MODEL THEORY PROBLEM SET 5

Throughout, p is either a prime number or p = 0.

Beginner problems

- **Question 1:** Show that ACF_p has no finite models.
- Question 2: Let $K \models ACF_p$. Show that every definable subset of K is either finite or cofinite.
- **Question 3:** Let T be an \mathcal{L} -theory with quantifier elimination. Let $\mathcal{L}_c = \mathcal{L} \cup \{c\}$, where c is a new constant symbol. Let T_c be any \mathcal{L}_c -theory which extends T. Show that T_c has quantifier elimination.
- **Question 4:** Let $K \subset L$ be algebraically closed fields, and let $V, W \subseteq L^n$ be Zariski closed sets defined over K. Suppose there is a bijective polynomial map $f: V \to W$ defined over L. Show that there is a bijective polynomial map $g: V \cap K^n \to W \cap K^n$ defined over K.

Intermediate problems

- Question 5: Recall that Ax's theorem says that every polynomial map $f: \mathbb{C}^n \to \mathbb{C}^n$ which is injective must also be surjective. However, f may be surjective without being injective (think of $f(x) = x^2$ for example). Where does the proof seen in lectures break if you try to show that f being surjective implies injectivity?
- Question 6: Let $K \models ACF_0$. Let $V \subseteq K^n$ be a Zariski closed set and suppose that $f: V \to V$ is a polynomial map. Show that if f is injective, then it is also surjective.
- Question 7: We say that an \mathcal{L} -theory T eliminates \exists^{∞} if for any \mathcal{L} -formula $\phi(x, \bar{y})$, there is a natural number n_{ϕ} such that for all models \mathcal{M} of T and all \bar{a} in M, the set $\{x \in M : \phi(x, \bar{a})\}$ is infinite if and only if it has more then n_{ϕ} elements. Prove that ACF_p eliminates \exists^{∞} . Hint: Suppose not, as witnessed by $\phi(x, \bar{y})$. Show by compactness that there is a model $K \models ACF_p$ and parameters \bar{a} in K such that the set $\{x \in K : \phi(x, \bar{a})\}$ is neither finite nor cofinite. Then use Question 2.
- **Question 8:** Suppose that $K \models ACF$, and let $I \subset K[x_1, ..., x_n]$ be a maximal ideal. Prove that $I = (x_1 a_1, ..., x_n a_n)$ for some $a_1, ..., a_n \in K$. (Hint: use the Weak Hilbert's Nullstellensatz.)

Advanced problems

- Question 9: Let $\mathcal{L}_c = \{+, -, \times, 0, 1, c\}$ extend the language of rings by a new constant symbol c. Let $ACF_p(c)$ be the theory ACF_p , but viewed as an \mathcal{L}_c -theory (we don't add any axioms describing how c is interpreted). Of course, $ACF_p(c)$ is not complete; for example, we may interpret c to be 0, or 1, or $\sqrt{2}$. What are the completions of $ACF_p(c)$? That is, describe all of the complete \mathcal{L}_c -theories which extend $ACF_p(c)$. Hint: By Question 3, we know that $ACF_p(c)$ has quantifier elimination, so we can use Proposition 5.11.
- Question 10: Let K be a countable model of ACF_0 , and let $\Sigma(x)$ be a finitely satisfiable set of formulas with parameters from K. Show that there is $t \in \mathbb{C}$ satisfying all the formulas in $\Sigma(x)$.