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1 Lecture #1: Roots of Unity and Langs Conjecture

1.1 Problem formulation and motivation

We begin by discussing at length the prototypical special point problems, Lang’s con-
jecture. The context for this conjecture is that we shall be working in (C×)n and we
shall be interested in points all of whose co-ordinates are roots of unity. We could call
these special points, but they already have a name: they are the torsion points if we
think of (C×)n as (the complex points of) an algebraic group.

The basic question we are trying to answer is: What kinds of polynomials have
‘many’ solutions in torsion points?

There are of course lots of examples one can cook up stemming from the fact that
products of roots of unity are roots of unity. Thus, xmyn − 1 is an example for any
non-zero pair of integers (m,n). In other words, any polynomials which express a
multiplicative relations constitute an example.

One could think of this as yet another instance of trying to relate multiplication
and addition to each other: The torsion points are defined purely multiplicatively and
without reason to think otherwise, we view additive relations to be ‘coincidental’. Now
this is not to say that these never happen: In fact, for any finite set of torsion points

2



one can come up with arbitrarily many polynomial relations they all satisfy. However,
an easy heuristic is that while coincidences can happen, they should be rare, and in
this case we take that to mean ‘finite’. The basic instance of Lang’s conjecture is
therefore the following:

Conjecture 1.1 (Lang for n = 2). Let f(x, y) ∈ C[x, y, x−1, y−1]1 be an irreducible
polynomial. If f(x, y) = 0 has infinitely many zeroes in roots of unity, then up to a
unit f is equal to xmyn− η for some relatively prime pair of integers (m,n) and a roof
of unity η.

In higher dimensions a couple of things change: First, it becomes way more conve-
nient to use the language of algebraic varieties then systems of polynomial equations,
so we make a slight adjustment in looking for varieties which contain many torsion
points. Secondly, we have to be wary of the following situation: You could have a
surface S ⊂ (C×)3 which has no ‘multiplicative structure’, but which contains for in-
stance the diagonal curve C = {(x, y, z) | x = y = z}. Then S will contain infinitely
many torsion points stemming from C, but this is not really expressing anything about
S. Thus, we change the statement from containing infinitely many torsion points to
containing a Zariski-Dense set of torsion points (Recall that the Zariski topology is a
very coarse topology in which the only closed sets are closed subvarieties, and so the
Zariski-closure of a set is the smallest subvariety which contains it).

We are now almost ready to formulate Langs conjecture. What we are missing is
a precise statement for what a ‘multiplicative’ variety should be in high dimensions.
Luckily, the group structure of (C×)n provides such an answer:

Definition 1.1. 1. A closed subvariety T ⊂ (C×)n is a subtorus if it is an irre-
ducible subvariety which is also a subgroup: I.e. an irreducible group subvariety.

2. A closed subvariety V ⊂ (C×)n is a torus coset is it is of the form zT where T is
a subtorus and z ∈ (C×)n

3. A closed subvariety V ⊂ (C×)n is a torsion coset is it is of the form zT where T
is a subtorus and z ∈ (C×)n is a torsion point.

Here are some exercise to get you used to these structures:

Exercise 1.2. 1. Prove a torus coset is a torsion coset iff it contains a torsion point

2. Prove that a torsion coset contains a Zariski-dense set of torsion points.

3. We can identify Zn ∼= Hom
(
(C×)n,C×) with the set of Monomials by sending

(a1, . . . , an) →
n∏

i=1

xaii . Every subgroup G ⊂ Zn defines an algebraic subgroup

TG ⊂ (C×)n) by setting

TG := {z | ∀g ∈ G, g(z) = 1}.

Prove that TG is a subtorus iff G is saturated in Zn (i.e. Zn/G is torsion free)
and that all subtori arise uniquely in this way.

1Note that as we are working in C× is is natural to work with Laurent polynomials.
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4. Find a natural bijection between torsion cosets, and pairs (G, f) where G ⊂ Zn

is a subgroup, and f ∈ Hom((Zn/G)tor,C×).

We can now finally formulate Langs conjecture:

Conjecture 1.2. Let V ⊂ (C×)n be an irreducible subvariety, and suppose that that
torsion points in V are Zariski-dense. Then V is a torsion coset.

1.2 Galois orbits and Bezouts theorem

The first observation we make is that though Conjecture 1.2 is formulated for complex
varieties, it is immediately reducible to the case of varieties defined over number fields.
This is the case simply because all the roots of unity, and hence the torsion points, are
defined over Q and thus so is their Zariski closure V . Therefore, V is defined over a
number field K. From now on we implicitly make this assumption.

One way in which this setting is the easiest is the precise control we have on the
Galois action on roots of unity. Recall the following:

For each n, let ζn ∈ Q be a primitive n′th root of unity and for convenience assume

that ζmmn = ζn. Let Qcyc :=
⋃
n

Q(ζn) be the Cyclomotic field. Then

(Z/nZ)× ∼= Gal(Q(ζn)/Q)

where a ↔ σa acts via σa(ζn) = ζan. Taking the inverse limit this gives us an isomor-
phism

Ẑ× ∼= Gal(Qcyc/Q).

The basic role played by the Galois group is the following observation: If a variety
V contains a torsion point, it must contain all of its Galois conjugates as well. This
makes the assumption much stronger because we can then try to make the following
sorts of arguments:

• It is hard to contain too many torsion points of the same order.

• The torsion points ‘repel’ each other, so once you contain one it is hard to contain
others.

• The torsion points have some kind of transcendental complex or p-adic structure,
so our variety ‘looks linear’ from a certain point of view.

In this case, we have the following basic asymptotic estimates

Proposition 1.3. Let K be a fixed number field and η⃗ = (η1, . . . , ηn) ∈ (C×)n

be a torsion point of order m. Then

1. #Gal(Q/K) · η⃗ ≥ φ(m) · [K : Q]−1

2. There is a prime number p of size O(logm) such that (η⃗)p
[K:Q]! ∈ Gal(Q/K) · η⃗
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Proof. For the first part, first note that the statement is an exact equality if K = Q
by the description given above. In the case where K ̸= Q the statement follows from
the fact that Gal(Q/K) < Gal(Q/Q) is a subgroup of index [K : Q].

For the second part, we note that Gal(Q/Q) is surjecitve onto (Z/mZ)×, and so
contains the element p whenever (p,m) = 1. It is elementary that such a prime number
p exists of size O(logm) (Ex: Prove this using the prime number theorem). It is now
sufficient to note that the [K : Q]! power of any element of Gal(Q/Q) lies in Gal(Q/K).

We can now give our first proof of Lang’s conjecture:

Proof. of Conj 1.2: We first give the proof for the case where n = 2. So suppose that
C ⊂ (C×)2 is an irreducible curve, which contains infinitely many torsion points. As
above, we can assume that C is defined over a number field K. Let C be a degree d
curve, when considered as a subset of P2 in the natural way.

Let z ∈ C be a torsion point of exact order m. By Proposition 1.3, for large
m we may find an integer N of size (logm)O(1) and relatively prime to N such that
zN ∈ GK · z and is therefore also on C.

Lemma 1.4. Let [N ]C be the irreducible curve obtained by pushing forward C along
the multiplication by N map. For large enough m, we have C = [N ]C.

Proof. Note that zN ∈ [N ]C, and that by construction zN ∈ GK · z. Therefore, z
is also in [N ]C (note that the curve [N ]C is also defined over K). It follows that
GKz ⊂ C ∩ [N ]C. Now assume for the sake of contradiction that C ̸= [N ]C and we
derive a contradiction by comparing a lower and upper bound for #(C ∩ [N ]C):

• Upper bound: The degree of [N ]C can be computed by intersecting with a
generic line L. Thus

deg[N ]C = #([N ]C ∩ L) ≤ C ∩ [N ]∗L ≤ dN

where the final inequality follows by Bezouts theorem. Thus, we conclude that

#(C ∩ [N ]C) ≤ degC deg[N ]C ≤ d2N.

• Lower Bound On the other hand, we know that the intersection contain GK · z
and thus by Proposition 1.3 we have

#(C ∩ [N ]C) ≥ #GK · z ≥ [K : Q]−1φ(m)

We now get a contradiction by observing that φ(m) = m1+O(1) which grows faster
than (logm)O(1).

We now complete the proof using the following lemma:

Lemma 1.5. Suppose that C ⊂ (C×)2 is an irreducible curve such that C = [N ]C for
some positive integer N > 1. Then C is a torsion coset.
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Proof. If C is a fiber than the statement is clear so we assume this is not the case.
Pick a root of unity a ∈ C such that π−1

1 (a) ∩C is non-empty, and consists of smooth
points of C. Then by replacing N by one of its powers we may assume that aN = a.
Then there are only finitely many points in C ∩π−1

1 (a) which must be mapped to each
other by the N ’th power map. By replacing N by one of its powers and changing b we
may again assume that bN = b. Next, replacing C by (a, b)−1 ·C we may assume that
Id = (1, 1) ∈ C and is a smooth point.

We consider the analytic germ of C around Id. Consider the inverse image D of C
around (0, 0) under the exponential map (z, w)→ (ez, ew). This is a local isomorphism,
and C being locally invariant under the N ’th power map means D is invariant under
(z, w)→ (Nz,Nw). We may write the defining equation forD as a power series in z, w,
and the invariance condition means that the power series is homogenous. Moreover,
since D is smooth by assumption it must be linear, and thus D is the germ of a line.

As an alternative argument, one may notice thatM ·D looks more and more linear
as M → ∞, as we are ‘zooming further and further in’. Thus D = N iD for any i
which becomes linear as i→∞ and therefore D is a line.

Exercise 1.6. Flesh this out into a complete proof!

Hence C is locally analytically defined by x = yα for some complex number α.
Since C is algebraic it follows that α must be rational and the lemma is proved.

1.2.1 Generalization to higher dimensions

We explain how to generalize this proof to the case of V ⊂ (C×)n. The ideas are the
same, but the geometric book-keeping can add some complexity, and one must also
take into account that V might contain positive dimensional torsion cosets.

The reason the proof doesn’t immediately generalize is that now there are more
options other than V = [N ]V and V ∩ [N ]V is finite. The intersection could be of
intermediate dimensions. Before proceeding we list a very useful generalization of
Bezout’s theorem due to Fulton[10, Theorem 12.3]:

Theorem 1.7. Let V1, . . . , Vn be irreducible subvarieties of projective space of degrees
d1, . . . , dn. Let W1, . . . ,Wk be the irreducible components of

⋂n
i=1 Vi. Then

k∑
i=1

degWi ≤
n∏

j=1

dj .

Note that this is not a strict generalization as written, as we have not included
intersection multiplicities. Fulton in fact does this, but their definition is complicated
and the above is sufficient for all our purposes.

The prototypical case we now consider is the following:
We suppose that V ⊂ (C×)3 is an irreducible surface which contains a Zariski-dense

set of Torsion points.
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Now suppose that V contains an m-torsion point z. By picking an appropriate
N = (logm)O(1) as before we conclude that V ∩ [N ]V also contains z. Now there are
three options.

1. V = [N ]V . In this case we run the same argument as before to conclude that V
is a torsion coset.

Exercise 1.8. Run this argument!

2. V ∩ [N ]V is a union of curves C1, . . . , Cs. In this case Bezouts theorem tells us
that the sum of the degree of the Ci is at most deg V deg[N ]V ≤ N3 deg V 2.
Wlog z ∈ C1. We now repeat the argument and consider C1 ∩ [N ]C1

(a) C1 ̸= [N ]C1. In this case we get a contradiction using Fultongs generalized
Bezouts theorem 1.7.

(b) C1 = [N ]C1. We now conclude as before that C1 is a torus coset.

Thus only the last case remains to be addressed, and the situation we find ourselves
in is that all the roots of unity in V , with finitely many exceptions, and contained in
1-dimensional torsion cosets. Now if the cosets were all cosets of the same torus we
would easily reduce the dimension and conclude by induction. The issue is how to
deal with torsion cosets of distinct tori. The most robust way of dealing with this
case in modern terms is either through equidistribution (which we shall discuss in the
next section) or through o-minimality (which Jonatha Pila will go into in great detail).
Here, we explain how we can finish the proof using the same method as before. In
fact, we prove the following more general theorem

Proposition 1.9. Let V ⊂ (C×)n be a degree d irreducible variety. Then there are
only finitely many torsion cosets of dimension d contained in V .

