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EVAN WARNER

For each exercise, you may assume all results and exercises stated up until that point – sometimes we will admit
certain facts as black boxes.

Throughout, let K be a field equipped with a nonarchimedean (rank one) absolute value | · | : K → R≥0. Let

R = {t ∈ K : |t| ≤ 1}

be its valuation ring,

m = {t ∈ K : |t| < 1}
the maximal ideal of R, and k = R/m the residue field.

1. Affinoid algebras

Exercise 1.1. Let a ball in K be a subset of the form {t ∈ K : |t− a| < r} or {t ∈ K : |t− a| ≤ r} with a ∈ K (the
center) and r ∈ R>0 (the radius). For example, R and m are balls.
a) Show that any point of a ball in K is a center of that ball.
b) Show that if any two balls in K intersect, then one is contained in the other.
c) Show that every ball in K is both open and closed in the metric topology induced by the absolute value.
d) Show that K is totally disconnected in this topology.

Exercise 1.2 (Serre). If V is an open set in the product topology on Kn, say that a function V → K is locally
analytic if it can be locally written as a convergent power series with coefficients in K. Define the category of näıve
K-analytic manifolds to be the category of locally ringed spaces that are locally isomorphic to a pair (V,Ol-an

V ) where
Ol-an
V is the sheaf of locally analytic functions on V . There is an obvious notion of dimension. Suppose that K is a

local field and let q be the cardinality of the residue field. Show that any n-dimensional compact näıve K-analytic
manifold is isomorphic to a disjoint union of s copies of the unit polydisc Rn, where s < q.

Remark 1.3. In the four-page article [5], Serre shows furthermore that s as above is uniquely determined. It is
sometimes called the Serre invariant.

Clearly we need to do something else to get a “reasonable” class of analytic spaces over a nonarchimedean field.
For n ≥ 1, define the n-dimensional Tate algebra Tn over K, also denoted by K〈X1, . . . , Xn〉, to be the subring of
K[[X1, . . . , Xn]] consisting of power series that converge on Rn. We will often denote the n-tuple X1, . . . , Xn simply

as X and write XJ for a multi-index J = {j1, . . . , jn} to mean
∏
Xji
i .

Exercise 1.4. Check that

Tn =
{∑

cJX
J : cJ ∈ K, |cJ | → 0 as ||J || → ∞

}
,

where ||J || =
∑
ji.

The Gauss norm on Tn is defined by ∣∣∣∣∣∣∑ cJX
J
∣∣∣∣∣∣ = maxJ |cJ |.

Exercise 1.5 (Taken from [4]).
a) Check that ||f + g|| ≤ max(||f ||, ||g||), ||cf || = |c| · ||f ||, and ||fg|| ≤ ||f || · ||g|| for all f, g ∈ Tn and c ∈ K.
b) Check that Tn is complete for the metric induced by the Gauss norm.
c) Check that actually ||fg|| = ||f || · ||g|| for all f, g ∈ Tn by first scaling so that f and g both have unit norm and
then reducing modulo m.

1



2 EVAN WARNER

d) Let K be an algebraic closure of K endowed with the unique absolute value extending the given one on K. Again
by using the scaling trick and reducing modulo m, show that

||f || = sup
x
|f(x)| = max

x
|f(x)|

where x = (x1, . . . , xn) varies over all elements of K
n

such that |xj | ≤ 1.
e) Give an example of a f ∈ Qp〈X〉 such that ||f || > supx∈Zp

|f(x)|.

This suggests that, as in algebraic geometry, one should in some way include K-valued points in the underlying
set of a K-analytic space. Using techniques similar to those used in complex analytic geometry (i.e., the Weierstrass
preparation theorem), one can show that the n-dimensional Tate algebra is noetherian, Jacobson (every prime ideal
is the intersection of the maximal ideals containing it), regular, and a unique factorization domain. Furthermore
every ideal is closed with respect to the Gauss norm and reduction modulo every maximal ideal yields a field that
has finite degree over K.

