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Disclaimer

These lecture slides come with a bibliography at the end. However,
there has been no attempt at accurate attribution of mathematical
results. Rather, the list mostly contains works the lecturer has
consulted during preparation, which he hopes will be helpful for
users.



I. Background: Arithmetic of Algebraic Curves



Arithmetic of algebraic curves

X : a smooth algebraic curve of genus g defined over Q.

For example, given by a polynomial equation

f (x , y) = 0

of degree d with rational coefficients, where

g = (d − 1)(d − 2)/2.

Diophantine geometry studies the set X (Q) of rational solutions
from a geometric point of view.

Structure is quite different in the three cases:

g = 0, spherical geometry (positive curvature);
g = 1, flat geometry (zero curvature);
g ≥ 2, hyperbolic geometry (negative curvature).
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Arithmetic of algebraic curves: g = 0, d ≤ 2

Even now (after millennia of studying these problems), g = 0 is the
only case that is completely understood.

For g = 0, techniques reduce to class field theory and algebraic
geometry: local-to-global methods, generation of solutions via
sweeping lines, etc.

Idea is to study Q-solutions by considering the geometry of
solutions in various completions, the local fields

R,Q2,Q3, . . . ,Q691, . . . ,
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Arithmetic of algebraic curves: g = 0

Local-to-global methods sometimes allow us to ‘globalise’. For
example,

37x2 + 59y2 − 67 = 0

has a Q-solution if and only if it has a solution in each of
R,Q2,Q37,Q59,Q67, a criterion that can be effectively
implemented. This is called the Hasse principle.

If the existence of a solution is guaranteed, it can be found by an
exhaustive search. From one solution, there is a method for
parametrising all others: for example, from (0,−1), generate
solutions

(
t2 − 1
t2 + 1

,
2t

t2 + 1
)

to x2 + y2 = 1.
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Arithmetic of algebraic curves: g = 0

In other words, there is a successful study of the inclusion

X (Q) ⊂ X (AQ) =
′∏
X (Qp)

coming from reciprocity laws (class field theory).



Arithmetic of algebraic curves: g = 1 (d = 3)

X (Q) = φ, non-empty finite, infinite, all are possible.

Hasse principle fails:

3x3 + 4y3 + 5 = 0

has points in Qv for all v , but no rational points.

Even when X (Q) 6= φ, difficult to describe the full set.

But fixing an origin O ∈ X (Q) gives X (Q) the structure of a
finitely-generated abelian group via the chord-and-tangent method.
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Arithmetic of algebraic curves: g = 1 (d = 3)

(Mordell)
X (Q) ' X (Q)tor × Zr .

Here, r is called the rank of the curve and X (Q)tor is a finite
effectively computable abelian group.
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Arithmetic of algebraic curves: g = 1

To compute X (Q)tor , write

X := {y2 = x3 + ax + b} ∪ {∞}

(a, b ∈ Z).

Then (x , y) ∈ X (Q)tor ⇒ x , y are integral and

y2|(4a3 + 27b2).



Arithmetic of algebraic curves: g = 1

However, the algorithmic computation of the rank and a full set of
generators for X (Q) is very difficult, and is the subject of the
conjecture of Birch and Swinnerton-Dyer.

In practice, it is often possible to compute these. For example, for

y2 = x3 − 2,

Sage will give you r = 1 and the point (3, 5) as generator.

The algorithm *uses* the BSD conjecture.
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Arithmetic of algebraic curves: g = 1
Note that

2(3, 5) = (129/100,−383/1000)

3(3, 5) = (164323/29241,−66234835/5000211)

4(3, 5) = (2340922881/58675600, 113259286337279/449455096000)

Figure: Denominators of N(3, 5)
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Arithmetic of algebraic curves: g ≥ 2 (d ≥ 4)

X (Q) is always finite (Mordell conjecture as proved by Faltings)

However, *very* difficult to compute: consider

xn + yn = 1

for n ≥ 4.

Sometime easy, such as

x4 + y4 = −1.