Proof. Assume not for the sake of contradiction, and write these cosets as giTi ⊂ V
where gi is a torsion point and Ti is a torus. It will be important for us to note that
all subtori of (C×)n are defined over Q (In general, subtori of split tori are split).

We shall run the same argument as before, but we let mi denote the order of the
image gi of gi in the quotient space (C×)n/Ti. We first that the mi are bounded.

Note that the latter is isomorphic as a Q-algebraic group to (C)r for some r. As
V is defined over K, it must contain the entire Galois orbit of giTi, and the number of
cosets of Ti is precisely the Galois orbit of gi. By Proposition 1.3 this is at least of size
[K : Q]−1φ(mi). Moreover, since Ti is a subgroup, by the same proposition we may
find an N > 1 with N = (logmi)

O(1) such that all of these cosets are also contained
in [N ]V . We now define Vk iteratively as V0 = V , Vi+1 ⊂ Vi ∩ [N ]Vi is the irreducible
component containing as many of the cosets in Gk · (giTi) as possible. The dimension
can drop by 1 at most n times, and so after n steps we obtain Vn = [N ]Vn. Thus as
before Vn is a torsion coset, and thus it must be maximal by our assumptions.

An easy estimate using Theorem 1.7 gives

deg(Vi) ≤ deg V Nn2id2
i

, which also bounds the number of components in our intersections, and thus by
induction shows that Vn contains at least a fraction of 1

Nn2n+1
d2

n+1 of all the torsion
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cosets. But in fact it only contains 1 - itself! By our assumption N = mi
o(1), and this

gives a contradiction if mi is unbounded.
We may thus assume that the mi are bounded. And in fact, replacing V by [M ]V

forM the LCM of all the torsion orders, we may assume that the mi are all 1. Thus all
the maximal-dimensional torsion cosets in V are actual tori. However, for any torus
Ti we have Ti = [2]Ti.Thus the Zariski closure W of all the Ti is stable under the
squaring-map, and thus all of its irreducible components are stable under the [2t] map
for a large enough t. Thus they must be torsion cosets, and by maximality must be
the Ti themselves. As the number of components is alwys finite, there are only finitely
many such Ti to begin with.

1.3 Equidistribution: Bilu’s Theorem

Equidistribution is by now a common approach to such questions, often involving
sophisticated techniques related to dynamics and ergodic theory. Here, however, we
can give an elementary example of its usage. We recall that given a compact Hausdorff
space X we let M(X) denote the space of all Borel measures. We give this space
the weak-* topology, meaning that a sequence µi ∈ M(X) converges to µ iff for all
continuous functions f on X we have

∫
fdµi →

∫
fdµ. It is well known that the

weak-* topology is compact.
We shall study the Galois orbits of torsion points in (S1)n ⊂ (C×)n and their

distributions.

Definition 1.10. For x ∈ C we let δx denote the delta measure supported on x. For
α ∈ Q, we define µα := 1

m

∑m
i−1 δαi where {α1, . . . , αn} are the conjugates of α.

Note that a more uniform way to express µα is as
∫
GQ
δgαdg where GQ is given its

Haar measure.

Lemma 1.11. Let µm := µζm where ζn is a primitive n’th root of unity. Then µm → µ
where µ is the Haar measure on S1.

Proof. By the Stone-Weierstrass theorem, it is enough to check convergence on the
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functions t→ tk for k ∈ Z. We thus compute, for k ≥ 1, that∫
tkdµm =

1

φ(n)

∑
(d,m)=1
1≤d≤m

ζdkm

=
1

φ(m)

∑
a|m

µ(a)
∑

1≤c≤m
a

ζcakm

=
1

φ(m)

∑
a|m

µ(a)
m

a
δ(m | ak)

=
1

φ(m)

∑
a|m
m|ak

µ(a)
m

a

=
1

φ(m)

∑
b| m

gcd(m,k)

µ(b gcd(m, k))
m

gcd(m, k)b

= O
( k2

φ(m)

)
Now note that for k fixed and m large this goes to 0, which establishes the claim.

The case of negative k follows as the functions tk and t−k are complex conjugates.

We now generalize this to n-dimensions. first we generalize our definitions from
before:

Definition 1.12. For x ∈ Cn we let δx denote the delta measure supported on x. For

α ∈ Q
n
, we define µα := 1

m

∑m
i−1 δαi where {α1, . . . , αn} are the conjugates of α.

Lemma 1.13. Let x(i) ∈ Cn be a sequence of torsion points such that or any proper
algebraic subgroup H ⊂ Cn, only finitely many of the x(i) lie in H. Then µx(i) → µn

where µ is the Haar measure on S1.

Proof. We again apply the Stone-Weirestrass theorem to conclude that it is enough to
check equidistribution on f

k⃗
: (t1, . . . , tn) →

∏
i t

ki
i where ki ∈ Z. The case of k⃗ = 0

is clear so assume this is not the case. Now consider the map f
k⃗
: Sn → S1 given

by (t1, . . . , tn) →
∏

i t
ki
i . Then f

k⃗
preserves the Galois action, and hence f

k⃗,∗µx(i) =

µµφ(x(i))(x(i)). Now by assumption the sequence φ(x(i)) has only finitely many elements
of a fixed order, and thus by lemma 1.11 we conclude that µµφ(x(i))(x(i)) → µ. It follows
that ∫

f
k⃗
dµx(i) =

∫
tdf

k⃗,∗µx(i) =

∫
tdµµφ(x(i))(x(i)) →

∫
tdµ = 0

From this general form of Bilus lemma, it is easy to give the following proof of
Lang’s conjecture:
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Proof. of Conj 1.2
Suppose V ⊂ (C×)n is an irreducible variety with a Zariski-dense set of torsion

points. If V is contained in a proper algebraic subgroupthen some coset of V is
contained in a proper sub-torus and we can proceed by induction on n. Thus we
assume that V is not contained in any proper torsion-coset.

Now as before V is defined over some number fieldK, and we letW :=
⋃

σ:K→C
σ(V ).

ThenW is an algebraic variety defined overQ and V is one of its components. Moreover
torsion points are also Zariski dense in W .

As such, we may consider a sequence x(i) of torsion points in W , every subset of
which is Zariski dense (To do this, we simply enumerate the algebraic subvarieties of
W and pick x(i) to be outside the first i of the). Then x(i) satisfies the assumptions
of Lemma 1.13, and so µx(i) converges to Haar measure on (S1)n. Since W is closed
it follows that (S1)n ⊂ W . But it is elemetary that (S1)n is Zariski dense in Cn and
hence W = Cn, and thus V = Cn also.

Remark 1.14. 1. It is possible to prove analogues of 1.11 and 1.13 by considering
Galois conjugates over a fixed number field K instead of Q (Ex: do this!). This
avoides the need to form W in the proof above.

2. Bilu actually proved his lemma not just for torsion points but for points of small
height. The idea is the same but now things are more complicated for a number of
reasons, not least of which is that our points aren’t contained in S1 even though
the limiting measure is supported on it. Thus one has to worry about some
members of the Galois orbit being very large or very small, causing ‘escape of
mass’ phenomena. In fact Bilu uses an energy-minimization argument to prove
his theorem instead of the moments approach we took here.

3. Note that Lemma 1.13 can be viewed as an equidisribution version of Lang’s
conjecture, which is sunbstantially stronger. This can also be formulated for the
Manin-Mumford and André-oort conjectures. This is known in the former, but
remains wide open in most instances of the latter.

1.4 Zhang’s proof: defining equations

We sketch another proof of Zhang which generalizes this theorem to points of small
height. For details, [5, §4], and for background [5, §1]2

Recall that the height of a rational number m
n with gcd(m,n) = 1 is h(mn ) :=

logmax(|m|, |n|). One may generalize this to a height function h : Q→ R≥0. We give
a quick definition here and some properties:

• Let |·|p be a fixed p-adic norm on Q such that |p| = 1. Set log+ x := max(0, log x).
Then we set

h(α) :=

∫
GQ

∑
v

log+ |σ(α)|vdσ

2The reference also contains a detailed discussion of the unit equation and the Mordell-Lang con-
jecture, both deeply connected to what we are discussing.
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where the sum is over all primes as well as the archimedean place. Note that we
set h(0) = 0.

• h(α+ β) ≤ h(α) + h(β) +O(1)

• h(αβ) ≤ h(α) + h(β)

• h(x) = 0 iff x is a root of unity.

•
h(α) = h(α−1) =

∫
GQ

∑
v

− log− |σ(α)|vdσ

where log− x := min(0, log x)

Zhang proved a generalization of Conjecture 1.2 for points of small height instead
of just torsion points. The key is the following proposition [5, Lemma 4.2.8]

Theorem 1.15. Let f ∈ Z[x1, . . . , xn] be a polynomial with integer coefficients and
α ∈ Qn

such that f(α) = 0. There there is a constant c > 0, such that if h(α) < c
p for

a prime p such that p≫f 1 then f(αp) = 0..

Proof. Suppose that f(α) ̸= 0. Then on the one hand, using the assumptions and
the elementary properties of heights above we conclude that h(f(α)p) = Of,c(1). One
the other hand, f(α)p − f(αp) has coefficients divisible by p, so whenever σ(α) is
an algebraic integer it follows that log |f(σ(α)p)|p ≤ − log p+ p deg(f)

∑n
i=1 log

+ |αi|.
Summing we see that∫

GQ

log−1 |f(σ(α)p)|pdσ ≤ − log p+ p deg(f)h(α)

From which we conclude that h(f(αp)) ≥ log p+Of (1).

Armed with this Theorem, one may provide an alternative proof - technically with-
out using any Galois lower bound orbits!, though they are very much around the corner
- that if a variety contains a point of sufficiently small height, than so does its image
under the p’th power map. One then proceeds as before.

2 Lecture #2: Elliptic curves, Galois Representations
and Class Groups

2.1 Elliptic Curves

2.1.1 Definition

an Elliptic curve E is a smooth, projective, connected algebraic curve of genus one, on
which there is a specified point. This can be defined either over a field or one may also
work in families φ : E → S, in which case we interpert the point as a section f : S → E
and we call (E , φ) an elliptic curve over S.

There is a canonical Abelian group variety structure on E with the marked point O
as the origin. The simplest way to understand this structure is as such: A+B +C =
0 iff there is a non-constant rational function f on E whose associated divisor is
3O− (A+B+C). In other words, f has a triple pole at O and zeroes at A,B and C.

11



2.1.2 Complex Elliptic Curves

Over the complex numbers there is a uniformization of Elliptic curves. Namely, the
complex points of every Elliptic curve may be written as

E(C) ∼= C/L

for some discrete, rank 2 integral lattice L ⊂ C. Note that such a presentation is not
unique: the lattice L may be scaled by any complex number.

More canonically, elliptic curves have a 1-dimensional space of global regular dif-
ferentials ω, and given any point z ∈ E(C) one may form the complex number

∫ z
0 ω.

Now this is only well defined up to a choice of path γ from 0 to z, and any two paths
differ by a homology class H1(E,Z). We thus get a well defined map

E(C) ∼= H0(,Ω1
E)

∨/H1(E,Z)

which turns out to be an isomorphism.

2.1.3 Torsion Structure and the Tate module

If E is a complex elliptic curve, then it is easy to see by the uniformization E(C) ∼= C/L
that E(C)[n] ∼= 1

nL/L
∼= (Z/nZ)2. It turns out that for any field k of characteristic

relatively prime to p, we have E(k)[n] ∼= (Z/nZ)2.
in particular, for any prime ℓ relatively prime to the characteristic of k, we may

form TℓE := lim−→E(k)[ℓn] where the transition maps are given by multiplication by ℓ.

As a profinite group, TℓE ∼= Z2
ℓ . We call TℓE the ℓ-adic Tate module of E.

We get a far richer structure if k is not algebraically closed, because then we get
an induced Galois of Gk on TℓE. Studying these families of representations as ℓ varies
gives a lot of information.

2.1.4 Complex Multiplication

For a complex elliptic curve E, consider the endomorphism ring End(E). Writing
E(C) ∼= C/L it follows easily that

End(E) = {α ∈ C | αL = L

is either Z, or a quadratic ring over Z. We call the elliptic curves where End(E) is a
quadratic ring CM elliptic curves and say that E has complex multuplication

Such Curves are crucially important to the study of number theory. We hae the
following important lemma to start:

Lemma 2.1. CM elliptic curves are defined over Q:.