Exercise 1.6. Using these facts, show that the set MaxSpec(Tn) of maximal ideals of the n-dimensional Tate algebra

is naturally in bijection with R
n

modulo the Galois action, where R = {t ∈ K : |t| ≤ 1} is the valuation ring of K.

In particular if for f ∈ Tn and x = mx ∈ MaxSpec(Tn) we let f(x) denote the image of f in Tn/mx, we get the
more intrinsic formula

||f || = sup
x
|f(x)| = max

x
|f(x)|

where now x runs over MaxSpec(Tn).
A K-affinoid algebra A is a K-algebra that can be written as a quotient of some Tn. If A is a K-affinoid algebra,

let Sp(A) denote the set MaxSpec(A). All affinoid algebras are noetherian and Jacobson, and all residue fields A/m
with m ∈ Sp(A) are finite over K.

Exercise 1.7. Check that an element of an affinoid algebra A is nilpotent if and only if it lies in every maximal
ideal of A and explain the geometric significance of this fact.

Exercise 1.8. Show that the assignment A 7→ Sp(A) is contravariantly functorial. If A ' Tn/I, describe the set
Sp(A).

If A ' Tn/I, we can equip A with the structure of a Banach K-algebra by taking the Gauss norm on Tn and
then taking the quotient norm. This quotient norm may depend on the presentation Tn/I, but it is a fact from
nonarchimedean analysis that the resulting topology does not. Furthermore allK-algebra maps of K-affinoid algebras
are automatically continuous with respect to this topology.

Exercise 1.9. If A is a K-affinoid algebra, then there is a canonical semi-norm: for f ∈ A, let

|f |sup = sup
x∈Sp(A)

|f(x)|.

By previous work, we know that this coincides with the Gauss norm if A = Tn.
a) Show that | · |sup is a semi-norm (i.e., it is a norm except that it may not be the case that |f |sup = 0 implies
f = 0) which is a norm if A is reduced.
b) Show that |fn|sup = |f |nsup.
c) If φ : A→ B is a morphism of K-affinoid algebras, then |φ(f)|sup ≤ |f |sup for all f ∈ A.

One can show that in fact |f |sup = maxx∈Sp(A) |f(x)|; i.e., a maximum modulus principle holds.

Exercise 1.10 (Taken from [4]). Let A be a K-affinoid algebra and let A0 denote the subset of power-bounded
elements, where a ∈ A is power-bounded if the sequence {an}n≥1 is bounded.
a) Show that A0 is an R-algebra.
b) Prove that the assignment A 7→ A0 is functorial in the category of K-affinoid algebras.
c) Show that the map Hom(Tn, A)→ (A0)n defined by φ 7→ (φ(X1), . . . , φ(Xn)) is a bijection. Compare this to the
universal mapping property of polynomial algebras in algebraic geometry.

Exercise 1.11. If A is a K-affinoid algebra, define a Zariski topology on Sp(A). State and prove a Nullstellensatz
in this context.
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Exercise 1.12. If A is a K-affinoid algebra, define a canonical topology on Sp(A) by taking the topology generated
by sets of the type

{x ∈ Sp(A) : |f(x)| ≤ ε}
for f ∈ A and ε ∈ R>0. Show that the canonical topology is Hausdorff, totally disconnected, and functorial in A.

2. Affinoid subdomains

To construct the “correct” category of K-analytic spaces, we need a topology intermediate in strength between
the Zariski and canonical topologies. Unfortunately no ordinary topology will do the job1 so we instead define a
(rather mild) Grothendieck topology. If A is a K-affinoid algebra, a subset U ⊆ Sp(A) is called an affinoid subdomain
if there exists a map A → B of K-affinoid algebras such that the induced map Sp(B) → Sp(A) lands in U and is
universal for such maps in the sense that for any other map A → C of K-affinoid algebras, there is a unique map
B → C making the obvious diagram commute if and only if Sp(C) lands in U . By the usual category theory, such
a B is unique up to unique isomorphism; call it AU .