However, when there isn’t an obvious reason for non-existence, e.g.,
there already is one solution, then it’s hard to know when you have
the full list. For example,

y3 = x6 + 23x5 + 37x4 + 691x3 − 631204x2 + 5169373941

obviously has the solution (1, 1729), but are there any others?
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Arithmetic of algebraic curves: g ≥ 2 (d ≥ 4)

Effective Mordell problem:

Find a terminating algorithm: X 7→ X (Q)

The Effective Mordell conjecture (Szpiro, Vojta, ABC, ...)
makes this precise using (archimedean) height inequalities. That is,
it proposes that you can give a priori bounds on the size of
numerators and denominators of solutions.

Will describe today an approach to this problem using the
(non-archimedean) arithmetic geometry of principal bundles.
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II. Arithmetic Principal Bundles



Arithmetic principal bundles: (GK ,R ,P)

K : field of characteristic zero.
GK = Gal(K̄/K ): absolute Galois group of K . Topological group
with open subgroups given by Gal(K̄/L) for finite field extensions
L/K in K̄ .

A group over K is a topological group R with a continuous action
of GK by group automorphisms:

GK × R - R.

In an abstract framework, one can view R as a family of groups

over the space Spec(K ).

Example:
R = A(K̄ ),

where A is an algebraic group defined over K , e.g., GLn or an
abelian variety. Here, R has the discrete topology.



Arithmetic principal bundles: (GK ,R ,P)

K : field of characteristic zero.
GK = Gal(K̄/K ): absolute Galois group of K . Topological group
with open subgroups given by Gal(K̄/L) for finite field extensions
L/K in K̄ .

A group over K is a topological group R with a continuous action
of GK by group automorphisms:

GK × R - R.

In an abstract framework, one can view R as a family of groups

over the space Spec(K ).

Example:
R = A(K̄ ),

where A is an algebraic group defined over K , e.g., GLn or an
abelian variety. Here, R has the discrete topology.



Arithmetic principal bundles: (GK ,R ,P)

K : field of characteristic zero.
GK = Gal(K̄/K ): absolute Galois group of K . Topological group
with open subgroups given by Gal(K̄/L) for finite field extensions
L/K in K̄ .

A group over K is a topological group R with a continuous action
of GK by group automorphisms:

GK × R - R.

In an abstract framework, one can view R as a family of groups

over the space Spec(K ).

Example:
R = A(K̄ ),

where A is an algebraic group defined over K , e.g., GLn or an
abelian variety. Here, R has the discrete topology.



Arithmetic principal bundles: (GK ,R ,P)

K : field of characteristic zero.
GK = Gal(K̄/K ): absolute Galois group of K . Topological group
with open subgroups given by Gal(K̄/L) for finite field extensions
L/K in K̄ .

A group over K is a topological group R with a continuous action
of GK by group automorphisms:

GK × R - R.

In an abstract framework, one can view R as a family of groups

over the space Spec(K ).

Example:
R = A(K̄ ),

where A is an algebraic group defined over K , e.g., GLn or an
abelian variety. Here, R has the discrete topology.



Arithmetic principal bundles: (GK ,R ,P)

K : field of characteristic zero.
GK = Gal(K̄/K ): absolute Galois group of K . Topological group
with open subgroups given by Gal(K̄/L) for finite field extensions
L/K in K̄ .

A group over K is a topological group R with a continuous action
of GK by group automorphisms:

GK × R - R.

In an abstract framework, one can view R as a family of groups

over the space Spec(K ).

Example:
R = A(K̄ ),

where A is an algebraic group defined over K , e.g., GLn or an
abelian variety. Here, R has the discrete topology.



Arithmetic principal bundles

Example:

R = Zp(1) := lim←−µpn ,

where µpn ⊂ K̄ is the group of pn-th roots of 1.

Thus,
Zp(1) = {(ζn)n},

where
ζp

n

n = 1; ζp
m

nm = ζn.