Proof. First, note that the property of having complex multiplication is algebraic, and
hence Galois-invariant.

Moreover, it is easy to see that there are only countably many such elliptic curves up
to isomorphism, since L must be (up to scale) spanned by 1 and a quadratic irrational,
of which there are only countably many.
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Finally, recall that Elliptic curves are classified up to isomorphism by their j-
invariant. Thus their j-invariant is a complex number with a countable orbit under
Aut(C). However, Aut(C) acts transitively on transcendental elements, and the claim
follows.

The Galois action on Elliptic curves with CM is also extremely easy to understand.
For a quadratic order R ⊂ K there is a class group Cl(R) consisting of invertible
fractional ideals modulo principal ideas. This is a finite abelian group, and there is a
natural abelian extension KR of K such that Gal(KR/K) ∼= Cl(R). Note that there
is a natural action of Cl(R) on the set of CM elliptic curves with endomorphism ring
R given as follows:

J · E := E ⊗R J.

Exercise 2.2. Prove that this gives a well defined action, and moreover that this
action is simply transitive.

We have the following theorem (see [16] for a thorough exposition to this theory).

Theorem 2.3. CM elliptic curves with Endomorphism ring R are all Galois conjugate
and defined over KR. Moreover, they form a torsor under Gal(KR/K) compatible with
the natural action of Cl(R).

We have the all-important Brauer-Siegel Theorem which will be responsible for
‘large Galois orbits’ in this context:

Theorem 2.4. |Cl(R)| = (R)
1
2
+o(1).

Proof. This is very much not a proof but one uses the class number formula, and this
reduces the question to obtaining estimates for the Dedekind zeta function residue at
s = 1.

Exercise 2.5. • Prove that if E does not have complex multiplication, then all
irreducible algebraic subbgroups of En are isomorphism to Em, and naturally in
bijection with vector subspaces of Qm.

• If E has CM by a quadratic order in a quadratic field K, prove that irreducible
algebraic subbgroups of En are naturally in bijection with K-vector subspaces
of Kn, and are isogenous to Em.

2.2 Manin-Mumford Conjecture

Definition 2.6. We may define torsion cosets of En in exactly the same way as for
Gn

m: as xH where x ∈ En is a torsion point and H ⊂ En
k
is an irreducible algebraic

subgroup.

We have the following analogue of 1.2

Theorem 2.7. Let E/C be an elliptic curve, an let V ⊂ En be an irreducible algebraic
variety. Then V contains finitely many maximal torsion cosets.
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This theorem was first proven by Raynaud for curves [25] and then in the general
case [26]. Raynauds brilliant proof used the observation that the Frobenius map on
Abelian varieties is inseparable, which imposes algebraic mod p2 conditions on torsion
points mod p. This observation alone suffices to handle prime-to-p torsion, and com-
bined with large Galois orbits to facilitate a complete proof that works for all torsion
orders.

We shall not give Raynauds proofs, but instead explain below how to generalize
the proofs using intersection theory and Equidistribution, as well as the proof given
by Pila-Zannier:

2.2.1 Reduction from C to Q

To get large Galois orbits one needs a large Galois action, and in particular for the
elliptic curve to be defined over a number field. Here we explain how to reduce to that
case. We thus assume the Manin-Mumford conjecture 2.7 for Q Elliptic curves.

Suppose that E is a complex elliptic curve. If E has CM then E can be defined over
Q, and so we assume that this is not the case. By taking the finitely generated subring
ι : R ←↩ C containing all the defining equations for E and for V (in some projective
embedding, say) we obtain an elliptic curve E over R, and a closed subvariety V ⊂ E ,
whose base-change to C via ι is (E, V ). We may think of i as a generic complex-valued
point of R. Note that X = R⊗Z Q is a scheme of finite type over Q, and by replacing
X by its reduced subscheme we may obtain an elliptic curve E over a Q-variety X with
a specialization via ι to E.

Now we fix a simply concected disc ∆X(C) which contains the point ι, and note
that analytically locally, we have a trivialization φ : En∆(C) ∼= ∆ × (S1)2n. Now let
S ⊂ (S1)2n denote the image of all the torsion points contained in V . Since ι is a
generic in X, it follows that the Q-Zariski closure of S ⊂ Vι contains all of ∆ × S.
Thus we have that ∆× S ⊂ V.

We let M ⊂ (S1)2n denote the smallest union of real-analytic -torsion cosets
which contain S. Now for any Q-point b ∈ X(Q) we are assuming Theorem 2.7 holds,
which means that {b} × S ⊂ φ(Vb) is contained in a finite union of algebraic torsion
cosets. Since algebraic torsion cosets are also real-analytic torsion cosets, it follows
that {b} × M ⊂ φ(Vb). Since the set of Q points is topologically dense in X, we
conclude that ∆×M ⊂ φ(V), and in particular that M ⊂ φ(V ).

It follows that all the torsion points in V are contained in a finite union of real-
analytic torsion cosets MV . Now it is easy to show that the Zariski-closure of a
subgroup of En(C) is an algebraic subgroup of En, and hence the same is true for a
torsion coset. Thus the Zariski-closure M zar

V is a finite union of torsion cosets which is
contained in V and contains all torsion points of V . The claim is thus proved. (Note
that the proof shows M zar

V =MV ).

Remark 2.8. These kind of reduction arguments have been used by Bombieri-Masser-
Zannier on Zilber-Pink questions as well, but they are often more challenging then
the above. In particular, we got really lucky in the above that the torsion points are
defined uniformly over all of X. Often, one has to worry about only being defined over
an open set, and those open sets shrinking as one considers more and more points.
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2.2.2 Large Galois Orbits

We need to establish that Galois orbits of torsion points are large. One may profitably
rephrase this statement in the following way: The image of the galois representation
ρE : GK → GL2(Z) is large, and in particular has large orbits. Now it depends what
one wants from this result. Work of Masser[17] - later greatly extended by Masser-
Wẅustholz as we shall see in lecture 3- allows one a lower bound of the following
form:

Theorem 2.9. Let E/K be an Elliptic curve. If x ∈ E(Q) is an order-N torsion
point, then [K(x) : X]≫E N δ for some fixed δ > 0.

This proof is based on Transcendence techniques and we shall say no more about
it here. The result is sufficent for the Pila-Zannier method to work, as all one needs is
a polynomial bound.

In this instance, however, it is possible to do much better, using a theorem of
Serre[27]:

Theorem 2.10. [Serre’s Open Image Theorem]
Let E/K be an elliptic curve.

1. If E does not have complex multiplication, then ρE(Gk) is an open subgroup of
GL2(Z), and in particular finite index.

2. If E has CM by a quadratic field EndQ(E) ∼= L, then ρE(Gk) is a finite index

subgroup of O×
L .

In particular, ρE(Gk) contains a finite index subgroup of the scalar group ×.

Theorem 2.10 is incredibly deep, with the second part being a consequence of the
theory of complex multiplication and the first part being a hard-fought theorem of
Serre. The advantage of this is it allows us to prove equidistribution results, as we
shall see in the next section.

2.2.3 Equidistribution Results

We borrow the notation for δx of §1.3. Motivated by Theorem 2.10 we shall consider
the following setup. Let G ⊂ (Ẑ)× be a finite index subgroup. For α ∈ En

tor we let
µα :=

∫
G δgαdg. Note that as topological group, E(C) ∼= (S1)2, so this setup is very

similar to what we encountered with Bilu’s lemma, with the onyl different being that
we consider G instead of all of (Ẑ)×.

Lemma 2.11. Let x(i) ∈ (S1)n be a sequence of torsion points such that or any proper
lie subgroup H ⊂ (S1), only finitely many of the x(i) lie in H. Then µx(i) → µn where
µ is the Haar measure on S1.

Proof. The reduction to the 1-dimensional case works the same as in 1.13, and so it
is sufficient to consider the case of n = 1. In this case, let N be the order of x ∈ S1.
Then let χ1, . . . , chr be the Dirichlet characters mod N which vanish on the image
of G, where r is bounded by the index of G and therefore uniformly bounded. Then
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to check convergence on the moments t → tk for k ∈ Z it is suffices to bound Gauss
sums of the form

1

φ(N)

∑
a mod N

χ(a)e
2πia
N .

It is well known that the absolute value of this sum is bounded by
√
N

φ(N) which converges
to 0. The proof is therefore complete.

This is almost enough to make the induction in the equidistribution claim hold up.
The problem is that there are lie subroups of (C)n which are not algebraic. Thus, we
need to upgrade lemma 2.11 to take into account the algebraic structure of E:

Lemma 2.12. Let x(i) ∈ En be a sequence of torsion points such that for any proper
algebraic subgroup H ⊂ En, only finitely many of the x(i) lie in H. Then µx(i) → µ2n

where µ is the Haar measure on S1.

Proof. Let x(i) be a sequence of torsion points and letH be the smallest lie subgroup of
E(C)n containing them all. We wish to show that H must be algebraic. By increasing
the base field of definition (or multipliying all the torsion points by an appropriate
scalar) we may assume that H is connected.

We wish to use the extra Galois image (besides the center) provided by Theorem
2.10. Since the CM case gives a lower galois image we shall only tackle that case, with
the non-CM case being more straightforward (and in fact following in the exact same
way). As such, let K = EndC(E). By Theorem 2.10 the group G from Lemma 2.12

contains a finite index subgroup U ⊂ (ÔK)×.
Now we may identify E(C)tor ∼= (K/L)n for a lattice L in K. Therefore we may

identify E(C)∨tor ⊂ (M̂)n where

M = {k ∈ K | tr(kL) ⊂ Z}

and the pairing is simply
(a, b)→ e2πi tr(ab) ∈ S1.

Now let H be cut out by the integral sublattice R ⊂ K. Let T ⊂ (M̂)n be the set
of all characters which vanish on all of the x(i). Note that R = T ∩OK and that T is
a Ẑ-module. Since the x(i) are invariant by U , it follows that T = TU . Therefore, T

is a module under Ẑ[U ] ⊂ ÔK . It is straightforward to see that Ẑ[U ] is finite index in

ÔK and therefore contains an order S ⊂ OK . Therefore R is invariant under S. Since
H is connected it follows that R is saturated, and thus R is invariant under EndC(E).

Finally, we now claim that H is algebraic. Indeed, since is invariant under EndC(E)
it follows that H may be cut out by an appropriate submodule of Hom(En, E), which
completes the proof.

Exercise 2.13. Complete the proof by showing that for any number field K and any
finite index subgroup U ⊂ (ÔK)×, that Ẑ[U ] is finite index in ÔK .
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2.3 Moduli of Elliptic Curves Y (1)

2.3.1 Construction using Complex uniformization

We may use the complex uniformization of Elliptic curves to write down an analytic
moduli space for them. Indeed, it suffices to classify rank 2 lattices up to scale!

To do this, we start by picking two elements (z, w) to span the lattice L ⊂ C. The
only condition is that (z, w) are independent over R, which we shall manually remove
in a minute. Now there are two things to worry about:

• Since we are only counting lattices up to scale, we should mod out by (z, w) ∼
(αz, αw) for α ∈ C×.

• We are in fact specifying a lattice with a basis, when we only want to remember
the lattice. There is a natural action of Gl 2(Z) on C2 which permutes all possible
bases, so we should mod out by that as well.

Now the actions of Gl 2(Z) and C× commute so we may quotient out by either
order. Quotienting by C2 first gets us to P1(C) = (C2 − {0})/C×, and remembering
that (z, w) should be linearly independent over R gets us to P1(C)− P1(R).

We thus get a coarse moduli space

Y (1) := Gl 2(Z)\(P1(C)− P1(R)).

We may write
P1(C)− P1(R) = H1 ∪H1

−

as the union of the upper and lower half-planes, and as Gl 2(Z) acts transitively on the
set, we have the equivalent (and more familiar presentation

Y (1) ∼= Sl2(Z)\H1.

Remarkably, Y (1) has a canonical structure of an algberaic variety. This can most
easily be described by defining the j-function to be algebraic. In fact, ignoring the
orbifold structure this gives us an analytic isomorphism j : Y (1) ∼= C.
Remark 2.14. 1. We may understand the action of Sl2(Z) explicitly quite easily.

