1. Projects: Propagating the Iwasawa main conjecture via congruences

1.1. Goal of these projects. Let \(f, g \in S_k(\Gamma_0(N)) \) be normalized eigenforms (not necessarily newforms) of weight \(k \geq 2 \), say with rational Fourier coefficients \(a_n, b_n \in \mathbb{Q} \) for simplicity, and assume that

\[
f \equiv g \pmod{p}
\]

in the sense that \(a_n \equiv b_n \pmod{p} \) for all \(n > 0 \). Roughly speaking, the goal of these projects is to study how knowledge of the Iwasawa main conjecture for \(f \) can be “transferred” to \(g \).

For \(k = 2 \) and primes \(p \mid N \) of ordinary reduction, such study was pioneered by Greenberg–Vatsal [GV00], and in these projects we will aim to extend some of their results to:

- non-ordinary primes;
- certain anticyclotomic settings;
- (more ambitiously) some of the “residually reducible” cases which eluded the methods of [GV00], with applications to the \(p \)-part of the BSD formula in ranks 0 and 1.

1.2. The method of Greenberg–Vatsal. Before jumping into the specifics of each of those settings, let us begin with a brief outline of the method of Greenberg–Vatsal (which is beautifully explained in [GV00, §1]). Let \(F_{\infty}/F \) be a \(\mathbb{Z}_p \)-extension of a number field \(F \), and identify the Iwasawa algebra \(\mathbb{Z}_p[[\text{Gal}(F_{\infty}/F)]] \) with the one-variable power series ring \(\Lambda = \mathbb{Z}_p[[T]] \) in the usual fashion.

Recall that Iwasawa’s main conjecture for \(f \) over \(F_{\infty}/F \) posits the following equality between principal ideals of \(\Lambda \):

\[
(L_p^{\text{alg}}(f))^g \equiv (L_p^{\text{an}}(f)),
\]

where

- \(L_p^{\text{alg}}(f) \in \Lambda \) is a characteristic power series of a Selmer group for \(f \) over \(F_{\infty}/F \);
- \(L_p^{\text{an}}(f) \in \Lambda \) is a \(p \)-adic \(L \)-function interpolating critical values for \(L(f/F,s) \) twisted by certain characters of \(\text{Gal}(F_{\infty}/F) \).

By the Weierstrass preparation theorem, we may uniquely write

\[
I_p^{\text{alg}}(f) = \mu^{\text{alg}}(f) \cdot Q^{\text{alg}}(f) \cdot U,
\]

with \(\mu^{\text{alg}}(f) \in \mathbb{Z}_{\geq 0} \), \(Q^{\text{alg}}(f) \in \mathbb{Z}_p[T] \) a distinguished polynomial, and \(U \in \Lambda^\times \) an invertible power series. Letting

\[
\lambda^{\text{alg}}(f) := \deg Q^{\text{alg}}(f),
\]

and similarly defining \(\mu^{\text{an}}(f) \) and \(\lambda^{\text{an}}(f) \) in terms \(L_p^{\text{an}}(f) \), the strategy of [GV00] is based on the following three observations:

O1. The equality (1.1) amounts to having:

(1) \((L_p^{\text{alg}}(f)) \supseteq (L_p^{\text{an}}(f)) \),

(2) \(\mu^{\text{alg}}(f) = \mu^{\text{an}}(f) \),

(3) \(\lambda^{\text{alg}}(f) = \lambda^{\text{an}}(f) \).

We shall place ourselves in a situation where one expects that \(\mu^{\text{alg}}(f) = \mu^{\text{an}}(f) = 0 \).

O2. For \(\Sigma \) any finite set of primes \(\ell \neq p, \infty \), the equality (1.1) is equivalent to the equality

\[
(L_p^{\Sigma, \text{alg}}(f))^g \equiv (L_p^{\Sigma, \text{an}}(f)),
\]

where \(L_p^{\Sigma, \text{alg}}(f) \) and \(L_p^{\Sigma, \text{an}}(f) \) are the “imprimitive” counterparts of \(L_p^{\text{alg}}(f) \) and \(L_p^{\text{an}}(f) \) obtained (roughly speaking) by relaxing the local conditions/removing the Euler factors at the primes \(\ell \in \Sigma \).