As a group,
Zp(1) ' Zp = lim←−

n

Z/pn,

but there is a continuous action of GK .
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Arithmetic principal bundles: (GK ,R ,P)

A principal R-bundle over K is a topological space P with
compatible continuous actions of GK (left) and R (right, simply
transitive):

P × R - P;

GK × P - P;

g(zr) = g(z)g(r)

for g ∈ GK , z ∈ P , r ∈ R .

Note that P is trivial, i.e., ∼= R , exactly when there is a fixed point
z ∈ PGK :

R ∼= z × R ∼= P.
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Arithmetic principal bundles

Example:

Given any x ∈ K ∗, get principal Zp(1)-bundle

P(x) := {(yn)n | yp
n

n = x , yp
m

nm = yn.}

over K .

P(x) is trivial iff x admits a pn-th root in K for all n.

For example, when K = C, P(x) is always trivial.

When K = Q, P(x) is trivial iff x = 1 or p is odd and x = −1.

For K = R, and p odd, P(x) is trivial for all x .

For K = R and p = 2, P(x) is trivial iff x > 0.
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Arithmetic principal bundles: moduli spaces

Given a principal R-bundle P over K , choose z ∈ P . This
determines a continuous function cP : GK

- R via

g(z) = zcP(g).

It satisfies the ‘cocycle’ condition

cP(g1g2) = cP(g1)g1(cP(g2)),

defining the set Z 1(G ,R).

We get a well-defined class in non-abelian cohomology

[cP ] ∈ R\Z 1(GK ,R) =: H1(GK ,R) = H1(K ,R),

where the R-action is defined by

c r (g) = rc(g)g(r−1).
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Arithmetic principal bundles: moduli spaces
This induces a bijection

{Isomorphism classes of principal R-bundles over K} ∼= H1(GK ,R).

Our main concern is the geometry of non-abelian
cohomology spaces in various forms.

For these lectures, R will mostly be a unipotent fundamental group
of an algebraic curve with a very complicated K -structure.

Two more classes of important examples:

–R is the holonomy group of a specific local system on a curve.
(Lawrence and Venkatesh)

–R is a reductive group with a trivial K -structure:

H1(GK ,R) = R\Hom(GK ,R).

These are analytic moduli spaces of Galois representations.
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When K = Q, there are completions Qv and injections

Gv = Gal(Q̄v/Qv ) ⊂ - G = Gal(Q̄/Q).

giving rise to the localisation map

loc : H1(Q,R) -
∏
v

H1(Qv ,R).

and an associated local-to-global problem.

In fact, a wide range of problems in number theory rely on the
study of its image. The general principle is that the local-to-global
problem is easier to study for principal bundles than for points.
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Diophantine principal bundles: elliptic curves

E : elliptic curve over Q.

We let G = Gal(Q̄/Q) act on the exact sequence

0 - E [p](Q̄) - E (Q̄)
p- E (Q̄) - 0

to generate the long exact sequence

0 - E (Q)[p] - E (Q)
p- E (Q)

- H1(Q,E [p]) - H1(Q,E )
p- H1(Q,E ),

from which we get the inclusion (Kummer map)

0 - E (Q)/pE (Q) ⊂ - H1(Q,E [p])
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Diophantine principal bundles: elliptic curves

The central problem in the theory of elliptic curves is the
identification of the image

Im(E (Q)/pE (Q)) ⊂ H1(Q,E [p]).

We remark that computing a set of generators for E (Q)/pE (Q)
leads easily to a set of generators for E (Q) itself.

An essential restriction comes from the p-Selmer group

Sel(Q,E [p]) ⊂ H1(Q,E [p])

defined to be the classes in H1(Q,E [p]) that locally come from
points.
This is useful because the local version of this problem can be
solved.



Diophantine principal bundles: elliptic curves

The central problem in the theory of elliptic curves is the
identification of the image

Im(E (Q)/pE (Q)) ⊂ H1(Q,E [p]).

We remark that computing a set of generators for E (Q)/pE (Q)
leads easily to a set of generators for E (Q) itself.