Indeed, a point z ∈ H1 corresponds to the C×-equivalence class of (z, 1) ∈ C2.
An element g =

(
a b
c d

)
acts on (1, z) via

g · (z, 1) = (az + b, cz + d) ∼
(
az + b

cz + d
, 1

)
which recovers the action.

2. Technically Y (1) - even complex analytically - is only a coarse moduli space

because of the orbifold points i, ω = e
2
3 . For this reason when making arguments

one often works with Y (N) instead - the moduli space of Elliptic curves with
‘full level N -structure’ for some small N such as 3 or 6. Howeve, we shall mostly
ignore these issues.
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3. The Algebraic structure of Y (1) in fact allows us to think of it as the algebraic
moduli space of ellitic curves, which means we have a meaningful action of Aut(C)
on Y (1) such that σ[E] = [σ(E)], where σ(E) is the elliptic curve obtained by
applying σ to the coefficients of a defining equation of E (Or in moe canonical
scheme-theoretic language, by post-composing the structure map E → C with
σ−1.

Exercise 2.15. Prove that a point z ∈ H1 corresponds to a CM elliptic curve in Y (1)
iff z is a quadratic irrational. I.e. [Q(z) : Q] = 2.

2.3.2 Hecke Operators

Recall the following definition:

Definition 2.16. An isogeny between elliptic curves E,E′ is a non-constant finite
map φ : E → E′ which sends OE to OE′ . Such a map is known to be a group
homomorphism. We say that E,E′ are isogenous if thee is an isogeny between them.
It is known that if there is a map φ : E → E′ then there is a dual map φ∨ : E′ → E
of the same degree such that φ ◦ φ′ = ×degφ. Therefore isogeny is an equivalence
relation.

We say that an isogeny is primitive if its kernely is cyclic. If 2 elliptic curves are
isogenous they are so via a primitive isogeny.

Given an elliptic curve E and an integer n, there are finitely many Elliptic curves
isogenous to E via a primitive isogeny of degree n. In terms of the uniformization of
Y (1) it is straightforward to describe the relation: E ∼= C/⟨1, z⟩ and thus all the curves
we are looking for are of the form C/L where L ⊂ ⟨1, z⟩ is an index n-sublattice with
cyclic quotient.

We may find these in the following way: Let

Tn := Sl2(Z)\Sl2(Z)
(
n 0
0 1

)
Sl2(Z)

be a set of left cosets of Sl2(Z). Then Tnz is the desired set. We call Tn the n’th Hecke
operator.

We may think of Tn as a correspondence on Y (1), and may think of it as a curve
Tn ⊂ Y (1)2. Note that the degree of Tn is d(n)-the sum of divisors function of n.

2.3.3 Andr-Oort conjecture, n = 2

We are now read to state Andrés Theorem: [1]

Theorem 2.17. Let C ⊂ Y (1)2 be an irreducible curve containing an infinite set of CM
points: points both of whose co-ordinates are CM. Then C is a Hecke correspondence
Tn, or a fiber over a CM point.

Proof. If C is a fiber than the proof is clear so we assume this is not the case. Since
CM points are defined over Q, so is C. We make a simplifying assumption that C
is in fact defined over Q, and leave it to the reader to remove this assumption as an
exercise.

We first have the following reduction:
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Lemma 2.18. Let (zi, wi) be an infinite sequence of CM points in C. Then the ratio
of the discriminants of the CM orders f(zi)/f(wi) take on finitely many values.

Proof. The key idea is that the fields Q(zi),Q(wi) have to almost agree, in the sense
that [Q(zi, wi) : Q(zi)] = O(1) and [Q(zi, wi) : Q(wi)] = O(1), since zi, wi satisfy a
polynomial relation. But now by using the theory of complex multiplication one may
precisely understand the Galois groups in terms of class groups of orders, and prove
that these are all quite distinct unless the CM orders are essentially the same. For
details, see [3, §3]

By applying a suitable Hecke operator we may in fact assume that all the CM
points have the same CM order for both co-ordinates, and we do this from now on.

The key fact we need about CM points are the following:

1. The set of CM elliptic curves with endomorphism ring RD of discriminant D lies
in a single Galois orbit

2. The CM points of discriminant −D with highest j-invariant correspond to the
invertible ideals in RD of smallest norm: If I = ⟨m, a + b

√
−D ⊂ RD is such

that I ∩ Z = mZ, and I is not divisible by any integer greater than 1, then the

corresponding points in Y (1) is z[I] =
a+b

√
−D

m has j-invariant of size ∼ e2π
b
m

√
D.

3. We have (z[RD], z[I]) ∈ T(Nm(I).

Now since C contains infinitely many CM points it contains infinitely points of the
form (z[RD], wD) for wD a CM point corresponding to RD. Now note that z[RD] →∞
where ∞ denotes the added point on X(1). We now have two cases to consider:

1. wD ̸→ ∞

Then by picking a subsequence we may assume that (z[RD], wD) → (∞, x) for
some point x ∈ Y (1). We show this is impossible. The reason is that in local

co-ordinate j−1, we have |j−1(zRD
)− j−1(∞)| = O(e

−
√
D

2 ). Therefore there must

exist some constant c > 0 such that |j(wD) − j(x)| = O(e−c
√
D). Switching co-

ordinates to the fundmaental domain in H1 we have that log |wD−x| =≪ −
√
D.

Now j(x) is algebraic, and wD is a quadratic irrational. Using Transcendence
theory, D.Masser[19, I 1.1] proved that

log |wD − x| ≫ −h(wD)
3 ≫ −| logD|3.

These two inequalities are incompatible for large D which completes the proof.

2. wD ̸→ ∞

In this case we argue similarly, but now the conclusion is that log |j(wD)| ≥
q
√
D + O(1) for some fixed q ∈ Q. By the above analysis this means that

(z[RD], wD) ∈ Tn for some n which is uniformly bounded. But now we have
infinitely many points on C ∩ Tn for some n, and therefore we must have that
C = Tn as desired.
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2.3.4 Edixhovens conditional proof on GRH

B.Edixhoven made a substantial amount of progress on André-oort by introducting a
beautiful idea using Bezouts theorem to conditionally solve re-prove the Y (1)2 case. In
fact, we have already seen this idea carried out in detail in the case of Langs conjecture
in the first lecture. How does it work in this context?

1. To begin with, one reduces as before to the case where the CM points have CM
by the same ring in both co-ordinates.

2. The key observation is that if p is a split prime in RD, then we get a corresponding
frobenius element σp in the Galois group, and (z, σp(z)) ∈ Tp whenever z has CM
by RD.

3. We now apply Bezout’s theorem to C ∩ (Tp × Tp)(C).

• If C ⊂ (Tp × Tp)(C) one concludes using (elementary) functional transcen-
dence that C is a Hecke curve.

• Else, we know that C ∩ (Tp×Tp)(C) contans and entire Galois orbit of CM
points and thus is of size at least ∼ Cl(RD).

• On the other hand, the upper bound by Bezouts theorem gives somethinf
of size O(p2).

Now, by theorems 2.3 and 2.4, the size of CL(RD) is roughly
√
(D). On the

other hand, if GRH is true then we can find small split primes p (of size a power
of logD in fact). This gives us our desired contradiction.

We see that the use of GRH is purely to get small split primes, without which
the argument families. Now, how small do we need our primes? Well in this case it
turns out anything less than D

1
4
−ϵ would suffice, which is just on the border of what’s

achievable (though still just short of being doable, I believe)! However, for higher
dimensions and in other Shimura varieties one needs much better estimates, tending
to an arbitrarily small power of the Discriminant, which are extremely out of reach for
the moment.

Remark 2.19. One may of course ask for an equidistribution version of the Andre-Oort
conjecture for Y (1)2. There has been much work on this and was proven under the
GRH[15], but an unconditional proof is still open.

2.3.5 Higher-Dimensional Case

To formulate an analogue of Theorem 2.17 for Y (1)n we need to give an analogue of
the notion of a torsion coset. In particular, we need to understand which varieties
do in fact have a zariski-dense set of CM points. We are motivated by the following
observation: If x ∈ H1 is a CM point, and g ∈ Gl 2(Q) then so is gx. in other words,
anything isogenous to a CM point is also CM. This motivates the followig definitions

Definition 2.20. 1. A special point x ∈ Y (1)n is a point all of whose co-ordinates
are CM. We may also call x itself a CM point.
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2. A special subvariety Z ∈ Y (1)n is an irreducible variety which is an irreducible
component of a variety Z ′ defined by relations of the following two types:

• A co-ordinate zi is fixed to be a CM point

• Two of the co-ordinates zi, zj are satisfy the relation (zi, zj) ∈ Tn for some
positive integer n.

In other words, Z is defined by taking an irreducible component of then inter-
section of pullbacks of Hecke curves and CM points under projections to Y (1)2

and Y (1) respectively. We say that Z is Strongly Special if no co-ordinates of Z
are fixed to be CM points. These are the special varieties that do not ‘deform’
in a family.

Remark 2.21. 1. There is a more ‘intrinsic’ definition of special varieties as compo-
nents of Shimura subvarietes, or more fundamentally in the language of Hodge
theory as subvarieties defined by restricting the Mumford-Tate groups. We shall
encounter these somewhat in the next 2 lectures, but we believe we have given
the most down-to-earth definition in this simple case.

Armed with this definition, we may give the André-Oort conjecture for Y (1)n.

Theorem 2.22. Let V ⊂ Y (1)n be an irreducible algebraic subvariety. Then V con-
tains finitely many maximal special subvarieties.

Remark 2.23. This theorem was first proven conditionally under GRH by Edixhoven[9],
and was first proven unconditionally by J.Pila [23].

We now present Edixhovens argument, and we simplify by considering the special
case of n = 3, where the essential case is dimV = 2. Now the same arguments as
for the n = 2 case can be modified to prove that if V contains a Zariski-dense set of
special points than it contains a Zariski-dense set of special curves.

Reduction to the strongly special setup

Suppose V contains infinitely many special curves which are not strongly special.
Then they are, wlog, of the form Ci×Pi ⊂ Y (1)2 where Ci are Hecke correspondences
and the Pi are CM points. Now by the Galois theory arguemts we already used, the
Galois conjugates of the Pi grow, so we are in one of the following 2 cases:

• The Pi are a fixed set of points. Then it is easy to show that V is a fiber of the
Pi.

• The Pi vary, in which case for large enough i, it must be the case that V contains
Ci × Y (1) and thus be equal to it.

Therefore, we may assume that V contains an infinite set of strongly special curves.
There is the following beautiful characterization result of Edixhoven:
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Proposition 2.24. Let C ⊂ Y (1)3 be a special curve which projects dominantly onto
every co-ordinate. Then there are positive integers (n1, n2, n3) such that C is a con-
nected component of the moduli of complex Elliptic curves E together with subgroups
Gi ⊂ E(C) with Gi

∼= Z/niZ which have no pair-wise intersection. Moreover, the
embedding into Y (1)3 is given by ([E], G1, G2, G3) → (E/G1, E/G2, E/G3). Finally,
the number of connected components of Y (n1, n2, n3) is at most 4gcd(n1,n2,n3), and they
all have the same degree projections to all 3 co-ordinates.

Proof. Since the projection of C onto every pair of co-ordinates is special, it must be a
Hecke correspondence. Hence, over the generic point of C the elliptic curves E1, E2, E3
are all isogenous. We first claim that there exists an ellptic curve E with finite cyclic
subgroups G1,G2,G3 that are disjoint except for the identity, such that E/Gi ∼= Ei.
Since the Ei do not have CM this comes down to the following linear algebra fact:

Lemma 2.25. Let V be a rank 2 rational vector spaces, and L1, L2, L3 be 3 lattices in
V . Then there exists a lattice L ⊂ V and elements q1, q2, q3 ∈ Q× such that qiLi ⊃ L,
the quotients L/qiLi are cyclic, and the pairwise intersections of qiLi are equal to L.
Moreover such an L is unique up to scale.

Proof. This lemma is easily seen to follow from the analogous one over Zp for all primes
p, so we tensor with Zp to make V a Qp vector space, and Li are Zp-lattices.

