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Disclaimer

These lecture slides come with a bibliography at the end. However,
there has been no attempt at accurate attribution of mathematical
results. Rather, the list mostly contains works the lecturer has
consulted during preparation, which he hopes will be helpful for
users.



I. Preliminaries on covering spaces and fundamental groups



Universal Covering Spaces

M: a locally contractible connected topological space.

A covering space
M ′ - M

is a locally trivial fibre bundle with discrete fibres:

There is a discrete set F and an open covering M = ∪Ui such that

M ′Ui
' F × Ui

for each i .



Universal Covering Spaces

A universal covering space

π : M̃ - M

is a covering space with M̃ connected and simply connected.

It is not universal in a categorical sense: For any other covering
space M ′ - M, there is a commutative diagram

M̃ - M ′

M
?

-

However, the diagram is not unique: There is no initial object in
the category of covering spaces.



Universal Covering Spaces
Consider instead pointed covering spaces.

Having chosen a point b ∈ M, a pointed covering space is a map

(M ′, b′) - (M, b).

Now we choose a point b̃ ∈ M̃b. Then the pair (M̃, b̃) is indeed an
initial object in the category of pointed universal covering spaces:

(M̃, b̃)
∃!
- (M ′, b′)

(M, b)
?

-

Note that the choice of a different c̃ ∈ M̃b will give another initial
object (M̃, c̃) which is uniquely isomorphic to (M̃, b̃).



Fibre Functors

Now consider the functor

Fb : Cov(M) - Sets

M ′ 7→ M ′b,

and its automorphism group

Aut(Fb).

By the definition of a natural transformation, an element γ of this
group is a compatible sequence of bijections

γM′ : M ′b
∼= M ′b.



Fibre Functors

Compatibility here is with respect to maps of covering spaces:

If f : M ′1
- M ′2 is a map of covering spaces, then

M ′1,b
γM1- M ′1,b

M ′2,b

f

? γM2- M ′2,b

f

?

f ◦ γM′1 = γM′2 ◦ f .



Fibre Functors

Define a map
Aut(Fb) - M̃b

by
γ 7→ γM̃(b̃) ∈ M̃b.

Proposition
This map induces a bijection

Aut(Fb) ∼= M̃b.



Fibre Functors

Injectivity:

Given any b′ ∈ M ′b, there is a unique map f : (M̃, b̃) - (M ′, b′).
Thus

γM′(b
′) = γM′(f (b̃)) = f (γM̃(b̃)),

and the action of γ on M ′b is determined by γM̃(b̃).

On the other hand, given y ∈ M̃b, we would like to define γ such
that γM̃(b̃) = y .

The point is that there is only one way to do it in a way that’s
compatible with maps of covering spaces and this gives us γM′ for
every M ′ - M.



Fibre Functors

Given b′ ∈ M ′b, there is a unique fb′ : (M̃, b̃) - (M ′, b′). Define

γM′(b
′) = γM′(fb′(b̃))(= fb′(γM̃(b̃))) := fb′(y).

Compatibility comes from commutative triangles

(M̃, b̃)
fb′- (M ′, b′)

(M”, h(b′))

h

?

fh(b ′)

-

that imply

h(γM′(b
′)) = h(fb′(y)) = fh(b′)(y) = γM”(h(b′)).



Fibre Functors

An identical proof gives us:

Proposition
For two points b, x ∈ M,

Isom(Fb,Fx) ' M̃x .

That is, an element p ∈ Isom(Fb,Fx) is determined by pM̃(b̃), and
any y ∈ M̃x determines such a p.

Note that Isom(Fb,Fx) is a principal bundle for Aut(Fb). As an
exercise, try to describe for yourself the action of M̃b on M̃x .



Homotopy classes of paths

Consider the usual definition of π1(M; b, x) using homotopy classes
of paths. There is a classical isomorphism

π1(M; b, x) :∼= Isom(Fb,Fx)

defined via path lifting.