An essential restriction comes from the p-Selmer group

Sel(Q,E [p]) ⊂ H1(Q,E [p])

defined to be the classes in H1(Q,E [p]) that locally come from
points.

This is useful because the local version of this problem can be
solved.



Diophantine principal bundles: elliptic curves

The central problem in the theory of elliptic curves is the
identification of the image

Im(E (Q)/pE (Q)) ⊂ H1(Q,E [p]).

We remark that computing a set of generators for E (Q)/pE (Q)
leads easily to a set of generators for E (Q) itself.

An essential restriction comes from the p-Selmer group

Sel(Q,E [p]) ⊂ H1(Q,E [p])

defined to be the classes in H1(Q,E [p]) that locally come from
points.
This is useful because the local version of this problem can be
solved.



Diophantine principal bundles: elliptic curves

0 - E (Q)/pE (Q) ⊂ - H1(Q,E [p])

0 - E (Qv )/pE (Qv )

locv

?
⊂- H1(Qv ,E [p])
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?

Then
Sel(Q,E [p]) := ∩v loc−1

v (Im(E (Qv )/pE (Qv ))).
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Diophantine principal bundles: elliptic curves

The key point is that the p-Selmer group is a finite-dimensional
Fp-vector space that is effectively computable and this already
gives us a bound on the Mordell-Weil group of E :

E (Q)/pE (Q) ⊂ Sel(Q,E [p]).

This is then refined by way of the diagram

0 - E (Q)/pnE (Q) - Sel(Q,E [pn])

0 - E (Q)/pE (Q)
?

- Sel(Q,E [p])
?

for increasing values of n.
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Conjecture: (BSD, Tate-Shafarevich)

Im(E (Q)/pE (Q)) = ∩∞n=1Im[Sel(Q,E [pn]] ⊂ Sel(Q,E [p]).

Of course this implies that

Im(E (Q)/pE (Q)) = Im[Sel(Q,E [pN ]] ⊂ Sel(Q,E [p])

at some finite level pN . There is a conditional algorithm for
verifying this:

· · · ⊂ E (Q)≤n/pE (Q) ⊂ E (Q)≤n+1/pE (Q) ⊂ · · · ⊂ E (Q)/pE (Q)

· · · ⊂ Im[Sel(Q,E [pn+1]] ⊂ Im[Sel(Q,E [pn]] ⊂ · · · ⊂ Sel(Q,E [p])

A main goal of BSD is to remove the conditional aspect.
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To generalise, focus on the sequence of maps

· · · - E [p3]
p- E [p2]

p- E [p]

of which we take the inverse limit to get the p-adic Tate module of
E :

TpE := lim←−E [pn].

This is a free Zp-module of rank 2. (Each E [pn] ' (Z/pn)2 as
groups.)

The previous finite boundary maps can be packaged into

j : E (Q) - lim←−H1(Q,E [pn]) = H1(Q,TpE ).
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Diophantine principal bundles II: The non-abelian case

The key point is that

TpE ' πp1 (Ē ,O),

where πp1 (X̄ , b) refers to the pro-p completion of the fundamental
group π1(X (C), b) of a variety X .

The map j can be thought of as

x 7→ πp(Ē ;O, x).



Diophantine principal bundles II: The non-abelian case

Fundamental fact of arithmetic homotopy:

If X is a variety defined over Q and b, x ∈ X (Q), then

πp1 (X̄ , b), πp1 (X̄ ; b, x)

admit compatible actions of G = Gal(Q̄/Q).

The triples
(GQ, π

p
1 (X̄ , b), πp1 (X̄ ; b, x))

are important concrete examples of (GK ,R,P) from the general
definitions.
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This formulation then extends to general X , whereby we get a map

j : X (Q) - H1(Q, πp1 (X̄ , b))

given by
x 7→ [πp1 (X̄ ; b, x)]

For each prime v , have local versions

jv : X (Qv ) - H1(Qv , π
p
1 (X̄ , b))

given by
x 7→ [πp1 (X̄ ; b, x)]

which turn out to be far more computable than the global map.
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Localization diagram:

X (Q) -
∏
v

X (Qv )

H1(Q, πp1 (X̄ , b))

j

?
loc
-

∏
v

H1(Qv , π
p
1 (X̄ , b))

∏
v jv

?