O3. For appropriate \(\Sigma \), the objects involved in (1.2) are well-behaved under congruences. Letting \(\mu_{p,\Sigma}^{\text{alg}}(f), \lambda_{p,\Sigma}^{\text{alg}}(f) \), etc. be the obvious invariants from the above discussion, this translates into:

\[
(L_p^{\Sigma, \text{alg}}(f))^g \equiv (L_p^{\Sigma, \text{an}}(f)),
\]
Expectation 1. Assume that $f \equiv g \pmod{p}$, and let $\star \in \{\text{alg, an}\}$. If $\mu_\Sigma^\star(f) = 0$, then $\mu_\Sigma^\star(g) = 0$ and $\lambda_\Sigma^\star(f) = \lambda_\Sigma^\star(g)$.

Now, if we are given $f \equiv g \pmod{p}$ and the divisibilities
\[
(1.3) \quad (L_p^\text{alg}(f)) \supseteq (L_p^\text{an}(f)) \quad \text{and} \quad (L_p^\text{alg}(g)) \supseteq (L_p^\text{an}(g)),
\]
we see that the equivalence of O2 combined with Expectation 1 yields the implication
\[
(1.4) \quad (L_p^\text{alg}(f)) = (L_p^\text{an}(f)) \implies (L_p^\text{alg}(g)) = (L_p^\text{an}(g)).
\]
Note that this has interesting applications. Indeed, if for example the residual representation $\bar{\rho}_f$ is absolutely irreducible, then one can hope to establish (1.3) by an Euler/Kolyvagin system argument. Proving the opposite divisibility (either via Eisenstein congruences, or via a refined Euler/Kolyvagin system argument) often requires additional ramification hypotheses on $\bar{\rho}_f$ relative to the level of f (see below for specific examples), a restriction that could be ultimately removed thanks to (1.4).

1.3. On the cyclotomic main conjectures for non-ordinary primes. Here we let F_∞/F be the cyclotomic \mathbb{Z}_p-extension of \mathbb{Q}, let $p \nmid N$ be a non-ordinary prime for $f \in S_k(\Gamma_0(N))$, and let α, β be the roots of the p-th Hecke polynomial of f. In this setting, Lei–Loeffler–Zerbes [LLZ10], [LLZ11], formulated1 “signed” main conjectures:
\[
(1.5) \quad (L_p^\alpha(f)) \equiv \text{Char}_\Lambda(\text{Sel}_f(f)^\vee), \quad (L_p^\beta(f)) \equiv \text{Char}_\Lambda(\text{Sel}_f(f)^\vee),
\]
where $\text{Sel}_f(f)$ and $\text{Sel}_f(f)$ are Selmer groups cut out by local condition at p more stringent than the usual ones, and $L_p^\alpha(f), L_p^\beta(f) \in \Lambda$ are related to the p-adic L-functions $L_p^\alpha(f), L_p^\beta(f)$ of Amice–Vélu and Vishik in the following manner:
\[
(1.6) \quad \left(\begin{array}{c}
L_p^\alpha(f) \\
L_p^\beta(f)
\end{array} \right) = Q_{\alpha,\beta}^{-1} M_{\log} \cdot \left(\begin{array}{c}
L_p^\alpha(f) \\
L_p^\beta(f)
\end{array} \right),
\]
where $Q_{\alpha,\beta} = \left(\begin{array}{cc}
\alpha & \beta \\
\beta & -\alpha
\end{array} \right)$ and M_{\log} is a certain “logarithm matrix”.

Project A. Show Expectation 1 for the signed p-adic L-functions. More precisely, for each
$\bullet \in \{\text{a, b}\}$, show that if $f \equiv g \pmod{p}$, then
\[
\mu(L_p^\bullet(f)) = 0 \implies \mu(L_p^\bullet(g)) = 0
\]
and the λ-invariants of Σ-imprimitive versions of $L_p^\bullet(f)$ and $L_p^\bullet(g)$ are equal.