That is, a path p : I = [0, 1] - M such that p(0) = b and
p(1) = x acts on the fibres of a covering M ′ - M via the unique
lifting diagram:

(M ′, b′)

(I , 0)
p
-

p
′

-

(M, b)
?

That is p · b′ = p′(1).



Homotopy classes of paths

The endpoint p′(1) depends only on the homotopy class of p
because of the discreteness of the fibres.

If f : (M ′1, b
′
1) - (M ′2, b

′
2) is a map of pointed covering spaces,

then f ◦ p′1 = p′2 by uniqueness.

Thus, path lifting defines a compatible collection of isomorphisms

pM′ : M ′b
∼= M ′x .

In particular, loops based at b will act compatibly on all fibres M ′b.



Homotopy classes of paths

The easiest way to see that this gives an isomorphism

π1(M; b, x) ∼= Isom(Fb,Fx)

uses M̃b again.

That is, denote by p̃ the lifting of p to M̃ such that p̃(0) = b̃. In
that case, we get that

Proposition
The map p 7→ p̃(1) defines a bijection

π1(M; b, x) ∼= M̃x .



Homotopy classes of paths

The inverse is given by mapping y ∈ M̃x to the homotopy class
[π ◦ q], where q is any path in M̃ from b̃ to y . The homotopy class
is independent of q since M̃ is simply connected.

However, this map clearly factors through

π1(M; b, x) - Isom(Fb,Fx) ∼= M̃b,

proving that the first map is also an isomorphism.

In other words, the choice of base-points gives us an expression

M̃ = ∪x∈Mπ1(M; b, x).

The fibers of M̃ give us a concrete model of path spaces, which
generalises to situations where physical paths are missing.



Homotopy classes of paths

To summarise, we have the bijections

π1(M; b, x) ∼= Isom(Fb,Fx) ∼= M̃x .

The second two objects generalise to other settings.



II. Preliminaries on Tannakian formalism



Tannakian formalism

G : finite group;

RepGk : category of finite-dimensional representations of G on
k-vector space.

A pointed representation is a representation V together with a
vector v ∈ V .

Proposition
The left-regular pointed representation

(k[G ], 1)

is the universal pointed representation of G .
Given any pointed representation (V , v), we get a unique map
(k[G ], 1) - (V , v) that sends g to gv .



Tannakian formalism
Let

F : RepGk - Vectk

be the forgetful functor to k-vector spaces.

Consider the endomorphisms

End(F )

of F .

Thus, an element a ∈ End(F ) is a compatible sequence of linear
transformations aV : V - V as V runs over representations of
G :

V
av - V

W

φ

? aW - W

φ

?



Tannakian formalism

Proposition
The map

a 7→ ak[G ](1)

defines an isomorphism End(F ) ∼= k[G ].



Tannakian formalism

There is an augmentation map e∗ : k[G ] - k and the map
G - G × G , g 7→ (g , g) induces the comultiplication map

∆ : k[G ] - k[GxG ] ' k[G ]⊗ k[G ].

Given representations V and W , V ⊗k W is initially a
representation of k[G ]⊗ k[G ] which is turned into a representation
of k[G ] and G via ∆.

Proposition
G itself can be recovered as the group-like elements of k[G ], i.e.,
a ∈ k[G ] such that e∗(a) = 1 and

∆(a) = a⊗ a.



Tannakian formalism

Proposition
G is isomorphic to Aut⊗F , the tensor-compatible automorphisms of
the forgetful functor F from RepkG to Vectk
Here, an element f ∈ Aut(F ) is tensor-compatible if
fV⊗W = fv ⊗ fW .

If we let
A = Homk(k[G ], k),

∆∗ : A⊗ A ∼= Hom(k[G ]⊗ k[G ], k) - A

gives it the structure of a commutative k-algebra. Of course,

G ⊂ - Homk(A, k).

Corollary
G = Spec(A)(k) = Hom

k−alg(A, k).



