LECTURE NOTES ON PERFECTOID SHIMURA VARIETIES

ANA CARAIANI

Abstract. This is an expanded version of the lecture notes for the 4 lectures I gave at the 2017 Arizona Winter School.

Contents

1. Introduction 1
 1.1. Organization 5
 1.2. Notation 5
 1.3. Acknowledgements 6

2. Locally symmetric spaces and Shimura varieties 6
 2.1. Locally symmetric spaces 6
 2.2. Completed cohomology 11
 2.3. Shimura varieties 13

3. Background from p-adic Hodge theory 24
 3.1. The relative Hodge-Tate filtration 24

4. The canonical subgroup and the anticanonical tower 29
 4.1. The ordinary locus inside Siegel modular varieties 29
 4.2. The anticanonical tower over the ordinary locus 33
 4.3. The overconvergent anti-canonical tower 35

5. Perfectoid Shimura varieties and the Hodge-Tate period morphism 37
 5.1. Siegel modular varieties with infinite level at p are perfectoid 37

6. Project description: The nilpotent ideal 48

References 49

1. Introduction

One of the famous consequences of the Langlands program is the theorem that all elliptic curves over \mathbb{Q} are modular [Wil95, TW95, BCDT01]. The proof of this theorem for semistable elliptic curves led to Wiles’s proof of Fermat’s last theorem [Wil95] and had an enormous impact on number theory over the decades since.

What does it mean to say that an elliptic curve is modular? It roughly means that the elliptic curve corresponds to a modular form. For example, the elliptic curve E/\mathbb{Q} defined by the equation

$$y^2 + y = x^3 - x^2$$
corresponds to the modular form $f(z)$ with Fourier expansion
\[f(z) = q \cdot \prod_{n=1}^{\infty} (1 - q^n)(1 - q^{11n})^2 = \sum_{n=1}^{\infty} a_n q^n, \]
where $q = e^{2\pi iz}$. The connection between E and f can be made explicit, by relating the number of points of E over finite fields to the Fourier coefficients of f. Concretely, we have
\[\ell + 1 - \#E(F_\ell) = a_\ell \]
for every prime number ℓ.

The more sophisticated statement that encodes the relationship between E and f says that the p-adic Galois representations attached to each of these two objects are isomorphic
\[\rho_E \simeq \rho_f : G_Q := \text{Gal}(\bar{\mathbb{Q}}/\mathbb{Q}) \to \text{GL}_2(\mathbb{Q}_p), \]
for every prime number p.

We recall that the p-adic Galois representation attached to E arises from the Tate module of E, using the natural G_Q-action on the p^n-torsion points of E for every integer $n \geq 1$:
\[\rho_E : G_Q \to \text{GL}(\lim_{\leftarrow n} E[p^n]) \simeq \text{GL}_2(\lim_{\leftarrow n} \mathbb{Z}/p^n\mathbb{Z}) \simeq \text{GL}_2(\mathbb{Z}_p). \]

We can rephrase this by saying that the Galois representation arises from the first étale homology of the elliptic curve E/\mathbb{Q}. The Galois representation ρ_f satisfies the Eichler-Shimura relation
\[\text{tr}(\rho_f(\text{Frob}_\ell)) = a_\ell, \]
where Frob_ℓ is the geometric Frobenius at the prime number $\ell \neq p, 11$, which determines a conjugacy class in G_Q.

The equalities
\[\ell + 1 - \#E(F_\ell) = a_\ell \]
can be recovered from
\[\rho_E \simeq \rho_f \]
when $\ell \neq p, 11$ by taking the traces of Frob_ℓ on either side, applying the Lefschetz trace formula for the action of Frob_ℓ on the p^n-adic étale homology of E/F_ℓ, and applying the Eichler-Shimura relation for f.

Exercise 1.0.1. **Convince yourself that** $\rho_E \simeq \rho_f$ **really does recover the relation** $\ell + 1 - \#E(F_\ell) = a_\ell$ **for every prime** $\ell \neq p, 11$. **Of course, we can vary** p. **What happens for** $\ell = 11$?

These notes are meant to explain how to vastly generalize the construction of the Galois representation ρ_f, so we start by recalling the key elements involved in the construction of ρ_f, going back to Eichler and Shimura. Recall that, under a first approximation, modular forms are holomorphic functions on the upper-half plane
\[\mathbb{H}^2 = \{ z \in \mathbb{C} \mid \text{Im} \ z > 0 \} \]
which satisfy many symmetries. These symmetries are defined in terms of certain discrete subgroups of $\text{SL}_2(\mathbb{R})$. The upper-half plane has a transitive action of $\text{SL}_2(\mathbb{R})$ by Möbius transformations
\[\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \gamma : z \mapsto \frac{az + b}{cz + d}. \]
The modular form f is a cusp form of weight 2 and level
$$\Gamma_0(11) := \{ \gamma \in SL_2(\mathbb{Z}) | \gamma \equiv (\ast \ast) \pmod{11} \},$$
a subgroup of $SL_2(\mathbb{Z})$ defined by congruence conditions. The weight and the level of f specify the symmetries that f must satisfy:
$$f \left(\frac{az+b}{cz+d} \right) = (cz+d)^2 f(z).$$