Say $k = 2$ for simplicity. Similarly as in [GV00], the proof of this result would follow from the equality
\[
L_p^{\Sigma,\bullet}(f) \equiv u L_p^{\Sigma,\bullet}(g) \pmod{p\Lambda},
\]
for some unit $u \in \mathbb{Z}_p^\times$, which in turn would follow from establishing the congruence
\[
(1.7) \quad L_p^{\Sigma,\bullet}(f, \zeta - 1) \equiv u L_p^{\Sigma,\bullet}(g, \zeta - 1) \pmod{p\mathbb{Z}_p[\zeta]},
\]
for all $\zeta \in \mu_{p^\infty}$ and some $u \in \mathbb{Z}_p^\times$ independent of ζ. However, a point of departure here from the p-ordinary setting is that (unless $a_p = b_p = 0$) the signed p-adic L-functions $L_p^\bullet(f), L_p^\bullet(g)$ are not directly related to twisted L-values, and so the arguments of [GV00, §3] do not suffice to cover this case. Nonetheless, it should be possible to exploit the result of [Vat99, Prop. 1.7], which amounts to the congruence
\[
L_p^{\Sigma,\bullet}(f, \zeta - 1) \equiv u L_p^{\Sigma,\bullet}(g, \zeta - 1) \pmod{p\mathbb{Z}_p[\zeta]},
\]
for both $\bullet \in \{\alpha, \beta\}$, together with (1.6) to establish (1.7). This will involve a detailed analysis of the values of M_{\log} at p-power roots of unity, for which some of the calculations in [LLZ17] (see esp. loc.cit., Lem. 3.7]) might be useful.

1Extending earlier work of Kobayashi, Pollack, Lei, and Sprung
Remark 1.1. The algebraic analogue of Project A has recently been established by Hatley–Lei (see [HL16, Thm. 4.6]). On the other hand, as shown in [LLZ11, Cor. 6.6], either of the main conjectures (1.5) is equivalent to Kato’s main conjecture (see [LLZ11, Conj. 6.2]). Thus from the discussion of §1.2 and the main result of [KKS17], we see that a successful completion of Project A would yield\(^2\) cases of the signed main conjectures beyond those covered by [Wan14] or [CÇSS17, Thm. B], where the following hypothesis is needed:

there exists a prime \(\ell \neq p\) with \(\ell \mid N\) such that \(\bar{\rho}_f\) is ramified at \(\ell\).

(cf. [KKS17, §1.2.3]).

1.4. On the anticyclotomic main conjecture of Bertolini–Darmon–Prasanna. Here we let \(F_{∞}/F\) be the anticyclotomic \(\mathbb{Z}_p\)-extension of an imaginary quadratic field \(K\) in which \(p\) splits, let \(f \in S_k(\Gamma_0(N))\), and let \(p \not| N\) be a prime. Assume also that every prime factor of \(N\) splits in \(K\); so \(K\) satisfies the Heegner hypothesis, and \(N^- = 1\) with the standard notation.

The Iwasawa–Greenberg main conjecture for the \(p\)-adic \(L\)-function \(L_p(f) \in \mathbb{Z}_p[[\text{Gal}(F_{∞}/F)]]\) introduced in [BDP13] predicts that

\[
\text{Char}_A(\text{Sel}_p(f)^{\vee})\Lambda_{\mathbb{Z}_p} \approx (L_p(f)),
\]

where \(\Lambda_{\mathbb{Z}_p} = \mathbb{Z}_p[[T]]\) and \(\text{Sel}_p(f)\) is a Selmer group defined by imposing local triviality (resp. no condition) at the primes above \(p\) (resp. \(p\)).

Project B. Show Expectation 1 for the \(p\)-adic \(L\)-functions of [BDP13]. That is, if \(f \equiv g \pmod{p}\), then \(\mu(L_p(f)) = \mu(L_p(g)) = 0\)\(^3\) and the \(\lambda\)-invariants of \(\Sigma\)-imprimitive versions of \(L_p(f)\) and \(L_p(g)\) are equal.

Similarly as for Project A, in weight \(k = 2\) this problem can be reduced to establishing the congruence

\[
L_p^\Sigma(f, \zeta - 1) \equiv uL_p^\Sigma(g, \zeta - 1) \pmod{p\mathbb{Z}_p[\zeta]}
\]

for all \(\zeta \in \mu_{p^\infty}\) and some \(u \in \mathbb{Z}_p^*\) independent of \(\zeta\). Now, by the \(p\)-adic Waldspurger formula of [BDP13, Thm. 5.13], the congruence of [KL16, Thm. 2.9] amounts to (1.9) for \(\zeta = 1\), and so a promising approach to Project B would be based on extending the result of [KL16, Thm. 2.9] to ramified characters.