III. Return to arithmetic fundamental groups



Arithmetic setting

K : a number field or a finite extension of Qp.

X : a smooth curve over K

X̄ : the basechange of X to K̄ .

b, x ∈ X (K ) viewed sometimes as geometric points:

Spec(K̄ ) - X̄ - X .

In the local case, let X be a smooth scheme over OK with good
compactification and generic fiber X . and let Y be the special fiber
of X over k = OK/mK .



Profinite étale fundamental group

[Szamuely] Cov(X̄ ): category of finite étale covering spaces of X̄ .

There is a fibre functor

Fb : Cov(X̄ ) - FinSet;

(Y - X̄ ) 7→ Yb.

Define
π̂1(X̄ ; b, x) := Isom(Fb,Fx).



Profinite étale fundamental group

Proposition
There is a ‘universal’ pro-étale cover

˜̄X = (X̄i ) - X̄

with the property that we get a diagram

˜̄X - Y

X̄
?-

for any finite étale cover Y - X̄ .

The arrow ˜̄X - Y is an element of lim−→Hom(X̄i ,Y ).



Profinite étale fundamental group

Pick a ‘point’ b̃ ∈ ˜̄X , by which we mean a compatible sequence of
points bi ∈ X̄i ,b. Then ( ˜̄X , b̃) is a universal pointed pro-étale cover:

Proposition
We get a diagram

( ˜̄X , b̃)
∃!
- (Y , bY )

(X̄ , b)
?

-

for any finite étale cover (Y , bY ) - (X̄ , b).



Profinite étale fundamental group

Furthermore,

Proposition
The cover ( ˜̄X , b̃) is defined over K . That is, there is a cover

(X̃ , b̃) - (X , b)

with b̃ rational, whose base change to K̄ is ( ˜̄X , ˜̄b).
Be warned that in spite of the notation, X̃ - X is not the
universal cover of X . The universal cover of X is

˜̄X - X̄ - X .

The cover X̃ - X is a K -model of the universal cover of X̄ .



Profinite étale fundamental group

Examples:

(Gm, 1)

Then
G̃m = (Gm

n- Gm)n

with basepoint 1.

E an elliptic curve over K with basepoint O ∈ E (K ).

Then
Ẽ = (E

n- E )n

with basepoint (O).



Profinite étale fundamental group

Theorem
The map

γ 7→ (γX̄i
(bi )) ∈ ˜̄Xx = X̃b(K̄ )

induces a GK -equivariant isomorphism

π̂1(X̄ ; b, x) ' ˜̄Xx = X̃x(K̄ )

This isomorphism gives a concrete way of ‘computing’ the action of
Gal(K̄/K ) on π̂1(X̄ ; b, x).



Profinite étale fundamental group

The formal definition of the action on the left is given as follows.

For g ∈ GK and p ∈ π̂1(X̄ ; b, x), g(p) associates to X ′ - X the
lower arrow that makes the diagram commute:

g∗(X ′)b
pg∗(X )- g∗(X ′)x

Xb

g

? g(p)
- Xx

g

?

g(p)X = g ◦ pg∗(X ′)g−1.



Profinite étale fundamental group

π̂1(Ḡm, 1) = (G̃m)1 = Ẑ(1).

π̂1(Ē ,O) = Ẽ1 = T̂ (E ).

π̂1(Ḡm; 1, x) = (G̃m)x = (x1/n).

π̂1(Ē ;O, x) = Ẽx = (
1
n
x).



Profinite étale fundamental group

General construction:

If P - M is a principal G -bundle and G (left-)acts continuously
on a set A, then can form associated bundle

P ×G A := [P × A]/G ,

where G acts on the product as (p, a)g = (pg , g−1a).

This is a fibre bundle over M with fibre A which varies according to
the variation of P .

When ρ : G - H is a group homomorphism, this construction
P ×G H gives a principal H-bundle.