Exercise 2.1. Prove that the natural map Sp(AU )→ Sp(A) is an injection onto U . Prove that if V ⊆ U ⊆ Sp(A)
with U an affinoid subdomain of Sp(A), then V is an affinoid subdomain of U if and only if V is an affinoid subdomain
of Sp(A). Prove that if V ⊆ U is an inclusion of affinoid subdomains, then there is an induced map AU → AV that
is transitive with respect to compositions of inclusions.

Exercise 2.2. Show that the category of K-affinoid algebras has pushouts by constructing a “completed tensor
product” as follows: first, if A and B are K-affinoid algebras, choose presentations A ' Tm/I and B ' Tn/J and
let A⊗̂KB ' Tm+n/(I

′ + J ′), where I ′ and J ′ are the ideals generated by I and J via the obvious projection maps.
Then boostrap to the case of a general pushout A⊗̂CB.

Exercise 2.3. Prove that if U,U ′ ⊆ Sp(A) are affinoid subdomains, then U ∩U ′ is also an affinoid subdomain with

AU∩U ′ ' AU ⊗̂AAU ′ .

Exercise 2.4. Show that the inverse image of an affinoid subdomain along the map Sp(B)→ Sp(A) induced from
a map of K-affinoid algebras A→ B is itself an affinoid subdomain.

The extremely convenient fact of rigid geometry is that there exist a plentiful supply of affinoid subdomains; in
other words, there are many subsets of Sp(A) that are themselves spectra of K-affinoid algebra. This is analogous to
the fact in algebraic geometry that a localization of an algebra of finite type over a ring with respect to finitely many
functions is still an algebra of finite type (thanks to the isomorphism R[f−1] ' R[t]/(ft − 1)). Here the algebraic
operation will not be localization, but rather some sort of completed localization.

If A is a K-affinoid algebra, define the relative Tate algebra in n variables A〈X〉 = A〈X1, . . . , Xn〉 exactly as one
defined Tn, except replacing K by A.

Exercise 2.5. Prove that relative Tate algebras are still K-affinoid. State and prove a universal mapping property
of relative Tate algebras, and use it to conclude that (A〈X〉)〈Y 〉 ' A〈X,Y 〉.

Given a K-affinoid algebra A and a collection of elements f1, . . . , fn, g ∈ A with no common zeroes, define

A

〈
f1
g
, . . . ,

fn
g

〉
:= A〈X1, . . . , Xn〉/(gX1 − f1, . . . gXn − fn).

Exercise 2.6. With notation as above, let U = {x ∈ Sp(A) : |fi(x)| ≤ |g(x)| for all i}. Show that U is an affinoid
subdomain with

AU ' A
〈
f1
g
, . . . ,

fn
g

〉
.

Affinoid subdomains of the form described in the above example are called rational subdomains.

Exercise 2.7. Show that rational subdomains are open in the canonical topology, and even form a basis thereof.
Show that pullbacks of rational subdomains are rational (and describe them concretely).

1At least if we insist that the underlying set is Sp(A). The theories of Berkovich spaces and adic spaces do involve actual topologies,
at the expense of adding more underlying points.
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It can be shown that all affinoid subdomains are open in the canonical topology, and even that every affinoid
subdomain is a finite union of rational domains (Gerritzen-Grauert theorem).

Exercise 2.8. In contrast to algebraic geometry, if U ⊆ Sp(A) is an affinoid subdomain then there are in general
many Zariski-closed subspaces of U that do not extend to Zariski-closed subspaces of Sp(A). This is exactly analogous
to the situation in complex-analytic geometry, where analytic functions have domains of holomorphy that may be
much smaller than the whole space. Explain why this is equivalent to the existence of a non-maximal prime ideal
q ⊂ AU such that p := q∩A does not satisfy pAU = q. Give an explicit example of this (this is somewhat tricky; see
pp. 61-63 of [1] if you get stuck). Explain why in the definition of Sp(A) we considered only maximal ideals rather
than all prime ideals.

