jacobian in any1437

characteristic.1438

Definition 6.2.8. Let η denote a Newton polygon or Ekedahl–Oort type in dimension g.1439

We say that Mg and Ag[η] have an unlikely intersection if codim(Ag[η],Ag) > 3g − 3.1440

From Section 4.4.3, which includes constructions of supersingular curves for arbitrarily1441

high genus, it is clear that unlikely intersections do occur.1442

In fact, [Oor05, Conjecture 8.5.7] predicts that Newton polygons having small denomi-1443

nators will always occur for Jacobians of smooth curves.1444

6.3 Main theorems1445

In this section, we describe several results about the geometry of the stratifications of the1446

Torelli locus.1447

LetMg denote the moduli space of smooth curves of genus g in characteristic p. Via the1448

Torelli morphism, the moduli spaceMg also has stratifications by the arithmetic invariants.1449
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A careful analysis of the boundary of Mg gives results about Question 6.1.1 for the p-rank1450

strata. The proofs of these results rely on information about the boundary ∂Mg. It is1451

important to keep in mind that the Torelli morphism is not flat since the fibers have positive1452

dimension over ∂Mg.1453

6.3.1 Invariants of stable curves1454

By Definition 6.2.5, we denote by ∆i[M̄g][ν] the sublocus of ∆i[M̄g] representing curves1455

with invariant ν.1456

Recall that the generic geometric point of ∆i represents a curve D with two irreducible1457

components C1 and C2, having genera g1 = i and g2 = g − i, that intersect in an ordinary1458

double point. By (5.2), Jac(D) ' Jac(C1) ⊕ Jac(C1), so the p-rank, Newton polygon, and1459

p-torsion group scheme of D are the sum of those of C1 and C2.1460

Recall that the generic geometric point of ∆0 represents a curve with one irreducible1461

component that self-intersects in an ordinary double point. The p-rank of a semi-abelian1462

variety A is f = dimFpHom(µp, A). It follows from (5.3) that the torus W → Pic0(C̃)1463

increases the p-rank by 1. This increases the multiplicity of the slopes 0 and 1 in the Newton1464

polygon by one and increases the multiplicity of Z/pZ ⊕ µp by one in the p-torsion group1465

scheme. The Ekedahl–Oort type of a stable curve is defined in two different ways in [EvdG09]1466

and [Moo22]; these are proven to agree in [Draa].1467

6.3.2 A geometric proof for supersingular genus 4 curves1468

This result was inspired by a conversation with Oort, in which we discussed a more geometric1469

method for studying the Newton polygons that occur on Mg. This method applies when1470

the codimension of the Newton polygon stratum in Ag is small.1471

As an illustration of this method, here is a new proof of [KHS20, Corollary 1.2]. Let1472

Mg[ss] (resp. Ag[ss]) denote the supersingular locus of Mg (resp. Ag).1473

Theorem 6.3.1. [Pri] For every prime p, there exists a smooth curve of genus 4 that is1474

supersingular. Thus M4[ss] is non-empty and its irreducible components have dimension at1475

least 3 for every prime p.1476

This method does not give a new proof of [KHS20, Theorem 1.1], which states that there1477

exists a supersingular smooth curve of genus 4 with a-number a ≥ 3 for every prime p > 3.1478

Proof of Theorem 6.3.1. Over Fp, there exists a stable curve C of genus 4 that is singular1479

and supersingular. For example, this can be produced by taking a chain of four supersin-1480

gular elliptic curves, clutched together at ordinary double points. This yields a curve of1481

compact type. So the Jacobian of C is a principally polarized abelian variety of dimension 4.1482

Furthermore, the Jacobian is isomorphic to the product of four supersingular elliptic curves1483

and thus is supersingular. As such, it is represented by a point in A4[ss] ∩ T4, where T4 is1484

the locus of Jacobians of stable curves of genus 4.1485

The codimension of A4[ss] in A4 is 10 − 4 = 6. The codimension of T4 ∩ A4 in A4 is1486

10− 9 = 1. Since A4 is a smooth stack, the codimension of an intersection of two substacks1487

is at most the sum of their codimensions [Vis89, page 614]. Thus codim(A4[ss]∩T4,A4) ≤ 7.1488
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To summarize, A4[ss]∩T4 is non-empty and each of its irreducible components has dimension1489

at least 3.1490

Let δ denote the locus in A4[ss] ∩ T4 whose points represent the Jacobian of a curve Cs1491

that is stable but not smooth. Since the Jacobian is an abelian variety, the curve Cs has1492

compact type. So its Jacobian is a principally polarized abelian fourfold that decomposes,1493

with the product polarization.1494

Then dim(δ) ≤ 2. This is because points in δ parametrize objects either of the form1495

E ⊕X where E is a supersingular elliptic curve and X is a supersingular abelian threefold,1496

or of the form X ⊕X ′ where X,X ′ are supersingular abelian surfaces. In the former case,1497

the dimension is dim(A1[ss] ⊕ A3[ss]) = 0 + 2 = 2. In the latter case, the dimension is1498

dim(A2[ss]⊕A2[ss]) = 1 + 1 = 2. Since 2 < 3, every generic geometric point of A4[ss] ∩ T41499

represents the Jacobian of a supersingular curve of genus 4 which is smooth.1500

Thus M4[ss] is non-empty for every p; this is equivalent to the statement that there1501

exists a smooth curve of genus 4 that is supersingular. If R is an irreducible component of1502

M4[ss], then the image of R under the Torelli morphism is open and dense in a component1503

of A4[ss] ∩ T4; so dim(R) ≥ 3, which completes the proof.1504

Remark 6.3.2. One expects that the dimension of every component of M4[ss] is three.1505

For 7 < p < 20, 000 or p ≡ 5 mod 6, this is true for at least one component of M4[ss]1506

by [Har22, Theorem 2.4, Corollary 4.4]. It is true for every component when p = 2 in [Drab],1507

and when p = 3, as a consequence of [Draa, Theorem C].1508

6.3.3 Results about the p-rank stratification1509

In this section, we describe a theorem of Faber and Van der Geer that the p-rank strata have1510

the expected dimension in the moduli space Mg of curves of genus g. Fix a prime p and1511

integers g ≥ 2 and f such that 0 ≤ f ≤ g.1512

The moduli space Mg can be stratified by p-rank into strata Mf
g whose points repre-1513

sent curves of genus g and p-rank f . Similarly, one can stratify the moduli space Hg of1514

hyperelliptic curves or the compactifications Mg and Hg by p-rank.1515

Recall that Afg is irreducible unless g = 1, 2 and f = 0. In most cases, it is not known1516

whether Mf
g and Hf

g are irreducible.1517

Theorem 6.3.3. [FvdG04, Theorem 2.3] Let g ≥ 2. Every component ofMf

g has dimension1518

2g − 3 + f (codimension g − f in Mg); in particular, there exists a smooth curve over Fp1519

with genus g and p-rank f .1520

Theorem 6.3.4. (p odd) [GP05, Theorem 1], see also [AP11, Lemma 3.1], (p = 2) [PZ12,1521

Corollary 1.3] Every component of Hf

g has dimension g − 1 + f (codimension g − f in Hg);1522

in particular, there exists a smooth hyperelliptic curve over Fp with genus g and p-rank f .1523