Profinite étale fundamental group
The cover

˜̄X - X̄

is a principal π̂1(X̄ , b)-bundle.

˜̄X (p) = X̃ ×π̂1(X̄ ,b) π̂
(p)
1 (X̄ , b),

which is a principal π̂(p)
1 (X̄ , b)-bundle, is the universal pro-p étale

cover.

In general, we might try to study the GK -action on π̂1(X̄ ; b, x) via
fibres of suitable quotient coverings like this.

For example, if X is a modular curve, then the tower

XMod
- X

of modular curves, corresponds to the ‘modular quotient group’ of
π̂1(X̄ , b).



Profinite étale fundamental group
Given a continuous Qp-representation V of π̂1(X̄ , b), we get a
locally constant sheaf of Qp-vector spaces

˜̄X ×π̂1(X̄ ,b) V ,

giving a functor

Rep
Qp

π̂1(X̄ ,b)
- LocQp(X̄ )

which is inverse to the fibre functor

Fb : L 7→ Lb.

This is a version of the ‘vector bundle associated to a principal
G -bundle and a linear representation of G ,’ familiar from usual
geometry. However, to do this carefully in this case, you need to
construct the correspondence with finite coefficients first and then
consider projective systems. (This is where you need the continuity.)



III. Unipotent fundamental groups



Unipotent fundamental groups

[Deligne]
We linearise categories.

Un(X̄ ,Qp): The category of unipotent Qp-locally constant sheaves
on the étale site of X̄ .

A local system F is unipotent if it admits a filtration

F = F0 ⊃ F1 ⊃ · · · ⊃ Fn = 0

such that
F i/F i+1 ' (Qp)ri

X̄

for each i . With this notation, we say F has index of unipotency
≤ n.



Unipotent fundamental groups

Theorem
There is a universal pointed pro-object in Un(X̄ ,Qp). This is a
projective system

(E , v) = ((En, vn))n

with vn ∈ (En)b such that for any F ∈ Un(X̄ ,Qp) and w ∈ Fb,
there is a unique map

f : (E , v) - (F ,w).

Again,
Hom(E ,F) = lim−→Hom(En,F).



Unipotent fundamental groups

The En as above corresponds to the representation

En,b = En := (Zp[[π̂1(X̄ , b)]]/I n+1)⊗Qp,

where I ⊂ Zp[[π̂1(X̄ , b)]] is the augmentation ideal, and vn = 1.

We put

E = lim←−En = lim←−(Zp[[π̂1(X̄ , b)]]/I n+1)⊗Qp.

We think of this as non-commutative power series in γ − 1, where
γ are topological generators of π̂1(X̄ , b). Contains elements like

γa = exp(a log(γ))

for a ∈ Qp.



Unipotent fundamental groups
The pointed local system (En, vn) is universal among unipotent
local systems of index of unipotency ≤ n. Thus we get unique maps

Em+n 7→ Em ⊗ En

that send vm+n to vm ⊗ vn. These come together to a map

∆ : E - E⊗̂E .

Using the fibre functor

Fb : Un(X̄ ,Qp) - VectQp .

we now define
U(X̄ , b) := Aut⊗(Fb);

P(X̄ ; b, x) := Isom⊗(Fb,Fx).



Unipotent fundamental groups

Lemma

End(Fb) ∼= Eb.

Theorem
The pro-algebraic group U(X̄ , b) is isomorphic to the group-like
elements in Eb, while P(X̄ ; b, x) is given by the group-like elements
in Ex .
In fact, the lower central series

U = U1 ⊃ U2 ⊃ U3 · · ·

is compatible with the filtration by I n, so that Un = U/Un+1 are
the group-like elements in En.



Unipotent fundamental groups

Put
A = Hom(E ,Qp) = lim−→Hom(En,Qp).

Then A is a sheaf of Qp-algebras via ∆∗.

Corollary

U(X̄ , b) = Spec(Ab).

P(X̄ ; b, x) = Spec(Ax).