3. Rigid spaces

By Exercise 2.7, there is no ordinary topology strictly coarser than the canonical topology but where rational
subdomains are open sets. We rather pass to a Grothendieck topology, where we are allowed to restrict what covers
are allowed. Call U ⊆ Sp(A) an admissible open if it is covered by affinoid subdomains {Ui} such that for each
affinoid subdomain V ⊆ U , there are finitely many elements of {Ui} that cover V . Call a collection of admissible
opens {Ui} of Sp(A) an admissible cover of its union U if for every affinoid subdomain V of U the restriction of the
collection to V has a refinement by a covering consisting of finitely many affinoid subdomains.

Exercise 3.1. As a sanity check, show:
a) The union of an admissible cover is an admissible open.
b) The covering in the definition of an admissible open is an admissible cover.
c) A finite union of affinoids is admissible, with said finite union giving an admissible cover.

Exercise 3.2. Inside Sp(T1), let (informally) U = {|t| < 1} and V = {|t| = 1}. Clearly V is an affinoid subdomain.
Using the maximum modulus principle, show that U is an admissible open and {U, V } is not an admissible cover of
Sp(T1).

Exercise 3.3. More generally, show that any Zariski open is an admissible open. Show that any Zariski open cover
is an admissible cover.

Given a K-affinoid algebra A, define the Tate topology on Sp(A) to have objects the admissible open subsets and
coverings the admissible open coverings.

Exercise 3.4. Check that this yields a Grothendieck topology.

Tate’s Acyclicity Theorem states that the assignment U 7→ AU uniquely extends to a sheaf, the structure sheaf
OA, on the Tate topology of Sp(A) (and further that this sheaf has no higher cohomology). The proof is not easy
and proceeds by successive reduction to simpler cases until a direct computation can be made. With this in hand,
one can formally define the notion of a “locally ringed G-topologized space” and define an K-affinoid space to be
the locally ringed G-topologized space (Sp(A),OA). For details, see Chapter 5 of [1] or Chapter 9 of [2]. We will
commit the notational sin of referring to (Sp(A),OA) simply as Sp(A).

Exercise 3.5. Show that the assignment A 7→ Sp(A) is a fully faithful contravariant functor from K-affinoid algebras
to locally K-ringed G-topologized spaces.

A rigid-analytic space over K is then a locally ringed G-topologized space (X,OX) that is locally isomorphic to
K-affinoid spaces. A morphism of rigid-analytic spaces is just a morphism of locally K-ringed G-topologized spaces.

Exercise 3.6. Sanity check: show that an admissible open subset of a rigid-analytic space is a rigid-analytic space.

Exercise 3.7. Let X be a rigid-analytic space over K and Y a K-affinoid space. Using Exercise 3.5, show that the
natural map

Mor(X,Y )→ Hom(OY (Y ),OX(X))

is a bijection.
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Exercise 3.8 (Taken from [4]). A rigid-analytic space X is connected if there does not exist an admissible open
covering {U, V } of X with U, V nonempty and U ∩ V = ∅.
a) Prove that Sp(A) is connected if and only if A has no nontrivial idempotents. In particular, using the Tate
topology we recover a “reasonable” notion of connectedness.
b) Carefully define a good notion of “connected component” of a rigid space X, and prove that the connected
components form an admissible cover of X.
c) Prove that a rigid space X is connected if and only if OX(X) has no nontrivial idempotents.

Exercise 3.9. Pick a c ∈ K with 0 < |c| < 1. Let {Dj}j≥1 be copies of the unit disc Sp(Tn), with coordinates
x1,j , . . . , xn,j . Define maps Dj → Dj+1 by sending xn,j+1 7→ cxn,j ; i.e., Dj is the affinoid subdomain {|xi,j | ≤
|c| for all i} in Dj+1.
a) Carefully define a rigid space by gluing the Dj along these maps. It is called affine n-space and is denoted by
An,an
K .

b) Show that, as a set, An,an
K coincides with the set of closed points of the scheme An

K .
c) Prove the following universal property: for any rigid-analytic space X over K, the natural map of sets

Mor(X,An,an
K )→ OX(X)n

is a bijection. In particular this shows that the construction of An,an
K is independent of the choice of c.