As in the elliptic curve case, our interest is in the interaction
between the images of loc and

∏
v jv .
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Actual applications use

X (Q) -
∏
v

X (Qv )

H1(Q,U(X̄ , b))

j

?
-

∏
v

H1(Qv ,U(X̄ , b))

∏
v jv

?

where
U(X̄ , b) = ‘πp1 (X , b)⊗Qp‘

is the Qp-pro-unipotent completion of πp1 (X̄ , b).

The effect is that the moduli spaces become pro-algebraic schemes
over Qp and the lower row of this diagram an algebraic map.
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That is, the key object of study is

H1
f (Q,U(X̄ , b))

the Selmer scheme of X , defined to be the subfunctor of
H1(Q,U(X̄ , b)) satisfying local conditions at all (or most) v .

These are conditions like ‘unramified at most primes’, ‘crystalline at
p’, and often a few extra conditions.
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X (Q) -
∏
v

X (Qv )

H1
f (Q,U(X̄ , b))

j

?
-

∏
v

H1
f (Qv ,U(X̄ , b))

∏
v jv

?
α
- Qp

If α is an algebraic function vanishing on the image, then

α ◦
∏
v

jv

gives a defining equation for X (Q) inside
∏

v X (Qv ).
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To make this concretely computable, we take the projection

prp :
∏
v

X (Qv ) - X (Qp)

and try to compute

∩αprp(Z (α ◦
∏
v

jv )) ⊂ X (Qp).

Non-Archimedean effective Mordell Conjecture:

I. ∩αprp(Z (α ◦
∏

v jv )) = X (Q)

II. This set is effectively computable.
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Remarks:

1. As soon as there is one α with αp non-trivial, prp(Z (α ◦
∏

v jv ))
is finite.

2. There is a (highly reliable) conjectural mechanism for producing
infinitely many algebraically independent α.

3. This conjecture is essentially implied by Grothendieck’s section
conjecture: Rather, it does give an effective method of computing
X (Q) via the main diagram.



V. Computing Rational Points



Computing rational points

[Dan-Cohen, Wewers]

For X = P1 \ {0, 1,∞},

X (Z[1/2]) = {2,−1, 1/2} ⊂ {D2(z) = 0} ∩ {D4(z) = 0},

where
D2(z) = `2(z) + (1/2) log(z) log(1− z),

D4(z) = ζ(3)`4(z) + (8/7)[log3 2/24 + `4(1/2)/ log 2] log(z)`3(z)

+[(4/21)(log3 2/24 + `4(1/2)/ log 2) + ζ(3)/24] log3(z) log(1− z),

and

`k(z) =
∞∑
n=1

zn

nk
.

Numerically, the inclusion appears to be an equality.
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Computing rational points

Some qualitative results:

[Coates and Kim]

axn + byn = c

for n ≥ 4 has only finitely many rational points.

Standard structural conjectures on mixed motives (generalised
BSD)
⇒ There exist many non-zero α as above.

(⇒ Faltings’s theorem.)
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Computing rational points

A recent result on modular curves by Balakrishnan, Dogra, Mueller,
Tuitmann, Vonk. [Explicit Chabauty-Kim for the split Cartan
modular curve of level 13. Annals of Math. 189]

X+
s (N) = X (N)/C+

s (N),

where X (N) the the compactification of the moduli space of pairs

(E , φ : E [N] ' (Z/N)2),

and C+
s (N) ⊂ GL2(Z/N) is the normaliser of a split Cartan

subgroup.

Bilu-Parent-Rebolledo had shown that X+
s (p)(Q) consists entirely

of cusps and CM points for all primes p > 7, p 6= 13. They called
p = 13 the ‘cursed level’.