Unipotent fundamental groups
Some remarks on Galois actions.

(1) The action on P(X̄ ; b, x) is induced by the action on Ex .

(2) The action on Ex uses ˜̄Xx ×π̂1(X̄ ,b) E .

(3) The action on ˜̄Xx is given by a cocycle

cx : GK
- π̂1(X̄ , b).

That is, choose x̃ ∈ ˜̄X . Then cx is defined by

g(x̃) = x̃cx(g)

and satisfies cx(g1g2) = c(g1)g1c(g2).

Then Ex can be identified with E where the action is twisted:

gxv = cx(g)gv .



Unipotent fundamental groups

Some basic structural facts.

The map
g 7→ [g − 1]

induces an isomorphism

H1(X̄ ,Qp) = π̂1(X̄ , b)ab ⊗Qp
∼= I/I 2.

The multiplication map

(I/I 2)⊗n - I n/I n+1

includes an isomorphism

H⊗n1 /Kn ' I n/I n+1

where Tn := H⊗n1 /Kn ' (Rn)∗ and Rn ⊂ (H1)⊗n is defined
inductively as follows.



Unipotent fundamental groups

R0 = Qp, R1 = H1,

R2 = Ker(H1 ⊗ H1 γ1:=∪- H2).

We will have Rn+1 ⊂ Rn ⊗ H1. Define the map γn inductively as

γn : Rn ⊗ H1 - Rn−1 ⊗ H1 ⊗ H1 - Rn−1 ⊗ H2,

and define
Rn+1 = Ker(γn).



Unipotent fundamental groups
This comes from a different tautological construction
[AIK, Faltings1, Faltings2].

Ext1
X̄

((Qp)X̄ , (H1(X̄ ))X̄ ) ' H1(X̄ )⊗ H1(X̄ )) = Hom(H1,H1).

So there is an extension

0 - H1(X̄ ) - E1 - Qp
- 0

corresponding to the identity map on the right.

Now we get an exact sequence

HomX̄ (H1,Qp)

δ- Ext1
X̄

(Qp,Qp) - Ext1
X̄

(E1,Qp) - Ext1
X̄

(H1,Qp)

δ- Ext2
X̄

(Qp,Qp)



Unipotent fundamental groups

This can be written as

H1 δ- H1 - Ext1
X̄

(E1,Qp) - H1 ⊗ H1 δ- H2.

which induces the isomorphism

Ext1
X̄

(E1,Qp) ∼= R2 ∼= T ∗2 .

Hence,
Ext1

X̄
(E1,T2) ∼= Hom(T2,T2),

so that there is an extension

0 - T2 - E2 - E1 - 0

corresponding to the identity on the right.

One continues in this way and the universal property can also be
proved in a tautological manner.



Unipotent fundamental groups
Idea: When the index of unipotency is 1 we have a constant sheaf
VX̄

- X̄ . Of course there is a unique map

f1 : [Qp]X̄
- VX̄

that takes 1 ∈ Qp = [Qp]X̄ ,b to any fixed v ∈ V = VX̄ .b..

Now suppose you have

0 - W - F - V - 0

with V and F1 constant. We would like to construct a lift f2 as
below

0 - T1 - E1 - Qp
- 0

0 - W
?

- F

f2

?
- V

f1

?
- 0



Unipotent fundamental groups

The idea is to pull back by f1 to get

0 - W - f ∗1 F - Qp
- 0.

We would like to show this comes from E1 via a push-out along a
map φ : T1 - W . But this extension is a class

c ∈ Ext1
X̄

(Qp,W ) = H1 ⊗W .

Meanwhile, E1 corresponds to the class

I =
∑
i

bi ⊗ bi ∈ Ext1(Qp,H1) = H1 ⊗ H1,

where {bi} is a basis for H1 and {bi} the dual basis.

Write c =
∑

i b
i ⊗ wi , and define φ to be the linear map that takes

bi to wi .
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