Remark 6.3.5. In [AP08] and [AP11], the authors prove more about the components of1524

Mf

g and Hf

g ; this includes results about how the components intersect the boundary and1525

results about the `-adic monodromy of the components. In [Pri09], for all g ≥ 3 and all p,1526

there are results about the moduli of curves with p-rank g− 2 or g− 3 and a-number a ≥ 2.1527
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We give a sketch of the proof of Theorem 6.3.3; it uses the boundary of Mg.1528

By Section 6.3.1, the p-rank of a singular curve of compact type is the sum of the p-ranks1529

of its components. Thus, it is easy to construct a singular curve of genus g with p-rank f , by1530

constructing a chain of f ordinary and g− f supersingular elliptic curves, joined at ordinary1531

double points. This singular curve can be deformed to a smooth one, but it is not obvious1532

that the p-rank stays constant in this deformation. To prove that there is a smooth curve of1533

genus g with p-rank f , singular curves are still useful, but the argument must be made more1534

carefully.1535

Recall thatMg;1 is the moduli space whose points represent curves C of genus g together1536

with a marked point x. The dimension ofMg;1 is 3g−3+1 for all g ≥ 1. Recall the clutching1537

morphism κi,g−i from Section 5.2.1.1538

Proof. (Sketch of proof of Theorem 6.3.3) The proof is by induction on g. When g = 2, 3,1539

the result is true since the open Torelli locus is open and dense in Ag. Suppose g ≥ 4.1540

The dimension ofMg is 3g−3. There are singular curves that are ordinary, namely chains1541

of g ordinary elliptic curves. SinceMg is irreducible and the p-rank is lower semi-continuous,1542

the generic geometric point of Mg is ordinary, with p-rank g.1543

Let S be a component of Mf

g . The length of the chain which connects the ordinary1544

Newton polygon νg to the largest Newton polygon having (f, 0) as a break point is g − f .1545

Using purity of the Newton polygon stratification [dJO00b],1546

dim(S) ≥ (3g − 3)− (g − f) = 2g − 3 + f.

By [FvdG04, Lemma 2.5], S intersects ∆i for each 1 ≤ i ≤ g − 1. By Theorem 5.2.3,1547

codim(∆i,Mg) = 1. It follows from [Vis89, page 614] that dim(S) ≤ dim(S ∩∆i) + 1.1548

The p-rank of a singular curve of compact type is the sum of the p-ranks of its components,1549

[BLR90, Example 8, Page 246]. As seen in [AP08, Proposition 3.4], one can restrict the1550

clutching morphism to the p-rank strata:1551

κi,g−i :Mf1
i;1 ×M

f2
g−i;1 →M

f1+f2
g .

This means that dim(S ∩∆i) is bounded above by dim(Mf1
i;1) + dim(Mf2

g−i;1), for some1552

pair (f1, f2) such that f1 + f2 = f . Adding a marked point adds one to the dimension. By1553

the inductive hypothesis (or an explicit computation when i = 1, g − 1), one checks that1554

dim(Mf1
i;1) = 2i − 3 + f1 + 1 and dim(Mf2

g−i;1) = 2(g − i) − 3 + f2 + 1. It follows that1555

dim(S ∩∆i) ≤ 2g − 4 + f . Thus dim(S) ≤ 2g − 3 + f , which completes the proof.1556

6.3.4 Increasing the p-rank1557

This section contains an inductive result. Starting with a Newton polygon ξ that can be1558

realized for a smooth curve of genus g, the goal is to prove that any symmetric Newton1559

polygon which is formed by adjoining slopes of 0 and 1 to ξ can also be realized for a smooth1560

curve (of larger genus and p-rank). I show this is possible under a geometric condition on1561

the stratum of Mg with Newton polygon ξ.1562

The importance of this result is that it allows us to restrict to the case of p-rank 0 in1563

Question 6.1.1. This type of inductive process can be found in earlier work, e.g., [FvdG04,1564
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Theorem 2.3], [AP08, Section 3], [Pri09, Proposition 3.7], and [AP14, Proposition 5.4]. Theo-1565

rem 6.3.9 is stronger than these results because it allows for more flexibility with the Newton1566

polygon and Ekedahl-Oort type.1567

First, we fix some notation about Newton polygons and BT1 group schemes.1568

Notation 6.3.6. Let ξ denote a symmetric Newton polygon (or a symmetric BT1 group1569

scheme) occurring for principally polarized abelian varieties in dimension g. Let Ag[ξ] be1570

the stratum in Ag whose geometric points represent principally polarized abelian varieties1571

of dimension g and type ξ. Let cdξ = codim(Ag[ξ],Ag). Let Mg[ξ] be the stratum in Mg1572

whose geometric points represent smooth projective curves of genus g and type ξ.1573

Notation 6.3.7. In the case that ξ denotes a symmetric Newton polygon occurring in1574

dimension g: for e ∈ N, let ξ+e be the symmetric Newton polygon in dimension g + e such1575

that the difference between the multiplicity of the slope λ in ξ+e and the multiplicity of the1576

slope λ in ξ is 0 if λ 6∈ {0, 1} and is e if λ ∈ {0, 1}.1577

Notation 6.3.8. In the case that ξ denotes a symmetric BT1 group scheme occurring in1578

dimension g: for e ∈ N, let ξ+e be the symmetric BT1 group scheme in dimension g+e given1579

by1580

ξ+e := Le ⊕ ξ,

where L = Z/p⊕µp. If [ν1, . . . , νg] is the Ekedahl-Oort type of ξ, then ξ+e has Ekedahl-Oort1581

type [1, 2, . . . , e, ν1 + e, . . . , νg + e].1582

Theorem 6.3.9. [Pri19, Theorem 6.4] With notation as in 6.3.6, 6.3.7, 6.3.8, suppose that1583

there exists an irreducible component S = S0 ofMg[ξ] such that codim(S,Mg) = cdξ. Then,1584

for all e ∈ N, there exists a component Se of Mg+e[ξ
+e] such that codim(Se,Mg+e) = cdξ.1585

The proof uses the boundary component ∆1. A similar result using the boundary com-1586

ponent ∆0 can be found in [Draa].1587

6.4 Related results1588

Here are some applications of these methods:1589

Corollary 6.4.1. [Pri, Corollary 4.3] For every prime p, every symmetric Newton polygon1590

in dimension g having p-rank f ≥ g − 4 occurs on Mg.1591

Corollary 6.4.2 (Dragutinović and Pries). For every prime p, there exists a smooth curve1592

of genus g with p-rank 0 and a-number at least 2.1593

Corollary 6.4.3. [Draa, Corollary 6.4] When p = 2, for every g ≥ 4, there exists a smooth1594

curve with p-rank f = g − 3 and Young type {3, 2}.1595
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6.5 Open questions1596

Suppose η is a Newton polygon or Ekedahl–Oort type which occurs onMg in characteristic1597

p, meaning that there exists a smooth curve of genus g defined over F̄p having type η. Even1598

so, there are open questions. In this section, we describe open questions about the number1599

of components of the strata and about the statistical behavior of the number of these curves.1600

The questions in this section can be asked for almost all Newton polygons and Ekedahl–1601