We now consider the set T of Zp-lattices up to scale. T has a natural graph structure
where we connect two lattices A,B if we may scale them such that A ⊂ B,B/A ∼=
Z/pZ. This is easily seen to be symmetric, as then pB ⊂ A,A/pB ∼= Z/pZ. Moreover,
it is well-known that this makes T a connected tree, and in fact T is (p+ 1)-regular.

Now given the three points [L1], [L2], [L3] in the tree T there is a unique ‘center’, a
point [L] such that the paths from [L] to the other 3 lattices are disjoint. This is true
in any connected tree! Then scaling we may assume that Li ⊃ L and the quotients are
all cyclic. The fact about the paths being disjoint exactly translates to the pair-wise
intersections being L, which proves the claim.

The lemma proves the existence of the groups Gi as desired. The only thing that
remains to prove is the claims about the connected components of the moduli space.
This follows from considering the action of the monodromy group Sl2(Z). In partic-
ular, trivializing the cohomology of H1(E ,Z) the group Sl2(Z) acts on the tree T of
sublattices up to scale. By using Strong approximation, we see that Sl2(Z) surjects
onto Sl2(Z/nZ) for any n. Thus, the relevant linear algebra fact is the following:

Lemma 2.26. The action of SL2(Zp) on T has at most 4 orbits on the set of triples
([L1], [L2], [L3]) with predetermined distances (n1, n2, n3) to the fixed lattice [L], with
disjoint paths from [L]. Moreover, these orbits have the same size constant-size fibers
over each pair of vertices, in any pair of co-ordinates.

Proof. First, note that if we take the path fro [L] to [Li] and elongate it to a further
vertex v, we may recover [Li] from v by walking along the path from [L] to v ni steps.
Thus, by picking an N ≥ max(n1, n2, n3) and picking further vertices from [L] we may
assume n1 = n2 = n3 = N . Now lattices a fixed distance N away from [L] are naturally
in bijection with P1(Z/pNZ). We thus need understand the action of Sl2(Z/pnZ) on
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points in P1(Z/pNZ) reducing to different points in P1(p). First note that the action
on pairs is transitive, which proves the second claim. To understand the number of
orbits, first move two of the vertices to (0, 1) and (1, 0). The third vertex then becomes
an elment of (Z/pNZ)×, and the stabilizer is the diagonal torus which acts by squares.
The claim now follows Z/pNZ has at most 4 square classes.

Exercise 2.27. Prove the relevant graph-theoretic facts about T :

1. Prove that for any two Zp-lattices L,W there is a unique integer power q of p
such that qL ⊂ W and the quotient qL/W is cyclic. Call | logp q| the distance
from L to W , denoted d([L], [W ]).

2. Prove d([L], [W ]) = d([W ], [L])

3. Suppose d([L], [W ]) = n > 0. Prove that [W ] has exactly 1 neighbor [W ′] such
that d([L], [W ′]) = n−1 and for the other neighbors [W ′′] we have d([L], [W ′′]) =
n+ 1.

4. Prove that T has no cycles, and is therefore a tree.

5. Prove that in any connected tree, for any 3 vertices a, b, c ∈ T there is a unique
vertex d ∈ T such that the paths from d to a, b, c have no vertices in common
(except maybe the endpoints).

6. Finally, suppose that A,B,C are lattices and A ⊂ B,C with cyclic quotients.
Prove that B ∩ C = A iff the paths from [A] to [B], [C] are disjoint (except for
endpoints).

Corollary 2.28. Let C ⊂ Y (1)3 be a strongly special curve. If all three projections
C → πi,j(C) have degree O(1) then there are finitely many options for C.

Proof. We use the notation in the previous lemma. If n1 ≥ n2, n3 the n the degree of
the projection onto the first co-ordinate is at least∏

pr||n1

(p− 1)pr−1

4

which clearly tends to infinity.

We can now finish the proof:

Proposition 2.29. Suppose that V ⊂ Y (1)3 is an irreducible surface with dominant
projection onto each co-ordinates, and suppose that it contains infinitely many special
curves dominant on all 3 factors. Then S is the pullback of a Hecke correspondence
from a projection onto some pair of co-ordinates.

Proof. Suppose V has dominant projection onto all pairs of co-ordinates. Let C ⊂ V
be a special curve. Then its projection onto its image in Y (1)2 is bounded by the
degree of the projection of S onto the corresponding Y (1)2. Thus all special curves in
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Y (1) have bounded degrees of all 3 projects, and thus by the above corollary 2.28 there
are only finitely many of them. This is a contradiction, and therefore V = V0 × Y (1)
for some curve V0. Now it is easy to see that V0 must be special which completes the
proof.

3 Lecture #3: Abelian Varieties, their moduli, and the
Masser-Wüstholz theorem

3.1 Background

3.1.1 Definitions and Basic Properties

Definition 3.1. An abelian variety A over a field k is an irreducible, projective alge-
braic group variety over k.

Abelian varieties are the higher-dimensional generalization of elliptic curves, and
are important for many reasons. In the context of special point problems, one can either
consider them as the ambient space, or consider their moduli which is the prototypical
Shimura Variety Ag.

We define Abelian subvarieties, Torsion Cosets, and isogenies exactly analogously
as before.

3.1.2 Dual Abelian Variety and Polarizations

Given an Abelian variety A over k there is a dual abelian variety A∨, such that there
is a natural isomorphism A ∼= (A∨)∨. The easiest way to define A∨ is as Pic0(A) - the
moduli space of degree 0 line bundles on A. As such, on A × A∨ there is a natural
line bundle P known as the Poincare bundle which is trivial over both 0 fibers, and
represents the universal family of line bundles on A. We have the following properties:

1. Every abelian variety A is isogenous to its dual A∨.

2. Given a map φ : A → B there is a unique map φ∨ : B∨ → A∨ such that
(φ ◦ ψ)∨ = ψ∨ ◦ φ∨.

3. Given a divisor D on A, the map λD : A→ A∨ which sends r → [D− t]− [D] is
self-dual

4. Apolarization is an isogeny φ : A→ A∨ which is self-dual, and such that (1, φ)∗P
is ample on A. All λD are polarizations for any ample D.

5. If a polarization φ has degree 1, we say that φ is a principal polarization

6. Every abelian variety over an algebraically cosed field is isogenous to a principally
polarized one.

We have the following fundamental reducibility property, which says that the cat-
egory of Abelian varieties up to isogeny is semisimple:

Proposition 3.2. Suppose that B ⊂ A is an abelian subvariety. Then there exists an
abelian subvariety C ⊂ A such that B ⊕ C → A is an isogeny.
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Proof. Fix polarizations λD on A. Let i : B → A be the inclusion map, and consider
the map i∨ : A∨ → B∨. Note that i∨ ◦ i : B → B is the map λi∗D and is therefore an
isogeny. Thus B ⊕ (ker i∨ → A∨ is surjective with finite kernel. Now letting C be a
connected component of λ∗D

∨ completes the proof.

It follows that every Abelian variety is a direct sum of simple subvarieties up to
isogeny.

3.1.3 Complex Uniformization

Like the case of Elliptic curves, every abelian variety can be written as Cg/L for some
full-rank integral lattice L. Unlike the case of Elliptic curves, however, most L do not
yield an algebraic variety.

Lemma 3.3. There exist lattices L ⊂ C2 whose quotients do not give Abelian varieties.

Proof. Consider the lattice Lw = ⟨(1, 0), (i, 0), (0, 1), (w, i)⟩. Note that there is an ex-
act sequence of complex tori E → C/Lw → E where E := C/⟨(1, 0), (i, 0)⟩. Now by
Proposition 3.2 if C/Lw were an Abelian Variety this exact sequence would split up to
isogeny, and the space of maps Hom(E,C/Lw) would be larger than Hom(E,E). How-
ever, it is easy to show that Hom(E,C/Lw) ∼= Hom(C,C2) ∩ Hom(⟨(1, 0), (i, 0)⟩, Lw).
For w ̸∈ Q(i) it is easy to show that this is indeed Hom(E,E) which yields a contra-
diction.

Exercise 3.4. Prove both ‘easy’ claims in the proof above.

Definition 3.5. A Polarization for a lattice L ⊂ Cg is a positive definite hermitian
form H on Cg, such that ℑH takes integer values on L.

It turns out that a lattice gives rise to an Abelian Variety iff it admits a polariza-
tion, and there is a natural bijection between polarizations on the lattice and on the
corresponding Abelian Variety.

3.1.4 Torsion and Galois Representations

Given an abelian variety A over a field k of characteristic not dividing n, we have that
A[n] ∼= (Z/nZ)2g. Over C this follows immediately from the complex uniformization.
Moreover, there is a natural perfect pairing A[n]×A∨[n] which is anti-symmetric when
composed with any polarization. We call this the weil-paring.

For any prime ℓ ̸= char k, we form the ℓ-adic Tate-module Tℓ(A) and obtain the
corresponding Galois representation ρℓ,A : Gk → GSp (Tℓ(A)). In the case of char k = 0

we may put these together to obtain ρA : Gk →
∏

ℓGSp (Tℓ(A)) ∼= GSp 2g(Ẑ).

3.1.5 Story over Number Fields

If K is a number field we have several important structure theorems:

Theorem 3.6. Let A be an abelian variety over K. Then the group of rational points
A(K) is finitely generated. Importantly, the torsion subgroup A(K)tor is finite.
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Much more deeply lies the following landmark theorem of Falting:

Theorem 3.7. Let A be an Abelian variety over a number field K. Then there are
only finitely many isomorphism classes of Abelian varieties over K isogenous to A.
I.E. The isogeny class of A is finite.

This has several important corollaries, notably the Tate-Conjecture for Abelian
varieties over number fields:

Theorem 3.8. Let A,B be abelian varieties over a number field K, and ℓ a prime
number such that the representations ρℓ,A, ρℓ,B are isomorphic over Qℓ. Then A and
B are isogenous over K.

Proof. We only present a sketch. Suppose the statement is false, and for simplicity
assume that A,B are simple and non-isogenous, and their Tate-modules are isomorphic
as Zℓ-Galois representations. Note that this implies that A[ℓn] ∼= B[ℓn] as GK-modules.

Now let C = A×B and consider the finite subgroups ∆ℓn ⊂ C given b the graphs
of the isomorphisms A[ℓn] ∼= B[ℓn]. Then C/∆ℓn give a sequence of Abelia varieties
defined overK. Moreover, it is easy to show that these are all pair-wise non-isomorphic,
and yet isogenous, which contradicts Theorem 3.8.

The general case involves more bookkeeping but no new ideas.

Exercise 3.9. Prove that under the assumptions of A,B being simple and non-
isogenous, the C/∆ℓn are pairwise non-isomorphic.

Especially noteworthy is that this implies the famous Mordell conjecture:

Theorem 3.10. Let C be a curve over a number field. Then C(K) is finite.

Proof. This is a sketch of a construction due to Parshin: Suppose that C(K) is infinite.
The proof is in 3 steps:

1. One shows that C has a model as smooth projective curve over OK,S for some
finite subset of primes S, and that consequently C(K) = C(OK,S .

2. By looking at curves ramified over C above Nc1 − Nc2 for c1, c2 ∈ C(K) one
constructs an infinite sequence of curves Ci over OK,S of the same genus g.

3. The Jacobians Ji of the curves Ci are abelian varieties overK with good reduction
outside of S, and therefore by a theorem of faltings there are finitely many
isomorphism classes of GK representations for the ℓ-adic Tate modules.

4. By Theorems 3.8 and 3.7 there are finitely many isomorphisms classes of the Ji,
but one can show this is not the case with moduli theory giving a contradiction.
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3.2 Transcendence Theory

In a series of Papers, D.Masser and G.Wüstholz introduced a powerful tool to study
Abelian varieties. Their theorem - which we shall heavily use but say nothing of the
proof! - is the following:

Theorem 3.11. [20] Let A be an abelian variety over K of dimension g, and let
B be an abelian variety defined over a finite extension L of K. Suppose that A,B
are isogenous over Q. Then there exists a Q isogeny between them of degree at most
Cg(h(A), [L : Q])κ(g).

In fact, we may take h(A) to be the faltings height of A with respect to any polar-
ization.