Let X be a scheme locally of finite type over K. An analytification of X is a rigid-analytic space X an together
with a morphism of localy K-ringed G-topologized spaces X an → X that is universal for maps from rigid-analytic
spaces over K. By general nonsense this specifies X an up to unique isomorphism.

Exercise 3.10. Verify that An,an
K is an analytification. Construct analytifications of arbitrary affine K-schemes of

finite type, then of arbitrary schemes locally of finite type over K. Show that the underlying map of sets X an → X
identifies the points of X an with the closed points of X . Define what the analytification of a morphism of schemes
locally of finite type over K should be and construct it.

Exercise 3.11. Verify that the category of rigid-analytic spaces overK admits fiber products and that analytification
respects fiber products in the obvious sense.

Just as in complex-analytic geometry, there is a GAGA principle in rigid geometry: in particular, rigid-analytic
morphisms of analytifications of proper schemes over K must be algebraic.

Exercise 3.12 (Open-ended). Take familiar properties of schemes and morphisms of schemes and try to generalize
them to rigid-analytic spaces and prove their basic properties. For example: quasi-compact, closed immersion,
separated, quasi-separated, of dimension n, finite, étale, smooth, unramified, flat. Properness is tricky!

4. Formal geometry

Rigid spaces can also be constructed as “generic fibers” of certain formal schemes. Define R〈X〉 = R〈X1, . . . , Xn〉
to be the subalgebra of R[[X1, . . . , Xn]] consisting of power series with coefficients in R tending to 0. A topologically
finitely presented (or tfp) R-algebra is an R-algebra isomorphic to R〈X〉/I, where I is a finitely generated ideal.
A tfp R-algebra is admissible if it is flat over R, which is equivalent to R not having any m-torsion. Warning: tfp
R-algebras are in general nonnoetherian (unless R is a dvr), so one sometimes needs serious algebraic input in order
to work with them.

Exercise 4.1. Let π ∈ R be such that 0 < |π| < 1; such an element is called a pseudouniformizer. Show that R〈X〉
is equal to the π-adic completion of R[X]. If R is not discretely valued, show that this is not the same as the m-adic
completion!

Exercise 4.2. Associated to a tfp R-algebra A , we can consider the “special fiber” or “reduction” A ⊗R k and the
“generic fiber” A ⊗RK = A

[
1
π

]
. Show that the special fiber is a k-algebra of finite type and that the generic fiber

is an affinoid K-algebra.

If A is a tfp R-algebra and f ∈ A , set

A 〈f−1〉 = lim←−
n

(
A [f−1]/πn

)
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where π is a pseudouniformizer of R.

Exercise 4.3. With notation as above, prove that the natural map A 〈X1〉/(1 − fX1) → A 〈f−1〉 sending X1 to
f−1 is an isomorphism. In particular A 〈f−1〉 is independent of the choice of π.

Exercise 4.4. Let A be a tfp R-algebra and let X = Spec(A /mA ). For f ∈ A , let Xf denote the nonvanishing

locus of f in X. Define a presheaf on subsets of X of this kind via the assignment Xf 7→ A 〈f−1〉. Show that this

presheaf satisfies the sheaf axioms and deduce that this presheaf extends to a sheaf OA on X.

We let Spf(A ) denote the locally ringed space (X,OA ) as above and call such spaces affine tfp formal schemes.
A tfp formal scheme (X ,OX ) over R is a quasi-compact locally R-ringed space that is locally isomorphic to affine
tfp formal schemes. An admissible formal scheme over R is a tfp formal scheme over R locally isomorphic to affine
tfp formal schemes Spf(A ) where A is an admissible R-algebra.