Remark 1.2. When \(p\) is a good ordinary prime, the algebraic analogue of Project B has recently been established by Hatley–Lei (see [HL17, Prop. 4.2 and Thm. 5.4]). On the other hand, one can show that Howard’s divisibility towards Perrin-Riou’s Heegner point main conjecture implies one of the divisibilities predicted by (1.8) (see [How04, Thm. B] and [Cas17b, App. A]).

Similarly as in [KKS17], it should be possible to show (this is work in progress) that a suitable refinement of the Kolyvagin system arguments of [How04] combined with Wei Zhang’s proof of Kolyvagin’s conjecture [Zha14]\(^4\) yields the full equality (1.8). In particular, this would yield new cases of conjecture (1.8) with \(N^- = 1\) (not currently available in the literature), and even more cases (under a somewhat weaker version of Hypothesis ♠ in [Zha14], still with \(N^- = 1\)) after a successful completion of Project B.

Finally, in line with the previous remark, we note that the following should be possible:

Project C. Extend the results of [HL17] to the non-ordinary case.

\(^2\)Subject to the nonvanishing mod \(p\) of some “Kurihara number”

\(^3\)Note that in this case the vanishing of \(\mu\)-invariants is known under mild hypotheses by [Hsi14, Thm. B] and [Bur17, Thm. B]

\(^4\)Which can be seen as proving “primitivity” in the sense of [MR04] of the Heeger point Kolyvagin system
1.5. **On the p-part of the Birch–Swinnerton-Dyer formula for residually reducible primes.** Here we consider the primes $p > 2$ for which the associated residual representation $\bar{\rho}_f$ is reducible. For simplicity, assume that f corresponds to an elliptic curve E/\mathbb{Q} (admitting a rational p-isogeny with kernel Φ). The combination of [GV00, Thm. 3.12] (with a key input from [Kat04, Thm. 17.4]) and [Gre99, Thm. 4.1] yields the p-part of the BSD formula for E in analytic rank 0, i.e., when $L(E,1) \neq 1$, provided the following holds:

\[
\text{(GV)} \quad \text{the } G_\mathbb{Q}\text{-action on } \Phi \subset E[p] \text{ is either} \quad \begin{cases} \text{ramified at } p \text{ and even, or} \\ \text{unramified at } p \text{ and odd.} \end{cases}
\]

Similarly as in the residually irreducible cases considered in [JSW17], the above result (applied to a suitable quadratic twist of E) would be an important ingredient in the following:

Project D. Prove the p-part of the BSD formula in analytic rank 1 for elliptic curves E and primes $p > 2$ for which (GV) does not hold.

Following the strategy of [JSW17] and [Cas17a], a key ingredient toward this would be the proof of the relevant cases of the anticyclotomic main conjecture (1.8). By the discussion in §1.2, this could be approached in the following steps:

1. establish the divisibility “\supset” in (1.8) (possibly after inverting p), based on a suitable refinement of the Kolyvagin system argument in [How04].
2. show that $\mu(L_p(f)) = 0$ based on the congruence of [Kri16, Thm. 3] between $L_p(f)$ and an anticyclotomic Katz p-adic L-function, and Hida’s results on the vanishing of μ for the latter.
3. letting $L_p^{\text{alg}}(f)$ be a generator of the characteristic ideal in (1.8), show that $\mu(L_p^{\text{alg}}(f)) = 0$ and $\lambda(L_p^{\text{alg}}(f)) = \lambda(L_p(f))$ based on an algebraic counterpart of [Kri16, Thm. 3] and the known cases of the main conjecture for the anticyclotomic Katz p-adic L-function.

After this is carried out, we could try to study the missing cases:

Project E. Prove the p-part of the BSD formula for elliptic curves E/\mathbb{Q} at residually reducible primes $p > 2$ when:

- $L(E,1) \neq 0$ and (GV) doesn’t hold (complementing the cases that follow from [GV00]).
- $\text{ord}_{s=1} L(E,s) = 1$ and (GV) holds (complementing the cases covered by Project D).

Finally, we should note that $p = 2$ has been neglected throughout the above discussion, but one would of course like to understand this case as well. (See e.g. [CLZ17] for recent results in this direction.)

References

5Note that there are other points where the residually irreducible hypothesis is used in [JSW17], e.g. in the “anticyclotomic control theorem” of [loc.cit., §3.3], but handling these should be relatively easy.