Oort types, for almost all values of g. To make the questions more tractable, we focus on1602

particular cases in which the answer is not known. More information about these questions1603

will be provided later.1604

6.5.1 Number of components of the strata1605

If η is a Newton polygon that is not supersingular, then the locus Ag[η] is irreducible.1606

Similarly, if η is an Ekedahl–Oort type that is not fully contained in Ag[ssg], then the locus1607

Ag[η] is irreducible.1608

However, in most cases, the number of components in the intersection Ag[η] ∩ T ◦g is not1609

known.1610

For example, let η denote the almost ordinary Newton polygon, namely η = og−1 ⊕ ss.1611

In other words, the Newton polygon η has g − 1 slopes of 0, two slopes of 1/2, and g − 11612

slopes of 1. There is a unique Ekedahl–Oort type for η, which is (Z/pZ⊕ µp)g−1 ⊕ I1,1.1613

The non-ordinary locus of Ag∩T ◦g is closed of codimension 1 in Ag∩T ◦g . It has dimension1614

3g − 4, but it is not known whether it is irreducible in general.1615

Question 6.5.1. Let g ≥ 4. Let η = og−1 ⊕ ss denote the almost ordinary Newton polygon.1616

What is the number of components in the intersection Ag[η] ∩ T ◦g ?1617

Question 6.5.1 is equivalent to asking for the number of components of the non-ordinary1618

locus of Mg or of the p-rank g − 1 strata in Mg.1619

Example 6.5.2. When g = 2 (resp. g = 3), the answer to Question 6.5.1 is 1.1620

A curve C is non-ordinary if and only if the matrix for V on H0(C,Ω1) has determinant1621

0. Because the entries of this matrix increase in complexity with p, it is difficult to solve1622

Question 6.5.1 algebraically.1623

6.5.2 A statistical approach1624

Question 6.5.3. Given p prime and g ≥ 4 an integer: Let q = pa be a power of p. Let η1625

denote the almost ordinary Newton polygon. What is the order of magnitude of Mg[η](Fq),1626

in terms of p, g, and a?1627

This question is already interesting for g = 4.1628

Remark 6.5.4. For p and a sufficiently large, one expects that the answer to this question1629

is of the form Cpa(3g−4), for some constant C. Here one guesses that C depends on g but not1630

on a. It is not clear whether C is independent of p. Using an arithmetic statistics approach,1631

the value of C gives information about Question 6.5.1.1632
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Example 6.5.5. Look at ym = xa1(x−1)a2(x−t)a3 . Let a4 be such that
∑4

i=1 ai ≡ 0 mod m.1633

This is a one-dimensional family of curves that are a cyclic degree m cover of P1. Suppose1634

the curve is ordinary for a typical choice of t. This happens if p ≡ 1 mod m or if a1+a2 = m.1635

In this situation, Cavalieri and I found a mass formula for the number of non-ordinary curves1636

in the family [CP, Corollary 6.1] The formula depends on the a-numbers of curves that are1637

not ordinary in the family. More information can be given when the family is special; see1638

Example 8.4.2.1639

6.5.3 Intersection of the supersingular locus with the boundary1640

Question 6.5.6. Determine the intersection of the supersingular locus ofM3 with the bound-1641

ary of M3; similar question for the hyperelliptic locus H3. Generalize to M4.1642

6.5.4 Double covers of an elliptic curve1643

1644

Question 6.5.7. Study the dimensions of the p-rank strata of the moduli space of double1645

covers of a fixed elliptic curve with 2n branch points.1646
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Chapter 71647

Curves and abelian varieties with1648

cyclic action1649

7.1 Overview1650

In this chapter, we focus on curves C and abelian varieties X that have an automorphism1651

of order m.1652

Specifically, we consider curves C that are cyclic branched covers of the projective line.1653

The moduli spaces for these covers of curves are called Hurwitz spaces. The irreducible1654

components of the Hurwitz spaces are indexed by monodromy data, which includes the data1655

for the cover, including the degree m, the number of branch points N , and the inertia type1656

a. The dimension of each component of the Hurwitz space is N − 3.1657

We consider abelian varieties X having an automorphism of order m, with the restriction1658

that the trivial eigenspace for the µm-action is zero. The moduli spaces for these abelian1659

varieties are called Deligne–Mostow Shimura varieties.1660

Using a generalization of the Torelli morphism, it is possible to map the Hurwitz spaces1661

to the Shimura varieties. When the image is open and dense in a component of the Shimura1662

variety, the family is called special.1663

7.2 Background1664

Let C be a cyclic branched cover of the projective line. Let m be the degree of the cover.1665

We assume throughout this chapter that char(k) - m. Let τ ∈ Aut(C) be an automorphism1666

of order m such that C/〈τ〉 ' P1.1667

7.2.1 Equations of cyclic covers of the projective line1668

Lemma 7.2.1. Suppose C is a curve that admits a µm-cover φ : C → P1. Let N be the1669

number of branch points of φ. Then C has an equation of the form1670

ym =
N∏
i=1

(x− bi)ai , (7.1)
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for some distinct values b1, . . . , bN ∈ k and some integers a1, . . . , aN such that 1 ≤ ai < m and1671 ∑N
i=1 ai ≡ 0 mod m. Also, a given automorphism τ of order m acts by τ((x, y)) = (x, ζmy).1672

Proof. By Kummer theory, there is an affine equation for C of the form ym = f(x), for1673

some rational function f(x) ∈ k(x). After some changes of coordinates, we can suppose1674

that f(x) ∈ k[x] is a polynomial and that each root of f(x) has order less than m. Then1675

the roots of f(x) are the branch points and we label these as b1, . . . , bN . After a fractional1676

linear transformation, where, without loss of generality, we suppose that b1 = 0, b2 = 1 and1677

bN =∞. Then there are integers a1, . . . , aN such that 1 ≤ ai < m such that (7.1) is satisfied.1678

The fact that
∑N

i=1 ai ≡ 0 mod m comes from the topological description of the fundamental1679

group of X −B.1680

Definition 7.2.2. Fix integers m ≥ 2, N ≥ 3 and an N -tuple of positive integers a =1681

(a1, . . . , aN). Then a is an inertia type for m and (m,N, a) is a monodromy datum if1682

1. ai 6≡ 0 mod m, for each 1 ≤ i ≤ N ,1683

2. gcd(m, a1, . . . , aN) = 1, and1684

3.
∑N

i=1 ai ≡ 0 mod m.1685

Fix a monodromy datum (m,N, a). Let U ⊂ (A1)N be the locus of points where no two1686

of the coordinates are equal. Over U , we can define a curve C to be the smooth projective1687

(relative) curve whose fiber at each point b = (b1, . . . , bN) ∈ U has affine model1688

ym =
N∏
i=1

(x− bi)ai . (7.2)

The function x on C yields a map C → P1
U and there is a µm-action on C over U given1689

by ζ · (x, y) = (x, ζ · y) for all ζ ∈ µm. Thus C → P1
U is a µm-cover.1690

Alternatively, if the field of definition of C is sufficiently large, one can move three of the1691

branch points to 0, 1,∞. Then we take U ⊂ (A1−{0, 1})N−3 to be the locus of points where1692

no two of the coordinates are equal. In that case, (7.2) simplifies to:1693

ym = xa1(x− 1)a2
N−1∏
i=3

(x− bi)ai . (7.3)