Exercise 4.5. Check that we can extend Exercise 4.2 to construct a special fiber (or reduction) functor X 7→ Xk

from tfp formal schemes over R to schemes of finite type over k, and a generic fiber functor X 7→ XK from tfp
formal schemes over R to rigid spaces over K.

A potential source of confusion is the following. Let X be an R-scheme of finite type. One can construct the
generic fiber XK in the usual scheme sense (i.e., XK = X ⊗R K) and then take the analytification X an

K , or one can
form the π-adic completion X of X and then take the generic fiber XK in the sense of the preceding exercise.

Exercise 4.6. With notation as above:
a) If X = Spec(R[t]) compute X an

K and XK , and note that they are different.
b) Show that nevertheless for any X there is a canonical map of rigid spaces ιX : X an

K → XK and identify it in the
above case.
c) If X = PnR is projective space, show that ιX is an isomorphism.

More generally, ιX is always an isomorphism whenever X is proper over R.
Given a rigid space X over K, an admissible formal R-scheme X together with an isomorphism XK ' X is called

a formal model of X. Raynaud proved that every quasi-paracompact2 quasi-separated rigid space X over K has a
formal model, and in fact if X1 and X2 are two such then there is a third X3 and maps X3 → X1 and X3 → X2

that are both blowups of closed subschemes of the special fibers (“admissble formal blowups”). Furthermore any
morphism of rigid schemes has a formal model. The power of the theory comes from the fact that often one can
choose the formal models to inherit the properties of the rigid space or morphism of rigid spaces under consideration;
for example, any quasi-compact open immersion comes from a (Zariski-)open immersion into a suitable formal model.

Exercise 4.7. Let X be a formal model of X. Given a point x of X, we can consider x ∈ Sp(A) where A = A ⊗RK
and A is some affine open of X . Viewing x as a maximal ideal mx, the morphism A → A/mx takes A into the
valuation ring of A/mk. Reducing mod π, we get a map from A ⊗R k onto a finite extension of k; i.e., a point of
Spec(A ⊗R k), hence of Xk. Show that this point is independent of the choices made, so yields a specialization map
sp : X → Xk. Show that the preimage of a Zariski-open set of Xk is a finite union of rational subsets of X (so in
particular, it is an admissible subset).

The preimage of a point x of the special fiber under sp is sometimes called the tube of x and denoted by ]x[.

5. Curves

A single rigid space has many formal models, hence many different reductions. For the purposes of algebraic or
arithmetic geometry, some may be better than others.

Exercise 5.1. Let D = Sp(T1) be the unit disk. There is an “obvious” formal model Spf(R〈X〉) of D whose special
fiber is A1

k.
a) Let π be a pseudouniformizer ofR and consider the formal scheme D obtained by glueingR〈X/π〉 andR〈π/X,X〉 =
R〈X,Y 〉/(XY − π) along R〈X/π, π/X〉. Show that the generic fiber of D is D, obtained by glueing the sets

2I.e., there exists an admissible open covering {Xi}i∈I by quasi-compact rigid spaces Xi such that for each index i ∈ I there are only
finitely many j ∈ I such that Xi ∩Xj is nonempty.
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{t ∈ K : |t| ≤ |π|} and {t ∈ K : |t| ≥ |π|} along {t ∈ K : |t| = |π|}. Show that the special fiber of D consists of two
components, an affine line and a projective line intersecting at an ordinary double point. What is the tube of the
singularity?
b) Generalize by splitting up D into more concentric annuli. What sort of reductions can you get?

Exercise 5.2. Let X = P1,an
K . Again there is an “obvious” formal model given by the formal projective line over

R, with reduction P1
k. Find a formal model of X whose special fiber consists of two copies of P1

k intersecting at an

ordinary double point by splitting up P1,an
K into two balls and an annulus in between.

As should be fairly clear from the last two exercises, one can often think of a formal model for a rigid space in a
somewhat concrete way via a particular choice of admissible affinoid covering. Recall that if A is a reduced K-affinoid
algebra, its sup-norm is a norm. Since the sup-norm is canonical, we can define a canonical reduction

Ã := Å/Ǎ.

where
Å := {f ∈ A : |f |sup ≤ 1}

and
Ǎ := {f ∈ A : |f |sup < 1}.