Computing rational points

A recent result on modular curves by Balakrishnan, Dogra, Mueller,
Tuitmann, Vonk. [Explicit Chabauty-Kim for the split Cartan
modular curve of level 13. Annals of Math. 189]

X+
s (N) = X (N)/C+

s (N),

where X (N) the the compactification of the moduli space of pairs

(E , φ : E [N] ' (Z/N)2),

and C+
s (N) ⊂ GL2(Z/N) is the normaliser of a split Cartan

subgroup.

Bilu-Parent-Rebolledo had shown that X+
s (p)(Q) consists entirely

of cusps and CM points for all primes p > 7, p 6= 13. They called
p = 13 the ‘cursed level’.



Computing rational points

A recent result on modular curves by Balakrishnan, Dogra, Mueller,
Tuitmann, Vonk. [Explicit Chabauty-Kim for the split Cartan
modular curve of level 13. Annals of Math. 189]

X+
s (N) = X (N)/C+

s (N),

where X (N) the the compactification of the moduli space of pairs

(E , φ : E [N] ' (Z/N)2),

and C+
s (N) ⊂ GL2(Z/N) is the normaliser of a split Cartan

subgroup.

Bilu-Parent-Rebolledo had shown that X+
s (p)(Q) consists entirely

of cusps and CM points for all primes p > 7, p 6= 13. They called
p = 13 the ‘cursed level’.



Computing rational points

Theorem (BDMTV)
The modular curve

X+
s (13)

has exactly 7 rational points, consisting of the cusp and 6 CM
points.

This concludes an important chapter of a conjecture of Serre from
the 1970s:

There is an absolute constant A such that

GQ - Aut(E [p])

is surjective for all non-CM elliptic curves E/Q and primes p > A.
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Computing rational points
[Burcu Baran]

y4 + 5x4 − 6x2y2 + 6x3z + 26x2yz + 10xy2z − 10y3z

−32x2z2 − 40xyz2 + 24y2z2 + 32xz3 − 16yz3 = 0

Figure: The cursed curve

{(1:1:1), (1:1:2), (0:0:1), (-3:3:2), (1:1:0), (0,2:1), (-1:1:0) }



VI. Some speculations on rational points and critical points



Some speculations on rational points and critical points

Would like to think of

H1(G ,U(X̄ , b)) -
∏
v

H1(Gv ,U(X̄ , b))

as being like
S(M,G ) ⊂ A(M,G )

the space of solutions to a set of Euler-Lagrange equations on a
space of connections.

In particular, functions cutting out the image of localisation should
be thought of as ‘classical equations of motion’ for gauge fields.
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Some speculations on rational points and critical points

When X is smooth and projective, X (Q) = X (Z), and we are
actually interested in

Im(H1(GS ,U)) ∩
∏
v∈S

H1
f (Gv ,U) ⊂

∏
v∈S

H1(Gv ,U),

where
H1
f (Gv ,U) ⊂ H1(Gv ,U)

is a subvariety defined by some integral or Hodge-theoretic
conditions.

In order to apply symplectic techniques, replace U by

T ∗(1)U := (LieU)∗(1) o U.
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Then ∏
v∈S

H1(Gv ,T
∗(1)U)

is a symplectic variety and

Im(H1(GS ,T
∗(1)U)),

∏
v∈S

H1
f (Gv ,T

∗(1)U)

are Lagrangian subvarieties.

Thus, the (derived) intersection

DS(X ) := Im(H1(GS ,T
∗(1)U)) ∩

∏
v∈S

H1
f (Gv ,T

∗(1)U)

has a [−1]-shifted symplectic structure.

Zariski-locally the critical set of a function. (Brav, Bussi, Joyce)
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X (Z) - j−1
S (DS(X )) ⊂ -

∏
v∈S

X (Qv )

H1
f (GS ,T

∗(1)U)

jg

?
locS - DS(X )

jS

?
⊂ -

∏
v∈S

H1(Gv ,T
∗(1)Un)

jS

?

From this view, the global points can be obtained by pulling back
‘Euler-Lagrange equations’ via a period map.



Some speculations on rational points and critical points

Figure: Pierre de Fermat (1607-1665)
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