For a closed point t ∈ U , let Ct denote the smooth projective curve with affine equation1694

(7.2) (or (7.3)). There is a µm-cover Ct → P taking (x, y) 7→ x; it is branched at N points1695

b1, . . . , bN in P1, and has local monodromy ai at bi. Let Jt be the Jacobian of Ct.1696

Remark 7.2.3. If ai > 1, then the affine curve has a singularity at the point (bi, 0). Finding1697

the equation for the blow-up is a long process and is best avoided.1698
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7.2.2 The genus and the signature1699

Lemma 7.2.4. [Riemann–Hurwitz formula] For all t ∈ U , the curve Ct is irreducible. Its1700

genus g is (m− 1)(N − 2)/2 if m is prime. More generally, the genus is:1701

g = g(m,N, a) = 1 +
(N − 2)m−

∑N
i=1 gcd(a(i),m)

2
. (7.4)

The Jacobian Jt and all the cohomology groups of Ct are modules for the group ring1702

Z[µm]. We would like to determine how they decompose into eigenspaces under the µm-1703

action. This calculation can be done over C. Let V be the first Betti cohomology group1704

H1(Ct(C),Q). Let V + = H0(Ct(C),Ω1
Ct

).1705

Recall that we fixed an mth root of unity ζm ∈ µm. The data of a µm-cover includes an1706

inclusion of µm in Aut(Ct). There is an induced action of µm on V +. For 0 ≤ n ≤ m− 1, let1707

Ln denote the subspace of ω ∈ V + such that ζm · ω = ζnmω. The subspace L0 is trivial since1708

Ct is a µm-cover of P1. There is a decomposition:1709

V + = ⊕1≤n≤m−1Ln.

Let fn = dim(Ln). Note that
∑m−1

n=1 = g. The dimension fn is independent of the choice of1710

t ∈ U .1711

For any q ∈ Q, let 〈q〉 denote the fractional part of x.1712

Lemma 7.2.5 (Hurwitz, Chevalley-Weil). see [Moo10, Lemma 2.7, §3.2] If 1 ≤ n ≤ m− 1,1713

then1714

fn = −1 +
N∑
i=1

〈−na(i)

m
〉 (7.5)

Definition 7.2.6. The signature type of the monodromy datum (m,N, a) is1715

f = (f1, . . . , fm−1).

7.2.3 Hurwitz spaces1716

Let γ = (m,N, a) be a monodromy datum with N ≥ 4. The Hurwitz space Hγ is the moduli1717

space of µm-covers φ : C → P1 having monodromy datum γ. There is a forgetful map1718

Hγ →Mg that takes the isomorphism class of φ to the isomorphism class of C.1719

Theorem 7.2.7. [Ful69, Corollary 7.5], [Wew98, Corollary 4.2.3] The Hurwitz space Hγ1720

is irreducible. It has dimension dim(Hγ) = N − 3.1721

7.3 Main theorems1722

We would like to understand the subspace of Ag whose points represent Jacobians of curves1723

that are cyclic covers of P1. In this section, we take a more accessible approach to this topic.1724

In the next section, we approach the same topic from the perspective of unitary Shimura1725

varieties.1726
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Let γ = (m,N, a) be a monodromy datum with N ≥ 4, let g be the associated genus1727

given by Lemma 7.2.4, and let f be the associated signature type given by (7.5).1728

Given an µm-cover C → P1 with monodromy datum γ, then the Jacobian Jac(C) is a1729

p.p. abelian variety of dimension g, with an induced action of the group ring Z[µm], such1730

that the signature of the action is given by f.1731

The composition of the Torelli map yields a morphism1732

j = jγ : Hγ →Mg → Ag.

Definition 7.3.1. If γ = (m,N, a) is a monodromy datum, let T ◦γ be the image of jγ in Ag1733

(with the reduced induced structure). Let Tγ be the closure of T ◦γ in Ag.1734

By definition, Tγ is a closed, reduced substack of Ag.1735

Remark 7.3.2. Suppose φ : C → Pk is a µm-cover with monodromy datum γ. Changing the1736

generator of µm does not change C or Jac(C). Changing the order of the branch points does1737

not change C or Jac(C). So Tγ depends uniquely on the equivalence class of the monodromy1738

datum γ = (m,N, a), where (m,N, a) and (m′, N ′, a′) are equivalent if m = m′, N = N ′,1739

and the images of a, a′ in (Z/mZ)N are in the same orbit under (Z/mZ)∗ × SymN .1740

Another way to think about Tγ is this. Consider the subspace of Ag whose points repre-1741

sent p.p. abelian varieties having an action by the group ring Z[µm], with signature f. Then1742

Tγ is the intersection of that subspace with the Torelli locus.1743

That subspace is essentially the image of a Shimura variety. Naively speaking, we are1744

going to look at the moduli space of abelian varieties of dimension g, equipped with an action1745

of Z[µm], with the signature of the action given by f.1746

In [DM86] Deligne and Mostow construct the smallest unitary Shimura variety whose1747

image in Ag contains Tγ; we denote it by Sγ = Sh(µm, f). Section 7.4 contains the basic1748

definitions and facts about PEL-type Shimura varieties, and the construction of [DM86],1749

following [Moo10].1750

Here is a schematic diagram of the moduli spaces:1751

Hγ

��

ϕ
// Sγ

��

Mg
τg
// Tγ ⊂ Ag.

(7.6)

The main result we will need is the dimension of S, which is given as follows.1752

Proposition 7.3.3. [MO13, Proposition 5.13] Let γ = (m,N, a) be a monodromy datum1753

with associated signature f. If m = 2k is even, let εγ = fk(fk + 1)/2; if m is odd, let εγ = 0.1754

Then the dimension of the Shimura variety Sγ = Sh(µm, f) is1755

dim(Sγ) = εγ +

bm/2c∑
n=1

fnf−n. (7.7)

The proof of this result goes beyond the scope of these notes. The main ideas are to look1756

at the Hodge structure and symplectic form and to compute the dimension of the tangent1757

space.1758
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7.4 Related results - Shimura varieties1759

This section is more technical and can be skipped.1760

7.4.1 Shimura datum for the moduli space of abelian varieties1761

Let V = Q2g, and let Ψ : V × V → Q denote the standard symplectic form. Let G :=1762

GSp(V,Ψ) denote the group of symplectic similitudes over Q. Let h denote the space of1763

homomorphisms h : S = ResC/RGm → GR which define a Hodge structure of type (−1, 0) +1764

(0,−1) on VZ such that ±(2πi)Ψ is a polarization on V . The pair (G, h) is the Shimura1765

datum for Ag.1766

Let H ⊂ G be an algebraic subgroup over Q such that the subspace1767

hH := {h ∈ h | h factors through HR}

is non-empty. Then H(R) acts on hH by conjugation, and for each H(R)-orbit YH ⊂ hH ,1768

the Shimura datum (H,YH) defines an algebraic substack Sh(H,YH) of Ag. In the following,1769

for h ∈ YH , we sometimes write (H, h) for the Shimura datum (H,YH). For convenience,1770

we also write Sh(H, hH) for the finite union of the Shimura stacks Sh(H,YH), as YH varies1771

among the H(R)-orbits in hH .1772

7.4.2 Shimura data of PEL-type1773

Now we focus on Shimura data of PEL-type. Let B be a semisimple Q-algebra, together1774

with an involution ∗. Suppose there is an action of B on V such that Ψ(bv, w) = Ψ(v, b∗w),1775

for all b ∈ B and all v, w ∈ V . Let1776

HB := GLB(V ) ∩GSp(V,Ψ).