Unfortunately, it is not always the case that Å is even of topologically finite type over R.

Exercise 5.3. Check that nonetheless Ã is a reduced k-algebra of finite type, there is always a canonical specialization
map Csp : Sp(A)→ Spec(Ã), and the preimage of a Zariski open set under Csp is admissible open.

If K is discretely valued or algebraically closed (or more generally, if K is stable; see 3.6 of [2] for the definition)

and A satisfies |A|sup = |K|, then it is known that Å is topologically of finite type over R (see 6.4 of [2] for this and
many related results).

Exercise 5.4. Assume that K is discretely valued or algebraically closed and that X is a reduced rigid-analytic
space over K. Suppose you are given an admissible affinoid covering {Xi = Sp(Ai)}i∈I of X such that:

• We have |Ai|sup = |K| for each i ∈ I.

• If Xi ∩ Xj is nonempty, then there exists an open affine subset Ui,j of the reduction Spec(Ãi) such that
Xi ∩Xj is the inverse image of Ui,j under the canonical specialization map.

From this data, construct a “formal model” that is topologically of finite type (but not necessarily admissble) X of
X (and hence a reduction Xk).

A rigid curve is a rigid space of dimension 1. We have not developed the dimension theory of rigid spaces, but
due to the Noether normalization theorem in rigid geometry this is equivalent to being covered by affinoid spaces of
the form Sp(A), where A is an affinoid algebra that can be written as a module-finite algebra over T1. Using similar
reasoning to the complex case, one can show that every proper rigid curve is in fact projective algebraic, so there is
not much loss of generality in just considering open subspaces of analytifications of projective curves over K.

Exercise 5.5. Let φ : X → Y be a morphism of admissible formal schemes over R. Let x ∈ Xk and let
y = φk(x) ∈ Yk be its image under the morphism of special fibers induced by φ. Suppose that φk is étale at x.
Prove that the induced morphism of the corresponding tubes ]x[→]y[ is an isomorphism. (Hint: reduce to using a
standard étale map and lift the polynomial you get.)

Exercise 5.6. Let X be any rigid curve and X a formal model of X.
a) Show that x is a smooth point of the reduction Xk if and only if the tube ]x[ is isomorphic to {t ∈ K : |t| < 1}.
b) Show that x is an ordinary double point if and only if ]x[ is isomorphic to {t ∈ K : π < |t| < 1} for some
pseudouniformizer π.

In complex-analytic geometry, the uniformization theorem tells us that compact complex curves can be expressed
as analytic quotients of certain simple spaces (the complex plane in genus 1 and the upper half plane or unit disk in
genus > 1). The situation is not quite as nice in rigid geometry, but certain proper rigid curves do have reasonable
uniformizations.



8 EVAN WARNER

Exercise 5.7. Let q ∈ K∗ with 0 < |q| < 1. We consider q as an automorphism of the rigid space Gan
m,K sending

z 7→ qz.
a) Define the quotient T = Gan

m,K/q
Z as a locally ringed space together with a map π : Gan

m,K → T .

b) Let A(r1, r2) = {t ∈ Gan
m,K : r1 ≤ |t| ≤ r2}. Using domains of the form π(A(r1, r2)) cover T by affinoids with

affinoid intersections and thereby show that T is a connected rigid space.

One can show without difficulty that T is a smooth proper rigid curve, and hence is the analytification of some
projective algebraic curve.

Exercise 5.8. Prove that T is the analytification of a curve of genus one by pure thought (no rigid-analytic
computations!).

Our construction of T gives a natural base point, so we can consider T as the analytification of an elliptic curve.
It is called the Tate curve, and its construction motivated the entire field of rigid analysis.