This theorem is so spectacular and robustly useful that it takes a while to appreciate
just how powerful it is. Even without the uniformity in L, OR without the uniformity
in A (which we would have to learn something about the Faltings height to appreciate),
we can already give a different proofs of one of Faltings most important theorems:

Proof. of Theorem 3.7

Let A be an abelian variety over K, and suppose that B is another abelian variety
over K isogenous to A. Applying Theorem 3.11 there exists an isogeny φ : AQ → BQ
over Q of degree O(1). However, the number of subgroups of A[tor] of size O(1)
is bounded. Since AQ kerφ ∼= BQ this automatically means that the number of Q-
isomorphism classes of B is finite.

However, we may say much more. Fix a finite subgroup G ⊂ A. Then G is defined
over a finite Galois extension KG of K over which B is also defined. Moreover, this
gives B a polarization φ of fixed degree D defined over KG. Now automorphisms
groups of Abelian varieties preserving polarization are finite, and therefore the group
of twists H1(Gal(KG/K),Aut(B,φ)) is also finite, completing the proof.

3.3 Manin-Mumford

This proof is extremely analogous to the case of powers of Elliptic curves that we
covered in the previous lectures, so we say very little about it. In particular the
reductions from C to Q are identical. The only tricky part is extending the lower
bounes of Galois orbits. This can be done in 2 ways:

Theorem 3.12. [17] Let A be an abelian variety over a number field K and P ∈ A(Q)
a torsion point of order n. Then [K(P ) : K] ≫A nδg for a fixed constant δ > 0
depending only on the dimension of A.

As before this is sufficient for the proofs with Bezout’s theorem and the Pila-
Zannier method, but it is not enough for equidistribution. However, a result of
Wintenberger[33, Thm 3] gives us what we need:

Theorem 3.13. Let A be an abelian variety over a number field K. Then there exists
a constant cA > 0 such that the Galois image ρA(GK) contains the central subgroup
((Ẑ)×)cA.
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3.4 The Andre-Oort Conjecture

3.4.1 Siegel Modular Variety

The Siegel upper-half plane is defined to be

Hg := {Z ∈Mg(C) | Z = Zt, imZ is positive definite}

There is a natural action of Sp 2g(R) on Hg given by:(
A B
C D

)
· Z : (AZ +B)(CZ +D)−1

Given an element Z ∈ Hg one may construct a principally polarized abelian vari-
ety by considering the torus Cg/⟨Ig, Z⟩ where we are quotienting out by the integral
lattice spanned by the column vectors. Moreover, the conditions on Z imply that the
hermitian form ⟨v, w⟩ = vY −1w∗ gives a polarization on ⟨Ig, Z⟩. We define the Siegel
Modular Variety to be Ag := Sp 2g(Z)\Hg.

Theorem 3.14. 1. The Siegel modular variety Ag is canonically the (coarse) mod-
uli space of principally polarized complex abelian varieties.

2. Ag admits a model of an algebraic variety over Q.

3.4.2 Complex Multiplication

The CM Abelian varieties are precisely those Abelian varieties with as many endo-
morphisms as possible. What does this mean? There are lots of ways to define it.
The most intuitive is as follows: They are exactly those Abelian varieties whose en-
domorphism ring is large enough to admit no deformations. The formal definitio is as
follows:

Definition 3.15. A complex Abelian variety A of dimension g is said to be CM (or
have complex multiplications) if the endomorphis algebra End0(A) := End(A) ⊗ Q
contains a commutative subring R of dimension 2g over Q.

Exercise 3.16. By considering the action on H1(A,Q) or otherwise, prove that 2g is
the largest possible dimension of a commutative subring of End0(A).

If A is a simple abelian variety which is CM, then End0(A) is a CM field L: a
totally complex quadratic extension of a totally real field K. In this case, the action
of L on H1(A,C) gives a list S of g embeddings L→ C such that S ∪S = Hom(L,C).
This is known as a CM type and is central to the theory.

The CM abelian varieties compromise the special points in Ag.

3.4.3 Weakly Special and Special Abelian Varieties

To state the Andŕ-Oort conjecture we need to define our analogues of Torsion cosets.
These will be our special subvarieties of Ag.

One can give a definition of Special subvarieties in terms of Shimura varieties, but
we shall not go down that road. See [21] for references. Instead, we shall give a much
quicker definition using functional transcendence. The downside of course is this does
not readily make available all of the tools of Shimura Varieties, but luckily these do
not play much of a role for us in this lecture.
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Definition 3.17. Let π : Hg → Ag denote the natural quotient map. Note that
Hg is an open set of the affine space Mg(C)Sym and the quotient map π is highly
transcendental.

1. A closed irreducible subvariety V ⊂ Ag is said to be weakly special if for some irre-
ducible analytic component W of π−1(V ) we have dimW zar = dimV . Note that
the irreducible components all differ by elements of Sp 2g(Z) so this is indepen-
dent of which component we pick. Equivalently, π−1(V ) is a real semialgebraic
set.

2. A weakly special subvariety V is said to be special if it contains a special point.
In this case, V will contain a topologically dense set of special points.

The above definitions are of course ad-hoc, but they allow one to work with special
varieties quite quickly! Here are several examples.

Example 3.18. 1. All points are weakly special.

2. There is a natural map Y (1)g → Ag whose image is a special subvariety.

3. The Hecke correspondences Tn are special subvarieties of Y (1)2 (when mapped
to A2

4. All the fibers of Y (1)n over any number of co-ordinates are weakly special

5. For any ring R, the subvariety SR ⊂ Ag of Abelian varieties whose endomorphism
ring contains R is special, in that all of its irreducible components are.

More than just being algebraic, for any weakly special subvariety V ⊂ Ag and any
component W of π−1(V ) we have that W is a G(R) orbit for some semisimple group
G ⊂ GSp defined over Q, and is in fact a symmetric domain G(R)/KG where KG is a
maximal compact subgroup. Hence the analogy with Torsion cosets isn’t as far fetched
as it first seems!

We are now ready to state the André-Oort conjecture:

Theorem 3.19. [30] Let V ⊂ Ag be an irreducible subvariety. Then V contains
finitely many maximal special subvarieties.

Equivalently, the if the special points in V are Zariski-dense, then V is a special
subvariety.

3.5 Galois Orbits

3.5.1 The class group approach

Analogously to the case of Elliptic curves, one may describe Galois orbits of CM
Abelian varieties explicitly using Class groups. However a serous obstacle emerges in
the higher dimensional case that prevents this approach from working (at least for
now!) We describe the picture very briefly (for all the details see [29, 32]).

Let K be a CM field with CM type Φ. Then there is another CM field K∗ and
a natural map ψS : Cl(K∗) → Cl(K) whose image describes the Galois orbit of the
corresponding CM abelian variety. In fact, this map is quite simple: it is simply a
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product over Galois conjugates I →
∏

σ σ(I)
nσ3. Now while Brauer-Siegel results allow

us to estimate the sizes of the relevant Class groups extremely precisely, understanding
the sizes of images is difficult!

Why is this the case? Well, consider the multiplication by n map φn : Cl(K) →
Cl(K). Then understanding the size of the image amounts to understanding the size
of Cl(K)[n]. In particular, if we want the image to be large, then we only want to
know that the cokernel Cl(K)/Cl(K)[n] is large. But even this is a famously difficult
problem! We have very few partial results, and only for low values of n or very special
fields K.

In the general setting the maps φS are a bit more complicated, so what is involved
is class groups of Tori, but the problem really comes down to the issue described above.
In particular, it would work if we could resolve the following folklore onjecture, first
written down by Zhang:

Conjecture 3.1. Fix d, n > 1. Let K be a number field of degree d. Then |Cl(K)[n]| =
D

o(1)
k

3.5.2 From Heights to Lower Bounds: Masser-Wüstholz

We’ve briefly mentioned the Faltings height earlier. It is a canonical height one can
assign to a polarized abelian variety hFal(A,φ). The only currenty known way to obtain
lower bounds for Galois orbits of CM points is to relate such bounds to upper bounds
for heights of CM points. We shall describe what the Faltings height is, and two (very
different!) ways to obtain the reduction.

3.5.3 From Heights to Lower Bounds: o-minimality andn Binyamini+Schmidt+Yafaev

3.5.4 Heights: (Averaged) Colmez Conjecture

3.6 The induction Step: Strongly Special Subvarieties

Once we have the Galois lower bounds in place, the argument proceeds by an induction.
It is more complicated then the case of modular curves we dealt with in the previous
lecture, but the ideas are the same. The hardest cases are to deal with the strongly
special subvarieties, which are the special subvarieties that don’t deform in a family
of weakly specials. There are two approaches to doing this, which we describe below.
Both approaches use the following fact:

Any special subvariety V ⊂ Ag and any irreducible component W ⊂ π−1
g (V )

satisfies that W is the orbit of GW (R) for a semisimple Q-group GW ⊂ GSp 2g.

3.6.1 Equidistribution

The dynamics of semisimple groups actions have been studied by many people, and
we shall not attempt to give a history here. See [?] for a comprehensive (at the time!)
set of references. But the central idea is the following: Let Si ⊂ V be a collection
of special varieties. Let µSi denote the measures supported on Si whose pullbacks

3Of course there are all sorts of details such as if the Endomorphism ring is not maximal, but these
end up being handleable
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to GSp 2g are invariant for the actions of the corresponding semisimple groups Gi as
discussed above. The paper [?] proves - using the powerful meachinery of measure
rigidity developed over the previous decades - that if the Gi keep changing (as they
do in the strongly special case) then any weak-* limit of the µSi is also a homogenous
measure: It is supported on the image F in Ag of the orbit of a real semisimple group
G ⊂ GSp 2g,R. Moreover, F contains the Si for large enough i.

However, F is now the image of a real semialgebraic set in Hg which is contained
in V , and the functional tarnscendence machinery means that F is contained in a
weakly special - and therefore special since it contains CM points - variety Fspecial.
But now if we assumed that the Si were an infinite collection of maximal strongly
special subvarieties we obtaine a contradiction.

3.6.2 o-minimality

Alternatively, it was later realized that one could use the machinery of o-minimality
to accomplish what Clozel-Ullmo did with equidistribution. The idea is as follows:

Even though the (strongly) special subvarieties come in countably many discrete
families, the set of analytic semisimple group orbits in Hg come in finitely many real-
analytic families. This is essentially because over the reals, there are finitely many
semisimple subgroups of GSp 2g up to conjugacy. Now instead of asking for the special
varieties contained in V , one simply asks for the semisimple group orbits I that are con-
tained in π−1

g (V ). This is now a definable set (after appropriate fundamental-domain
restrictions) and so the o-minimal theory gives that I has finitely many connected
components.

However, the functional transcendence tells us that I is dominated by pre-images
of Special varieties! Specifically, the maximal elements in I correspond to pre-images
of special varieties in V . Now the definability from o-minimality combines with the
discreteness stemming from the parametrization of special subvarieties to give finite-
ness, and one concludes that there are only finitely many families of maximal weakly
special varieties in V , which implies there are finitely many maximal strongly special
subvarieties.

4 Lecture #4: Generalizations: Hodge Theory andMixed
Shimura Varieties

4.1 Mixed Shimura Varieties

There is a natural way to combine the Manin-Mumford and André-Oort conjectures.
The idea is to consider the universal family of Abelian varieties over its moduli space.
We then may discuss 2 notions of being special: in the base (being a CM point) or in
the fiber (being a torsion point). It is natural to combine the two:

Definition 4.1. We define themixed Siegel variety Ag to be the universal g-dimensional
Abelian variety over Ag. Points of Ag correspond to isomorphism classes of pairs
(A,P ∈ A(C)) of a principally polarized Abelian variety of dimension g, and a point
on it. We say that a point x ∈ Ag is special if Ax has complex multiplication, and also
if Px is torsion.
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It is immediate that special points are dense, countable, and defined over Q just
as in our previous analysis. One may likewise characterize special subvarieties as for
Shimura varieties. Luckily, this has a fantastic description in this setting: [11, Prop
1.1]

Theorem 4.2. Let S ⊂ Ag be a special subvariety.Then

1. The projection of S to Ag is a special subvariety T

2. The universal abelian variety AT over T has a splitting AT ∼ B ⊕ C up to
isogeny, such that S is isogenous to the transate of B by a torsion point in C.

Put simply, the special varieties in Ag are just torsion cosets over special varieties
in Ag. One may formulate an analogous conjecture in this mixed setting, which was
proven to be equivalent (via the same Pila-Zannier) strategy to the (pure) shimura
setting :

Theorem 4.3. [12] Let V ⊂ Ag be an irreducible subvariety. Then V contains finitely
many maximal special subvarieties.