We assume that hHB 6= ∅.1777

For each HB(R)-orbit YB := YHB ⊂ hHB , the associated Shimura stack Sh(HB, YB) arise1778

as moduli spaces of polarized abelian varieties endowed with a B-action, and are called of1779

PEL-type. In the following, we also write Sh(B) := Sh(HB, hHB).1780

Each homomorphism h ∈ YB defines a decomposition of BC-modules1781

VC = V + ⊕ V −

where V + (respectively, V −) is the subspace of VC on which h(z) acts by z (respectively,1782

by z̄). The isomorphism class of the BC-module V + depends only on YB. Moreover, YB is1783

determined by the isomorphism class of V + as a BC-submodule of VC. In the following, we1784

prescribe YB in terms of the BC-module V +. By construction, dimC V
+ = g.1785

7.4.3 Shimura subvariety attached to a monodromy datum1786

We consider cyclic covers of the projective line branched at more than three points; fix a1787

monodromy datum (m,N, a) with N ≥ 4. Take B = Q[µm] with involution ∗.1788
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As in Section 7.2.1, let C → U denote the universal family of µm-covers of P1 branched1789

at N points with inertia type a; let j = j(m,N, a) : U → Ag be the composition of the1790

Torelli map with the morphism U →Mg. From Definition 7.3.1, recall that Z = Z(m,N, a)1791

is the closure in Ag of the image of j(m,N, a).1792

The pullback of the universal abelian scheme X on Ag via j is the relative Jacobian J1793

of C → U . Since µm acts on C, there is a natural action of the group algebra Z[µm] on J .1794

We also use J to denote the pullback of X to Z. The action of Z[µm] extends naturally to1795

J over Z. Hence the substack Z = Z(m,N, a) is contained in Sh(Q[µm]) for an appropriate1796

choice of a structure of Q[µm]-module on V . More precisely, fix x ∈ Z(C), and let (Jx, θ)1797

denote the corresponding Jacobian with its principal polarization θ. Choose a symplectic1798

similitude, meaning an isomorphism1799

α : (H1(Jx,Q), ψθ)→ (V,Ψ),

such that the pull back of the symplectic form Ψ to H1(Jx,Q) is a scalar multiple of ψθ,1800

where ψθ denotes the Riemannian form on H1(Jx,Q) corresponding to the polarization θ.1801

Via α, the Q[µm]-action on Jx induces an action on V . This action satisfies1802

hQ[µm] 6= ∅, and Ψ(bv, w) = Ψ(v, b∗w),

for all b ∈ Q[µm], all v, w ∈ V , and Z ⊂ Sh(Q[µm]).1803

The isomorphism class of V + as a Q[µm]⊗Q C-module is determined by and determines1804

the signature type {f(τ) = dimV +
τ }τ∈T . By [DM86, 2.21, 2.23] (see also [Moo10, §§3.2, 3.3,1805

4.5]), the HQ[µm](R)-orbit YQ[µm] in hHQ[µm]
such that1806

Z ⊂ Sh(HQ[µm], YQ[µm])

corresponds to the isomorphism class of V + with f given by (7.5). From now on, since1807

Sh(HQ[µm], YQ[µm]) depends only on µm and f, we denote it by Sh(µm, f).1808

The irreducible component of Sh(µm, f) containing Z is the largest closed, reduced and1809

irreducible substack S of Ag containing Z such that the action of Z[µm] on J extends to the1810

universal abelian scheme over S. To emphasis the dependence on the monodromy datum,1811

we denote this irreducible substack by S(m,N, a).1812

7.5 Open questions1813

Suppose g ≥ 4. Coleman conjectured that there are only finitely many smooth projective1814

curves C of genus g such that Jac(C) has complex multiplication. There are special families1815

that provide counterexamples to the Coleman conjecture for 5 ≤ g ≤ 7.1816

If g ≥ 8, Oort stated the expectation that there is no positive-dimensional special sub-1817

variety of Ag contained in the Torelli locus, with generic point contained in the open Torelli1818

locus. Because of the André–Oort Conjecture for Ag, Oort’s expectation is equivalent to1819

Coleman’s conjecture for large g.1820

Here is a question that we will not address in the problem sessions.1821

Question 7.5.1. What is the largest g for which there is a counterexample to the Coleman1822

conjecture (resp. Oort’s expectation?1823
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Chapter 81824

Newton polygons for abelian varieties1825

and curves with cyclic action1826

8.1 Overview1827

There are restrictions on the p-ranks, Newton polygons, and Ekedahl–Oort types for abelian1828

varieties and curves having non-trivial automorphisms. This leads to open questions about1829

whether there exist cyclic covers of curves whose Jacobians realize these invariants. Con-1830

tinuing the previous chapter, we consider Jacobians of curves that are cyclic covers of the1831

projective line.1832

8.2 Background1833

8.2.1 Abelian varieties with complex multiplication1834

This section will be developed further at a later time.1835

Historically, many interesting phenomena were discovered by studying abelian varieties1836

with complex multiplication.1837

For example, if m is an odd prime, then the curve C : ym = x(x−1) has genus (m−1)/21838

and Jac(C) has complex multiplication by the field Q(ζm). More generally, there are many1839

results about quotients of Fermat curves and cyclic covers of P1 branched at 3 points.1840

The curves C provide many examples of unusual Newton polygons. Weil proved that1841

the eigenvalues of Frobenius on Jac(C) can be expressed using Jacobi sums. This topic was1842

studied by Honda, Gross-Rohrlich, Shimura-Taniyama, and Yui.1843

In particular, let m be odd. Let f be the order of p modulo m. If f is even and1844

pf ≡ −1 mod m, then C : ym = x(x − 1) is supersingular. For example, the genus 6 curve1845

y13 = x(x− 1) is supersingular if p 6≡ 1, 3, 9 mod 13.1846

8.2.2 Constraints on the invariants1847

Consider an abelian variety X with action by the group ring Z[µm] with signature f. Let1848

p - 2m. The interaction between the Frobenius action and the µm-action places constraints1849
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on the p-rank, Newton polygon, and Ekedahl–Oort type of X.1850

The first step of understanding those constraints is to consider the orbits o of ×p on1851

Z/m − {0}. Both the Dieudonné module and the p-torsion group scheme of X decompose1852

into pieces indexed by those orbits.1853

The constraints on the p-rank can be found in [Bou01]. Specifically, the maximum p-rank1854

is bounded by the sum (over the orbits) of the length of the orbit multiplied by the minimal1855

dimension of an eigenspace L in that orbit.1856

The constraints on the Newton polygon are called the Kottwitz conditions. These were1857

developed by Kottwitz, Rapoport, and Richartz.1858

Definition 8.2.1. The Dieudonné module M decomposes into pieces Mo indexed by the1859

orbits, or by the primes of Q(ζm) above p.1860

The residue field of the prime acts on the piece Mo, so the multiplicity of each slope is1861

divisible by #o.1862

The Rosati involution ∗ acts on Q[µm] by involution: if o is invariant under ∗ then Mo is1863

symmetric; if not, then Mo ⊕Mo∗ symmetric.1864

The µ-ordinary Newton polygon µo for Mo has s distinct slopes where s is the number1865

of distinct values across the orbit of dim(Li) in the range [1, f(i) + f(−i)− 1].1866