Exercise 5.9. Using the formal model associated to the affinoid cover of T you wrote down in Exercise 5.7 and
formal GAGA, show that T is the analytification of a curve with split toric reduction.

In the complex-analytic case, one can explicitly write down a Weierstrass elliptic curve Eq whose analytification
is C∗/qZ. We can do the same thing here, and the relevant power series are actually given by the “same” formulas
as in the complex case.

Exercise 5.10. Let q ∈ K∗ be such that |q| < 1. Define

sk(q) =
∑
n≥1

nkqn

1− qn
, a4(q) = −5s3(q), a6 = −5s3(q) + 7s5(q)

12

as elements of K.
a) Check that these series converge.
b) For t ∈ Gan

m,K , let

Xq(t) =
∑
n∈Z

qnt

(1− qnt)2
− 2s1(q), Yq(t) =

∑
n∈Z

(qnt)2

(1− qnt)3
+ s1(q).

Show that Xq(t) and Yq(t) converge when t /∈ qZ.
c) Prove that Xq(qt) = Xq(t) = Xq(t

−1), Yq(qt) = Yq(t), and Yq(t
−1) = −Yq(t)−Xq(t).

d) Expand Xq(t) and Yq(t) as power series in q. Namely, prove that if |q| < |t| < |q−1|

Xq(t) =
t

(1− t)2
+
∑
d≥1

∑
m|d

m(tm + t−m − 2)

 qd

and

Yq(t) =
t2

(1− t)3
+
∑
d≥1

∑
m|d

(m− 1)m

2
tm − m(m+ 1)

2
t−m +m

 qd.

e) Define Eq to be the elliptic curve over K given by the Weierstrass equation y2 + xy = x3 + a4(q)x + a6(q).
Construct a morphism φ : Gan

m,K → Ean
q by sending t 7→ (Xq(t), Yq(t)) if t /∈ qZ and sending t to the point at infinity

otherwise.
f) By the q-periodicity of X and Y , φ descends to a morphism ψ : T → Ean

q . Show that ψ is an isomorphism of rigid
spaces by using that we already know that T is the analytification of a curve of genus one.

The j-invariant of Eq is the classical series 1
q + 744 + 196884q + · · · , which has integer coefficients.

Exercise 5.11. Suppose that E is an elliptic curve over K with |j(E)| > 1. Show that there is a unique q ∈ K∗
with |q| < 1 such that E is isomorphic over an algebraic closure of K to Eq.

One can show using more tools from the arithmetic theory of elliptic curves that the above isomorphism is
defined over K precisely when E has split toric reduction. Therefore elliptic curves of split toric reduction over a
nonarchimedean field are uniformized by Gan

m,K .
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Exercise 5.12. Let q, q′ ∈ K∗ with |q| < 1 and |q′| < 1. Prove that Eq and Eq′ are isogenous if and only if there
are positive integers m and n such that qm = q′n.

There is a higher-dimensional version of the Tate uniformization for abelian varieties with split toric reduction. To
prove such a result it no longer suffices to rely on explicit formulas as in Exercise 5.10. One can proceed approximately
as follows, at least if R is a dvr (though this restriction turns out to be unnecessary): if A is an abelian variety
over K with split toric reduction, let A 0 be the connected component of the identity of the Néron model of A. By
assumption the special fiber of A 0 is Gn

m,k; rigidity of tori implies that the formal completion of A 0 along the closed

fiber is isomorphic to the completion Ĝ of Gn
m,R along its special fiber. Passing to generic fibers yields an open

immersion i : G→ Aan, where G = Sp(K〈X1, X
−1
1 , . . . , Xn, X

−1
n 〉) is the generic fiber of Ĝ. A Néron-type extension

argument in the category of rigid spaces implies that i extends to a morphism (Gn
m,K)an → Aan, and this turns out

to be the quotient morphism uniformizing Aan.

Exercise 5.13. Use this sketch to re-prove the Tate uniformization of elliptic curves of split toric reduction (in a
less concrete way). See Lemma 1.3 of [3] for the Néron-type extension result.
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