4.2 Hodge Structures

Shimura Varieties are extremely convenient objects to work with, but they are in
many ways rather special. It turns out that Shimura varieties are moduli spaces of
very special polarized Hodge structures, and it is very natural to formulate many of
our conjectures in this context. We recall some basic notions and refer the interested
reader to [7] and [14] for details.

4.2.1 Basic Definitions

Definition 4.4. Fix an integer n. Let HZ be a finite rank free Z-module. A pure
Hodge structure on HZ of weight n is a decomposition into complex vector spaces

HC := HZ ⊗ C =
⊕

p+q=n

Hp,q (1)

satisfying Hp,q = Hq,p. The dimensions hp,q = dimCH
p,q are called the Hodge num-

bers. We say the Hodge structure is effective if Hp,q = 0 for p > n.

Note that the Hodge structure is determined by the Hodge filtration

F p :=
⊕
r≥p

Hr,s

asHp,q = F p∩F q. Conversely, a descending filtration F • determines a Hodge structure
of weight n if it satisfies

F p ∩ Fn−p+1 = 0 (2)

for all p.
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Example 4.5. A pure weight 1 (or −1) Hodge structure is equivalent to a compact
complex torus T . We canonically have an embedding

H1(T,Z)→ H0(T,Ω1
T )

∨ ⊕H0(T,Ω
1
T )

∨ : γ 7→
∫
γ

which yields a decomposition

H1(T,C) = H−1,0 ⊕H0,−1

with H−1,0 = H0(T,Ω1
T )

∨ and H0,−1 = H−1,0. Projecting H1(T,Z) to H−1,0 we can
recover T canonically by the albanese

T
∼=−→ H0(T,Ω1

T )
∨/H1(T,Z) : p 7→

∫ p

0
.

The weight −1 Hodge structure on H1(T,Z) naturally induces a weight 1 Hodge struc-
ture on H1(T,Z).

Definition 4.6. SupposeHZ carries a weight n Hodge structure, and let qZ be a (−1)n-
symmetric bilinear form—that is, qZ is symmetric if n is even and skew-symmetric if
n is odd.

1. The Weil operator C ∈ End(HR) is the real endomorphism satisfying

CC =
⊕
p,q

ip−q · idHp,q .

2. The Hodge form is the hermitian form h on HC defined by

h(u, v) = qC(Cu, v).

3. We say the Hodge structure is polarized by qZ if the Hodge form is positive-
definite and the decomposition (1) is h-orthogonal.

If the Hodge structure is polarized by qZ, then the Hodge filtration F • is qC-
isotropic: we have (F •)⊥ = Fn+1−•. Conversely, a qC-isotropic Hodge filtration sat-
isfying (2) determines a qZ-polarized Hodge structure if the Hodge form is positive-
definite.

Example 4.7. A polarized weight 1 (or −1) Hodge structure is equivalent to a polar-
ized abelian variety A. A skew-symmetric integral form qZ on H1(A,Z) can be thought
of as an element h ∈ H2(A,Z). By the Lefschetz (1, 1) theorem, the qC-isotropicity
condition on the Hodge decomposition implies h = c1(L) for a line bundle L on A, and
the positivity condition implies L is ample.

Example 4.8. We have the following broad generalization of the previous example,
which was the original motivation for their introduction. Let Y be a proper Kähler
manifold (for example a smooth complex projective variety). After choosing a Kähler
form ω, we obtain a weight n Hodge structure on degree n singular cohomology

Hn(Y,C) =
⊕

p+q=n

Hp,q(Y ) (3)
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by decomposing harmonic representatives of de Rham cohomology classes into (p, q)
parts. Furthermore, suppose Y is a smooth complex projective variety with ample
bundle L and set h = chern1(L). The singular cohomology H∗(Y,Q) decomposes into
polarized Hodge structures as follows. For n ≤ d = dimX, let

Hd−n
prim(Y,Z) := ker

(
hn+1∪ : Hd−n(Y,Z)tf → Hd+n+2(Y,Z)tf

)
.

Where (−)tf denotes the torsion-free quotient. We have

Hn(Y,Q) =
⊕

0≤k≤n/2

hk ∪Hn−2k
prim (Y,Q).

Hn
prim(Y,Z) carries a natural integral form

qn(a, b) :=

∫
Y
hdimY−2n ∪ a ∪ b.

The decomposition (3) (associated to the Kähler class h) then induces a weight n
Hodge structure on Hprim(Y,Z) polarized by qn.

Remark 4.9. Note that if HZ carries a pure Hodge structure, then so too will any
tensor power, symmetric power, wedge power, etc. of HZ. The same is true of pure
polarized Hodge structures.

4.2.2 The Mumford–Tate group and CM Hodge Structures

Definition 4.10. Suppose HZ carries a pure weight 2k Hodge structure. An integral
(resp. rational) class v ∈ HZ (resp. v ∈ HQ) is Hodge if v ∈ Hk,k.

Note that an integral class v ∈ HZ has pure Hodge type if and only if it is a Hodge
class. Moreover, v is Hodge if and only if v ∈ F k.

Example 4.11. The motivation for considering Hodge classes again comes from ge-
ometry. Given a smooth projective complex algebraic variety Y and a closed algebraic
subvariety Z ⊂ Y , the fundamental class [Z] ∈ H2 codimZ(Y,Z) is a Hodge class. The
Hodge conjecture says that moreover all rational Hodge classes arise from cycles (up
to rational scaling).

The Hodge classes of a particular Hodge structure are described by the Mumford–
Tate group:

Definition 4.12. Suppose HQ carries a pure Hodge structure H. The (special)
Mumford–Tate group MTH ⊂ Aut(HQ, qQ) of H is the algebraic Q-subgroup of
End(HQ) with the following property: for any tensor power of weight 0 H ′ = H⊗k ⊗
(H∨)⊗−k, the rational Hodge classes of H ′ are precisely the rational vectors fixed by
MTH .

There is another way to describe the Q-group: Let S1 := ResC/RGm be the Deligne-
Torus. Then real representations of S1 are naturally equivalent to bigradings of a real
vector space V by Z2 such that V p,q = V q,p. Thus, given a polarized Hodge structure
we get a map φH : S1 → Aut(H, q) defined over the reals. Then MTH is the smallest
Q-algebraic subgroup which contains the image φH(S1).
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Exercise 4.13. 1. Define the equivalence defined above for representations of S1
and prove it is indeed an equivalence of categories.

2. Prove that, as defined above, the group MTH does indeed fix precisely the Hodge
classes of weight 0.

The fact that this characterizes the Mumford-Tate group is a special case of Tan-
nakian Duality.

In defining the CM Hodge structures, we again want to pick out the ones with
enough symmetry that it doens’t deform in families. What do symmetries amount
to? For abelian varieties A we used the endomorphisms. It turns out that End(A) ⊂
End(H1(A,Z)) are precisely the hodge classes in the Hodge structure End(H1(A)). So
it is natural to generalize by using hodge tensors as a measure of symmetry. We arrive
at the following:

Definition 4.14. A Hodge structure is CM iff its Mumford-Tate group is a Torus.

Remark 4.15.

Note that the smaller the Mumford-Tate group is, the more Hodge tensors there are.

For a CM hodge structure H, there is no way to deform the hodge structure of H
in a positive-dimensional family while preserving all hodge tensors. Thus, CM hodge
structures are rigid

Connversely, For any Hodge structure H non-toric Mumford-tate group M , one can
deform the Hodge structure on H in a positive-dimensional family while keeping
Mumford-Tate group contained in M .

4.2.3 Period domains and period maps

In this section we describe the analogues of Shimura Varieties in the Hodge context.
One of the biggest complications in the theory of general hodge moduli spaces over
Shimura Varieties is that in general, they do not possess an algebraic structure. This
means one does not have a universal family to study, making questions of uniformity
very difficult. In addition, basic arithmetic questions (as we shall see!) become very
far from tractable.

Define the algebraic Q-group G(Q) = Aut(HQ, qQ); we will often denote G(Z) =
Aut(HZ, qZ). It is then not hard to see that the space D of qZ-polarized pure weight
n Hodge structures on HZ with specified Hodge numbers hp,q is a homogeneous space
for G(R). Indeed, choosing a reference Hodge structure, we have

D = G(R)/V

where V is a subgroup of the compact unitary subgroup K = G(R) ∩ U(h) of G(R)
with respect to the hodge form of the reference Hodge structure. Moreover, D is
canonically an open subset (in the euclidean topology) of Ď = G(C)/P , the flag variety
parametrizing qC-isotropic Hodge filtrations F • on HC with hp,n−p = dimF p/F p+1.

Definition 4.16. Such a D is called a polarized period domain.
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Example 4.17. Given a smooth projective morphism f : Y → X, consider the local
system Rkf∗Q for some k. In the notation of Example 4.8, Rnf∗Z can be decom-
posed into primitive pieces, and each fiber of Rn

primf∗Z carries a pure weight n Hodge
structure. By a theorem of Griffiths, the resulting map

φ : Xan → G(Z)\D : y 7→ [Hn
prim(Xy,Z)]

is holomorphic and locally liftable to D.

The fundamental observation of Griffiths is that we cannot get arbitrary maps to
G(Z)\D from geometry as in Example 4.17. Indeed, only certain tangent directions
of D are accessible to algebraic families. To make this precise, fix a point x ∈ D and
note that a deformation of the Hodge filtration at x in particular yields a deformation
of each F p

x , so we have a natural map

TxD →
⊕
p

Hom(F p
x , HC/F

p
x ) (4)

Definition 4.18. The Griffiths transverse subspace TGT
x D ⊂ TxD is the inverse image

of
⊕

pHom(F p
x , F p−1/F p

x ) under the map in (4).

In other words, to first order each F p is only deformed inside F p−1. The Griffiths
transverse subspaces assemble into a holomorphic subbundle TGTD ⊂ TD.

Remark 4.19. Each pure polarized Hodge structure x ∈ D on HZ naturally induces a
pure polarized Hodge structure on the Lie algebra gR ⊂ End(HR) of weight 0, which
we call gx. Denote its Hodge filtration by F •

xgC. The Lie algebra of the stabilizer
Px ⊂ G(C) of x ∈ Ď is then naturally F 0

xgC. Thus, the tangent space TxD is naturally
(and holomorphically) identified with gC/F

0
xgC. The Griffiths transverse subspace is

F−1
x gC/F

0
xgC.

Definition 4.20. By a period map we mean a holomorphic locally liftable Griffiths
transverse map

φ : Xan → Γ\D

for a smooth complex algebraic variety X and a finite index Γ ⊂ G(Z).

Remark 4.21. A period map φ : Xan → G(Z)\D is equivalent to the data of a pure
polarized integral variation of Hodge structures on X. This consists of:

• A local system HZ with a flat quadratic form QZ.

• A holomorphic locally split filtration F • of HZ ⊗Z OXan such that the flat con-
nection ∇ satisfies Griffiths transversality:

∇(F p) ⊂ F p−1 for all p.

• We moreover require that (HZ, QZ, F
•) is fiberwise a pure polarized integral

Hodge structure.

The period map lifts to Γ\D if Γ contains the image of the monodromy representation
of HZ.
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We now defie the analogues of special and weakly-special subvarieties:

Definition 4.22. Let D be a polarized period domain.

1. A weak Mumford–Tate subdomain D′ of D is an orbit M(R)x where x ∈ D and
M is a normal algebraic Q-subgroup of MTx. In fact, D′ is a smooth complex
submanifold of D, and it is an irreducible component of the locus of Hodge
structures H such that MTH ⊃M .

2. If moreover M = MTx, then D
′ =M(R)x is called a Mumford–Tate subdomain.

3. Let π : D → Γ\D be the quotient map. For D′ ⊂ D a (weak) Mumford–Tate
subdomain, π(D′) ⊂ Γ\D is a complex analytic subvariety which we call a (weak)
Mumford–Tate subvariety. Likewise, given a period map φ : Xan → Γ\D, we
call φ−1π(D′) a (weak) Mumford–Tate subvariety of X.

Given Definition 4.12, we see that we can also think of a Mumford–Tate subdomain
as a component of the locus of Hodge structures for which some number of rational
tensors are Hodge.