All Newton polygons on Mo are less ordinary than µo.1867

Definition 8.2.2. Given m and f, in the set of Newton polygons satisfying the Kottwitz1868

conditions, the maximal element is called µ-ordinary, and the minimal element is called1869

basic.1870

In particular, if m is prime, let f be the order of p modulo m. Then the p-rank is divisible1871

by f .1872

Example 8.2.3. Moonen family M[17] Let m = 7, N = 4, and a = (2, 4, 4, 4). This implies1873

g = 6 and the signature is f = (1, 2, 0, 2, 0, 1). Let p ≡ 3, 5 mod 7. The action of Frobenius1874

is transitive on the eigenspaces Li. The maximum p-rank is the stable rank of Frobenius,1875

which is 0. The µ-ordinary Newton polygon is G2
1,2⊕G2

2,1; this has slopes 1/3 and 2/3, each1876

occurring with multiplicity 6. The basic Newton polygon is supersingular.1877

8.3 Main theorems1878

Theorem 8.3.1. Viehmann/Wedhorn: given m and f, each Newton polygon satisfying the1879

Kottwitz conditions occurs on Sγ. The Newton polygon stratification of Sγ is well-understood.1880

Now we can reframe the Newton polygon question for cyclic covers:1881

Question 8.3.2. Let ν be a Newton polygon satisfying the Kottwitz conditions for γ with1882

respect to p. Is there a µm-cover C → P1 of smooth curves with monodromy datum γ such1883

that C has Newton polygon ν?1884

Here is a geometric version of this question. Consider the image T ◦γ of the Torelli mor-1885

phism T : Tγ → Sγ.1886
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Question 8.3.3. Let ν be a Newton polygon satisfying the Kottwitz conditions for γ with1887

respect to p. Does T ◦γ intersect the Newton polygon stratum Sγ[ν]?1888

This question is easiest to answer for the µ-ordinary Newton polygon. Under mild con-1889

ditions, Bouw proved that the maximal p-rank occurs on T ◦γ [Bou01]. This result was gen-1890

eralized by Lin, Mantovan, and Singal in [LMS]; when N = 4 and N = 5, for all choices of1891

m and a, they proved that the µ-ordinary Newton polygon occurs on T ◦γ .1892

For an arbitrary large N , under certain conditions, the main result of [LMPT22] is that1893

both the µ-ordinary and the non µ-ordinary Newton polygon occur on T ◦γ .1894

8.4 Related results1895

8.4.1 Inductive results1896

In [LMPT22], for questions about the Newton polygon strata, we developed a method to1897

work inductively for families of µm-covers as the number of branch points (and the genus)1898

grow. The full statement of the results is too long to include here because they require some1899

subtle conditions on the signatures.1900

The basic idea is that, for a fixed prime p prime with p - m, we find inductive systems1901

of γ = (m,N, a) for which the open Torelli locus T ◦γ intersects the µ-ordinary locus of S[γ];1902

and for which T ◦γ intersects the non-µ-ordinary locus of S(γ).1903

Here is a sample application.1904

Theorem 8.4.1. [LMPT22, Theorem 1.2] Let γ = (m,N, a) be a monodromy datum. Let1905

p be a prime such that p - m. Let u be the µ-ordinary Newton polygon associated to γ.1906

Suppose there exists a µm-cover of P defined over Fp with monodromy datum γ and Newton1907

polygon u. Then, for any n ∈ Z≥1, there exists a smooth curve over Fp with Newton polygon1908

νn := un ⊕ (0, 1)(m−1)(n−1).1909

The slopes of νn are the slopes of u (with multiplicity scaled by n) and 0 and 1 each with1910

multiplicity (m− 1)(n− 1). If u is not ordinary, then for sufficiently large n, Theorem 8.4.11911

demonstrates an unlikely intersection of the Newton polygon stratification and the Torelli1912

locus in Ag.1913

8.4.2 Curves that are not µ-ordinary1914

Consider one of the Moonen special families of cyclic covers of P1. In [LMPT19, Theorem 1.1]1915

and [LMPT22, Theorem 7.1], the authors prove that every non-µ-ordinary Newton polygon1916

ν satisfying the Kottwitz conditions occurs on the open Torelli locus of this family, for every1917

prime p (with the condition that p is sufficiently large when ν is supersingular).1918

For the 14 one-dimensional Moonen special families, it is possible to say more. Building1919

on Example 6.5.5, for 1-dim special families, there is only one option for the a-number.1920

Example 8.4.2. [CP, Corollary 6.4] Consider the following families of cyclic degree m1921

covers:1922

ym = xa1(x− 1)a2(x− t)a3 .
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For primes p ≡ 1 mod m, the number of non-ordinary curves in the family has linear rate of1923

growth n(p− 1), where n is given below:1924

Label m a g n

M [1] 2 (1, 1, 1, 1) 1 1/12

M [3] 3 (1, 1, 2, 2) 2 1/6

M [4] 4 (1, 2, 2, 3) 2 1/8

M [5] 6 (2, 3, 3, 4) 2 1/6

M [7] 4 (1, 1, 1, 1) 3 1/12

M [9] 6 (1, 3, 4, 4) 3 1/12

M [11] 5 (1, 3, 3, 3) 4 1/30

M [12] 6 (1, 1, 1, 3) 4 1/12

M [13] 6 (1, 1, 2, 2) 4 1/6

M [15] 8 (2, 4, 5, 5) 5 1/8

M [17] 7 (2, 4, 4, 4) 6 1/21

M [18] 10 (3, 5, 6, 6) 6 3/10

M [19] 9 (3, 5, 5, 5) 7 1/18

M [20] 12 (4, 6, 7, 7) 7 1/6

1925

The family M [1] is the Legendre family and the families M [3, 4, 5] are studied in [IKO86].1926

8.4.3 Other references1927

Other work on this topic can be found in [Elk11] and [Á14].1928

8.5 Open questions1929

8.5.1 Newton polygons on special abelian families1930

Question 8.5.1. For one-dimensional special families of abelian (non-cyclic) covers X →1931

P1: find the Newton polygons and Ekedahl–Oort types that occur for curves in these families;1932

for primes such that the generic curve in the family is ordinary, find the rate of growth of1933

the number of non-ordinary curves in the family.1934

8.5.2 Field of definition1935

Almost nothing is known about the following question.1936

Question 8.5.2. Fix g ≥ 4 and a prime p. Suppose η is a Newton polygon or Ekedahl–Oort1937

type which occurs on Mg in characteristic p. Is Ag[η] ∩ T ◦(Fp) non-empty?1938

Alternatively, does there exists a curve of type η that is defined over Fp?1939

A good starting point for this question is to consider the 1-dimensional special families1940

in Chapter 8 and consider the field of definition of the basic points.1941
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Chapter 91942

Projects1943

These notes are written for my project group at the 2024 Arizona Winter School. A longer1944

more detailed version of this chapter is available upon request. If you write a paper about1945

any of these problems, please thank the Arizona Winter School, Steven Groen, and myself.1946

In this chapter, we collect some of the open problems described in the lecture notes.1947

Section 9.1 contains problems about the Torelli locus over the complex numbers. The later1948

sections contain problems about non-ordinary Jacobians and the intersection of the open1949

Torelli locus with the Newton polygon strata. A subset of the problems will be a focus for1950

the AWS projects.1951

Most of these problems are difficult and any progress will be valuable. Sometimes I1952

describe an open question only in a special case.1953

9.1 Problems in characteristic zero1954

Question 9.1.1. (See Question 2.6.1) [ES93] Given g ≥ 2, does there exist a smooth curve1955

X of genus g such that the Jacobian JX is isogenous to a product of g elliptic curves?1956

Currently, the first unknown cases are g = 59 and g = 66.1957

Question 9.1.2. (See Question 5.5.1) If g ≥ 3, what is the maximum dimension of a1958

complete subspace of Mg?1959

Currently, it is not known whether there is a complete subspace of dimension 2 in M4.1960

Question 9.1.3. (See Question 7.5.1) What is the largest g for which there is a coun-1961

terexample to the Coleman conjecture? This means that there are infinitely many smooth1962

projective curves C of genus g such that Jac(C) has complex multiplication.1963

Is Oort’s conjecture true? It states, if g ≥ 8, that there is no positive-dimensional special1964

subvariety of Ag contained in the Torelli locus, and intersecting the open Torelli locus.1965

Currently, I believe the situation is determined for families of curves with automorphisms1966

for g ≤ 9, with all counter examples occurring for g ≤ 7. There are a lot of references on this1967

topic. For a starting point, see the work of Moonen [Moo10], Moonen and Oort [MO13], or1968

the work of Frediani, Ghigi, and Penegini [FGP15], which contains many references.1969

69



Rachel Pries The Torelli locus and Newton polygons

9.2 Counting non-ordinary curves1970

The idea in this section is to count the number of curves having a particular arithmetic1971

invariant η. Using the main ideas in arithmetic statistics, this count will provide information1972

about the dimension of the stratum Sη of curves with that invariant and the number of1973

components of Sη. These questions will be fun from a computational standpoint. It is not1974

clear to me how much data is needed to provide good evidence.1975

9.2.1 The question1976

Question 9.2.1. (See Question 4.5.2) Determine the rate of growth of the number of curves1977

over Fp (up to geometric isomorphism) having the following types as p grows.1978

1. Non-ordinary curves of genus 4 (resp. of genus 5);1979

2. p-rank 0 curves of genus 4 (resp. of genus 5);1980

3. Supersingular curves of genus 4.1981

See also Question 6.5.1 and Question 6.5.3. Let’s work over the finite field K = Fp of odd1982

characteristic p. Several papers of Harashita and Kudo may be helpful for these questions.1983

9.3 Supersingular curves in special families1984

This section contains a series of problems about supersingular curves in special families of1985

curves. We consider a family F of curves that are Galois covers C → P1. Recall that the1986

family is special if the image of the Torelli morphism is open and dense in a component of1987

the associated Shimura variety. Intuitively speaking, this means that the dimension of the1988

family of curves equals the dimension of the family of abelian varieties whose endomorphism1989

algebra has a compatible structure.1990

This section is organized into three subsections that describe different types of families.1991

Based on the state of knowledge, we focus on a different question in each subsection.1992

9.3.1 Supersingular curves in two-dimensional special families1993

Question 9.3.1. The following result was proven in [LMPT22, Theorem 7.1] for primes1994

(satisfying the given congruence condition) that are sufficiently large. In the family F , for1995

the prime p >> 0, there is a smooth curve that is supersingular.1996

1. M [6]: the family is F : y3 = x(x− 1)(x− t1)(x− t2), so g = 3, with p ≡ 2 mod 3.1997

2. M [8]: the family is F : y4 = x(x− 1)(x− t1)2(x− t2)2, so g = 3, with p ≡ 3 mod 4.1998

3. M [10]: the family is F : y3 = x(x−1)(x−t1)(x−t2)(x−t3), so g = 4, with p ≡ 2 mod 3.1999

4. M [14]: the family is F : y6 = x2(x− 1)2(x− t1)2(x− t2)3, so g = 4, with p ≡ 5 mod 6.2000

5. M [16]: the family is F : y5 = x(x− 1)(x− t1)(x− t2), so g = 6, with p ≡ 2, 3, 4 mod 5.2001

70



Rachel Pries The Torelli locus and Newton polygons

Give a complete description of the supersingular locus in these families. In particular, remove2002

the condition that the prime needs to be sufficiently large.2003

The case M [16] is the most interesting one in the table above.2004

9.3.2 Field of definition of supersingular curves in special families2005

Question 9.3.2. The following result was proven for primes (satisfying the given congruence2006

condition) that are sufficiently large [LMPT19, Theorem 7.1]: In the family F , for the prime2007

p >> 0, there is a smooth curve that is supersingular.2008

1. M [15] : y8 = x2(x− 1)(x− t), with genus 5, when p ≡ 7 mod 8;2009

2. M [17] : y7 = x(x− 1)(x− t), with genus 6, when p ≡ 3, 5, 6 mod 7;2010

3. M [19] : y9 = x(x− 1)(x− t), with genus 7, when p ≡ 2 mod 3;2011

4. M [20] : y12 = x4(x− 1)(x− t), with genus 7, when p ≡ 11 mod 12.2012

What is the field of definition of those supersingular curves?2013

Remark 9.3.3. A result that removes the condition p >> 0 may appear soon.2014

9.3.3 Special families of non-cyclic covers2015

Question 9.3.4. (See Question 8.5.1) In [MO13, Table 2, page 38], Moonen and Oort found2016

seven special families of curves, for which each curve in the family is an abelian (non-cyclic)2017

cover C → P1. We focus on the five families for which the genus is bigger than 2 (namely,2018

3 or 4). For each of the families, for a fixed prime p:2019

1. Find the Newton polygons satisfying the Kottwitz conditions for the family.2020

2. Under what conditions is there a smooth supersingular curve in the family? Over what2021

field is it defined?2022

3. For the four such families that are 1-dimensional, find the rate of growth of the number2023

of supersingular curves in the family.2024

Question 9.3.5. In [FGP15, Table 2], Frediani, Ghigi, and Penegini found thirteen special2025

families of curves for which each curve in the family is a non-abelian Galois cover C → P1.2026

We focus on the ten families for which the genus is bigger than 2 (namely, 3, 4, 5, or 7).2027

For each of the families, for a fixed prime p:2028

1. Find the Newton polygons satisfying the Kottwitz conditions for the family.2029

2. Under what conditions is there a smooth supersingular curve in the family? Over what2030

field is it defined?2031

3. For the eight such families that are 1-dimensional, find the rate of growth of the number2032

of supersingular curves in the family.2033
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9.4 Double covers2034

Let p be an odd prime. Let k = k̄ with char(k) = p.2035

9.4.1 The p-ranks of double covers of an elliptic curve2036

Let E be an elliptic curve. Let n ≥ 1. Let B be a set of 2n distinct points of E. We are2037

going to study double covers φ : C → E branched at B. Try to prove this lemma!2038