Theorem 4.23 (Theorem 1.6 of [8]). Let φ : Xan → Γ\D be a period map. Then any
weak Mumford–Tate subvariety of X is algebraic.

4.3 André-Oort Conjecture for Hodge Structures: Arithmetic Issues

Since we have no universal family, we must formulate our conjectures for individual
families of Hodge structures. We give the following, but a precise formulation may be
found in []klingler-conjectures:

Conjecture 4.1. Let V be an irreducible complex variety, and φ : V → Γ\D be
a period map. Suppose that V has a Zariski-dense set of points whose image is CM.
Then φ(V ) is a Mumford-Tate variety. In fact, φ(V ) must be isomorphic to a Shimura
Variety via a ‘Hodge Morphism’.

One of the serious difficulties (very likely the primary difficulty) with this conjecture
is the lack of understanding regarding the Galois structure. In fact, we do not even
know that the CM points on V are defined over Q (or, for that matter, that V must
be defined over Q).

The problem is that due to their transcendental nature, we do not have a good
notion of an action of Aut(C/Q) on isomorphism classes of Hodge structures. Note
that we had such an action for Abelian varieties only via their algebraic co-ordinates,
which are highly transcendental on the period domain. For instance, for elliptic curves
we used the transcendental j-function.

To set things up geometrically, suppose that Y/C is an algebraic variety and σ ∈
Aut(C/Q). Then we have a Hodge structure Hk

prim(Y ). Now by considering σ(Y ) we

obtain another Hodge structure Hk
prim(σ(Y )) of the same type, and it is very tempting

to define σ(Hk
prim(Y )) to be Hk

prim(σ(Y )). However, this runs the risk of not being

well-defined. Hypothetically, we might have another variety Y ′/C such that Hk
prim(Y )

and Hk
prim(Y

′) were isomorphic but Hk
prim(σ(Y )) and Hk

prim(σ(Y
′)) were not.
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Proposition 4.24. The Hodge conjecture implies that if Y, Y ′ are smooth projective
varieties and σ ∈ Aut(C/Q) , then Hk

prim(Y ) ∼= Hk
prim(Y

′) implies that Hk
prim(σ(Y )) ∼=

Hk
prim(σ(Y

′)

Proof. The isomorphism defines a Hodge class in

Hk
prim(Y,Q) ∼= Hk

prim(Y
′,Q)∨ ⊂ H2k(Y × Z,Q).

By the Hodge conjecture this class is represented by an algebraic subvarietyW ⊂ Y ×Z.
Now one simply shows that σ(W ) defines an isomorphism Hk

prim(σ(Y )) ∼= Hk
prim(σ(Y

′).
This is clear, since this can be checked at the level of Etale cohomology, which is purely
algebraic.

It turns out that there is a weaker notion of the Hodge conjecture, formulated by
Deligne, which is slightly more natural:

Conjecture 4.2. Suppose that Y is a smooth projective variety and σ ∈ Aut(C).
Let v ∈ Hk

prim(Y,Z) be a Hodge class. By considering the image of v in De-Rham

cohomology we obrain a class σ(v) ∈ Hk
prim(Y,C). Then σ(v) is also a Hodge class. In

particular, σ(v) lies in Hk
prim(Y,Q).

It can be shown (in much the same way as above) that the Hodge conjecture implies
the Absolute Hodge Conjecture. Moreover, given the Absolute Hodge conjecture we
get a well defined action of Aut(C) on the geometric Hodge classes in Γ\D. Finally,
we get the following very nice corollary:

Corollary 4.25. Assume the Absolute Hodge Conjecture 4.2. Let V be a Q-variety
with a smooth projective family Y → V over it. Then the locus of points v ∈ V such
that Hk

prim(Yv) is a CM Hodge structure is countable, and defined over Q.

The above statement is open unconditionally, even for very low-dimensional cases
like k = 2 for families of surfaces defined over a curve. Any progress towards it would
be of extreme importance.

4.4 Mixed Hodge Structures

Finally, we mention that by considering mixed Hodge structures, we may generalize
the setting of Mixed Shimura Varieties. Rather than give the precise definitions, we
illustrate by describing some specific geometric examples.

Example 4.26. Consider Y → X where X = Gm and Y = X × X and Z :=
{1} × X ∪ ∆X Then the fiber of (Y,Z) over a point p ∈ X is (Gm, {1, p}. We now
consider the relative cohomology H1(Yp;Zp). This now has the structure of a mixed
Hodge structure, and it is an extension of the pure structure Z(0) by the pure structure
Z(1). It is split as a direct sum precisely at p = 1, and it turns out to have extra hodge
tensors precisely when p is a root of unity. Thus, this allows us to reframe Lang’s
conjecture in the context of a Mixed André-oort conjecture for (the powers of) this
family.
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5 Group Projects

5.1 Independence of CM points in Abelian Varieties

The idea behind this project is the incompatibility of the algebraic structure of CM
points on the one hand, and the additive structure in Abelian Varieties on the other. In
[6] The authors consider a correspondence V ⊂ E×S where E is an elliptic curve and
S is a Modular curve. They prove many results, but notably the following theorem:

Theorem 5.1. Let Γ ⊂ E be a finitely generated group, and let Γ′ be its division
group. Then the intersection V ∩ Γ′ × SCM is finite.

One idea they use is as follows:

1. Reduce to a number field by specialization arguements.

2. Galois orbits of CM points are large, so the points in Γ′ must have large Galois
orbits also.

3. Equidistribution results now give that a weak-* limit of the Galois orbits projects
to Haar measure in both variables

4. The cusp makes this incompatible with the measure being supported on V .

The same idea works for several other variants (such as morphisms from a shimura
curve to an Abelian variety) and the authors give many many generalizations, including
to points of low height and various other p-adic analogues.

In [24, Cor 1.2]this result is generalized to take into account all Γ of bounded rank
at once:

Theorem 5.2. consider a correspondence V ⊂ E×S where E is an elliptic curve and
S is a Shimura curve. Fix a positive integer r.

1. There exists a positive integer N such that if T is a collection of r CM points of
discriminant at least N , with no isogenies of degree ≤ N between them, then the
elements of V (T ) := πE(π

−1
S (T )) are linearly independent.

2. If Γ ⊂ E is a group of rank r, then the number of CM points with a V -image in
Γ′ is at most N(r), independently of Γ.

The problem is re-cast there as an unlikely intersection problem, with a key ob-
servation being that (P1, . . . , Pr) ∈ Er are linearly independent if they do not lie in a
proper abelian subvariety of Er. The result then follows from an Ax-Schanuel theorem,
as well as lower bounds for Galois orbits.

The project here would be to generalize the result in [24] to correspondences be-
tween arbitrary Shimura varieties and arbitrary Abelian varieties. The goal would be
something like the following:

Conjecture 5.1. Let S be a shimura variety and A an abelian variety, and V ⊂ S×A
a proper irreducible subvariety, dominant on each factor, finite over S Consider the
subset W ⊂ Sr

CM of CM points whose V -images in A are linearly dependent. Then
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1. W is contained in finitely many shimura varieties

2. If Γ ⊂ A is a group of rank r, then the number of CM points with a V -image in Γ′

is contained in a union of at most N(r) proper special subvarieties, independently
of γ′.

One may of course hope for stronger finiteness results but this is the direction we
would be heading in. Studying both [6, 24] would be crucial for this project, and there
are many places to start:

1. Consider low-dimensional cases, such as S = Y (1)×Y (1) or S = A2 and dimA =
2, with V being induced by a morphism. Also considering r = 1 should greatly
simplify the structure of special varieties. Also start by assuming A is defined
over Q .Already here the result would be interesting!

2. Use the Galois orbits bounds from [31] to generalize the results in [24, §5], and
read the corresponding papers of Masser[18] for the heights on abelian varieties
part.

3. In another direction, I think one the theorem in [24, Cor 1.2] is highly inoptimal,
and I wonder if one could remove the need to consider isogenies in the definition
of N -independence. This would involved understanding whether it is POSSIBLE
in a non-constant map φ : Y (1)→ E and N > 1 to have φ(TN ) ⊂ E2 contained
in a proper abelian coset. This is more of a geometric question and I am not sure
of the answer, but I suspect it is “no”, and it would be interesting either way!

5.2 Obtaining/effectivizing explicit exponents for Galois lower bounds

This question is focused on the following problem:

Question 5.3. Let g, d > 1. Let A be a g-dimensional (principally polarized?) Abelian
Variety, with Discriminant D. Let Q(A) be its field of definition. What is the ‘best’
bound of the form [Q(A) : Q] ≥ a(g)|D|b(g)?

• How large can b(g) be, either provably or conjectured?

• Can this be effectivized, either GRH or unconditionally?

• How many CM abelian varieties are there defined over Q of dimension g?

This question was open for a long time, except in the case of Elliptic curves where
it is settled (ineffectively unless you assume GRH) by ther Brauer-Siegel theorem,
as discussed in Lecture #2. In higher degree, the question was studied by relating
Galois orbits to sizes of maps between Class groups of Tori (see [29, 32] for results and
details). That approach turns out to be quite difficult because it relates to bounds for
Torsion in Class groups, which is a very difficult open problem. Such bounds are not
required up to g = 3, and are sufficiently obtainable up to g = 6, but beyond that
this approach fails. Nevertheless, if one assumes the following folklore conjecture (first
made by Zhang( this approach becomes very feasible:
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Conjecture 5.2. Fix d, n > 1. Let K be a number field of degree d. Then |Cl(K)[n]| =
D

o(1)
k

This approach would involve understanding Discriminants of Tori over number
fields, and the reflex norm-maps for distinct CM types:

Question 5.4. Assume Zhang’s conjecture. What is the largest possible value of b(g)?

The references given say something of the following type: Given a CM field K, one
obtains a ‘norm’ map Cl(K∗)→ Cl(K) between the class groups of the reflex field of
K and K. This can be obtained through a map of tori φ : ResK∗/QGm → ResK/QGm,
and the relevant factor is essentially the size of the discriminant of the Torus which is
the image of T . How small can this be in terms of ths discrimiant of T??

Alternatively, a polynomial lower bound for Galois orbits of CM abelian varieties
was obtained in [31], but an explicit exponent has not been worked out or at all
optimized. This would involve understanding the various ingredients in the proof, and
attempting to trace through an explicit exponent. Relevant is the work of Masser-
Wüstholz([20] and several others) which is used to obtain isogeny estimates. The
methods of [4] might be relevant, and related is [22] who study a related question for
K3 surfaces.

If this goes very well, a potential direction for this project would be to try and
classify all CM abelian varieties of dimension g defined over Q, in an analogous way
to the class number one problem, which was solved effectively by Goldfeld[13].

5.3 Good reduction of CM points

Remark 5.5. This is definitely the most difficult and speculative project!
Very interesting and a great opportunity to learn a lot of material, but
could very well be genuinely too difficult or even false!

One of the central properties of CM abelian varieties is that they have good reduc-
tion everywhere. One may reformulate this for Ag by providing a scheme over Z. by
saying (roughly) that the CM points all extend to OK points of Ag for some number
field K. This requires picking an integral model, so an even more intrinsic formulation
is the following:

1. For every p there are subsets of Up ⊂ Ag(Qp) which are finite unions of affinoids
that the CM points all land in Up for every p

2. For almost every p one may take Up to be the points corresponding to a model
of Ag. This is independent of the model.

For arbitrary Shimura varieties one may try to formulate the same question, except
integral canonical models are far from known at all places. This question comes up
in [2, §5] but is sidestepped for the ‘bad primes’ - so that (2) is known but (1) is
not. But it may not be that hard, and just follow from unipotent properties of inertia
representations - I just don’t know!

For the abelian variety case useful background reading could be the paper of Serre
and Tate [28] and the theory of Complex Multiplication. Moreover Milne[21]. The
main thing to read is definitely [2, §5] and the background therein.
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This project has much relevance to, but little overlap with, the lecture material,
and will rely heavily on p-adic geometry, Galois theory, Etale cohomology, and some
comfort with abstract Shimura Varieties.
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[31] Jacob Tsimerman. The André-Oort conjecture for A}. Ann. of Math. (2),
187(2):379–390, 2018.

[32] Emmanuel Ullmo and Andrei Yafaev. Nombre de classes des tores de multiplica-
tion complexe et bornes inférieures pour les orbites galoisiennes de points spéciaux.
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