The involution on C acts as an automorphism of order 2 on Jac(C). The new part2039

Jacnew(C) is the subabelian variety of Jac(C) which is negated under this action.2040

Recall that a curve is ordinary if its p-rank equals its genus.2041

Question 9.4.1. Prove that Jacnew(C) is ordinary for a generic choice of 2n points.2042

Prove that there exists a set of 2n points such that Jacnew(C) is not ordinary.2043

Question 9.4.2. (See Question 6.5.7) Study the dimensions of the p-rank strata of the2044

moduli space of double covers of a fixed elliptic curve with 2n branch points.2045

9.4.2 Non-ordinary curves in complete families of Mg2046

Recall the construction of a complete curve W in Mg by Gonzalez Diez and Harvey.2047

Theorem 9.4.3. [GDH91] If g ≥ 3, there exists a complete curve in Mg.2048

Proof. Construction: Take E : y2 = x3 − 1 an elliptic curve and X : y2 = x6 − 1 which2049

has genus 2. The double cover τ : X → E is branched above (0, i) and (0,−i). Let r be2050

even. Choose points Q1 = 0E, Q2, . . . , Qr ∈ E such that Qi − Qj is not a 2-torsion point.2051

Let W = {(P, P +E Q2, . . . , P +E Qr) | P ∈ E}. Note that W ⊂ Er −∆ and W ∼= E. Let2052

T ⊂ Xr −∆ be the set of points ~x = (x1, . . . , xr) such that τ(xi) = τ(x1) +E Qi. Then T is2053

complete and dim(T ) ≥ 1.2054

Now take r = 2(g− 3). For each point ~x ∈ T , consider the cover Z → X branched at the2055

r coordinates of ~x. By the Riemann–Hurwitz formula, Z has genus g. The curves are not2056

isomorphic (by Riemann’s existence theorem). This produces a complete curve in Mg.2057

Question 9.4.4. Let C be a curve produced in this construction. What are the possibilities2058

for the Newton polygon of C?2059
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9.5 The geometry of the supersingular locus2060

The questions here are very interesting to me, but I do not have a strategy to solve them.2061

Question 9.5.1. (See Question 6.5.6) Determine the intersection of the supersingular locus2062

of M3 with the boundary of M3; similar question for the hyperelliptic locus H3.2063

Here is more information about this question.2064

Let Ag[ss] (resp. Mg[ss]) denote the supersingular locus of Ag (resp. Mg).2065

The dimension of each component of A3[ss] is two. As seen in Valentijn’s lecture series,2066

the generic point of each component represents an abelian variety X having p-rank 0 and2067

a-number 1. This implies that X is not isomorphic to a product of p.p. abelian varieties of2068

smaller dimension. Thus X is the Jacobian of a smooth curve of genus 3. Since the Torelli2069

map is injective, it follows that M3[ss] is non-empty and its components have dimension 2.2070

Let S denote one such component.2071

By Theorem 5.3.1 ( [Dia87a, Theorem 4], [Loo95b, page 412]), if Z ⊂ M3 is complete,2072

then dim(Z) ≤ 1. Thus S is not complete in M3. Let S̄ denote its closure in M̄3. Because2073

S is contained in the p-rank 0 locus, S̄ does not intersect ∆0. Thus S̄ intersects ∆1 and the2074

intersection S̄ ∩∆1 has dimension 1.2075

However, there are components of M̄3[ss] that have dimension 2 and are completely2076

contained in the boundary of M̄3. Specifically, these are the components of the image2077

of M1;1[ss] × M̄2;1[ss] under the clutching map. These components have dimension 2.2078

Concretely, we take a supersingular elliptic curve E, marked at the identity point. There2079

is a 1-parameter family of supersingular curves C of genus 2, and a 1-dimensional choice of2080

marked point P on C. Then we clutch C and E together at the marked points.2081

The question asks for a description of the intersection of S̄ with ∆1. Specifically, we2082

would like to understand which points of M1;1[ss]× M̄2;1 are in the intersection.2083

Here is an alternative way to phrase this question.2084

Question 9.5.2. Which points of M1;1[ss] × M̄2;1 can be deformed to a smooth curve of2085

genus 3 that is supersingular?2086

There is also a hyperelliptic version of this question. In that case, a component S ofH3[ss]2087

has dimension 1. The hyperelliptic locus is affine so S meets the boundary of H3, specifically2088

∆1. The intersection of S̄ with ∆1 has dimension 0. However, there are components of H̄3[ss]2089

that have dimension 1 and are fully contained in the boundary. Specifically, these are in the2090

image ofH1;1×H2;1. This has dimension 1 because the marked points need to be ramification2091

points for the hyperelliptic involution. So the question is which supersingular curves of genus2092

2 can appear in this intersection.2093

These questions are for g = 3, which is easier because the open Torelli locus is open and2094

dense in A3, meaning that almost every p.p. abelian threefold is the Jacobian of a smooth2095

curve of genus 3. (These questions can be generalized for every g ≥ 3.) However, one reason2096

they are difficult is the following. For a curve C of genus 3 over Fq, the supersingular condition2097

can be described using the Newton polygon of its L-polynomial. However, to answer these2098

questions, I think it is necessary to have an algebraic description of the supersingular locus,2099

and this description may be highly dependent on the prime p.2100
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9.6 Problem about Ekedahl–Oort strata2101

This project is still in development. Based on feedback from the project group, this section2102

will not be developed further at this time.2103

Here is a question from Chapter 3. The main technique to approach this problem uses2104

algebra and combinatorics. It has a potential geometric application about Ekedahl–Oort2105

types of Jacobians of curves.2106

Question 9.6.1. (See Question 3.5.1) For 5 ≤ g ≤ 10, determine the Newton polygons2107

(resp. Ekedahl–Oort types) having p-rank 0 with this property:2108

1. in the partial ordering of Newton polygons (resp. Ekedahl–Oort types) of Ag, the dis-2109

tance to the ordinary type is at most 2g − 2.2110

In other words, determine the Newton polygons and Ekedahl–Oort types having p-rank2111

0 whose strata have codimension at most 2g − 2 in Ag.2112

Here is some motivation for this question. Try to prove these lemmas!2113

Lemma 9.6.2. Suppose S ⊂ Ag is such that codim(S,Ag) ≤ 2g − 2. If S intersects the2114

image of Mct
g in Ag, then the intersection has dimension at least g − 1.2115

Example 9.6.3. Suppose g = 4. We are looking for Newton polygons and Ekedahl–Oort2116

types that have p-rank 0 and whose strata have codimension at most 6 in A4. This means the2117

strata has dimension at least 4. For Newton polygons, the only option is the supersingular2118

one. For Ekedahl–Oort types, the options are:2119

1. [0, 1, 2, 3] stratum has dimension 6.2120

2. [0, 1, 2, 2] stratum has dimension 5.2121

3. [0, 1, 1, 2] stratum has dimension 4.2122

For each of these: can you tell whether the stratum intersects the image of Mct
g in A4? If2123

yes, what can you say about the intersection?2124

For working on this question, it will be important to understand how to describe the2125

structure of the mod p Dieudonné module for the Ekedahl–Oort type.2126
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