Remark 1.0.2. The Möbius transformations are actually all the holomorphic isometries of \mathbb{H}^2 when we endow \mathbb{H}^2 with the hyperbolic metric $\frac{(dx)^2+(dy)^2}{y^2}$, where $z = x + iy$. The stabilizer of the point $i \in \mathbb{H}^2$ in $SL_2(\mathbb{R})$ is $SO_2(\mathbb{R})$, so we can identify
$$\mathbb{H}^2 \simeq SL_2(\mathbb{R})/SO_2(\mathbb{R}),$$
as smooth real manifolds together with a Riemannian metric. The subgroup $SO_2(\mathbb{R}) \subset SL_2(\mathbb{R})$ is maximal compact and SL_2 is semisimple, so we can identify \mathbb{H}^2 with the symmetric space for the group SL_2, as defined in Section 2.

In the case of the group SL_2, the symmetric space \mathbb{H}^2 has a natural complex structure and, as a result, one can prove that its quotients by congruence subgroups such as $\Gamma_0(11)$ are Riemann surfaces. It turns out that the symmetries that f satisfies allow us to consider instead of f the holomorphic differential $\omega_f := f(z)dz$ on the (non-compact) Riemann surface $\Gamma_0(11) \setminus \mathbb{H}^2$.

Exercise 1.0.3. Prove that f indeed descends to a well-defined holomorphic differential on the quotient $\Gamma_0(11) \setminus \mathbb{H}^2$.

The Riemann surface $\Gamma_0(11) \setminus \mathbb{H}^2$ is an example of a locally symmetric space for the group SL_2, in the sense of the definition we give in section 2.

Moreover, f is a simultaneous eigenvector for all Hecke operators T_ℓ (with $\ell \neq 11$), i.e. a Hecke eigenform. The ℓth Fourier coefficient a_ℓ can in fact be identified with the eigenvalue of T_ℓacting on f. (This can be seen by computing the dimension of the space of cusp forms of weight 2 and level $\Gamma_0(11)$, e.g. by computing the dimension of the space of holomorphic differentials on (the compactification of) $\Gamma_0(11) \setminus \mathbb{H}^2$. The space turns out to be one-dimensional and thus generated by f.)

Set $\Gamma := \Gamma_0(11)$. In the special case of the group SL$_2$, it turns out that the quotients $\Gamma \setminus \mathbb{H}^2$ have even more structure: there exists an algebraic curve Y_Γ defined over \mathbb{Q} such that $\Gamma \setminus \mathbb{H}^2$ can be identified with $Y_\Gamma(\mathbb{C})$. This follows from the fact that \mathbb{H}^2 can be interpreted as a moduli of Hodge structures of elliptic curves, and, as a result, the quotients $\Gamma \setminus \mathbb{H}^2$ are (coarse) moduli spaces of elliptic curves over \mathbb{C} equipped with certain extra structures. The particular moduli problem for $\Gamma = \Gamma_0(11)$ gives rise to a canonical model Y_Γ over \mathbb{Q}. Y_Γ is a smooth, quasi-projective but not projective curve, known as the modular curve of level Γ.

The modular form f determines the holomorphic differential $\omega_f \in H^1_{\text{dR}}(\Gamma \setminus \mathbb{H}^2)$. A refinement of Hodge theory for the non-compact Riemann surface $Y_\Gamma(\mathbb{C}) \simeq \Gamma \setminus \mathbb{H}^2$ shows that ω_f determines a system of Hecke eigenvalues in
$$H^1_{\text{Betti}}(Y_\Gamma(\mathbb{C}), \mathbb{C}).$$

1In these notes, we will only be concerned with Hecke eigenforms, not with all modular forms and, more generally, we will be interested in systems of Hecke eigenvalues.

2We make this precise in section 2, when we discuss Shimura varieties. See Example 2.4.8.
This system of Hecke eigenvalues is actually defined over \(\mathbb{Q} \) (in this case, the \(T_\ell \) eigenvalues for \(\ell \neq 11 \) match the Fourier coefficients of \(f \); the system of Hecke eigenvalues will be defined over a number field in general). Now the comparison between the Betti and the étale cohomology of \(Y_\Gamma \) shows that it determines a system of Hecke eigenvalues in

\[
H^1_{\text{ét}}(Y_\Gamma \times_{\mathbb{Q}} \overline{\mathbb{Q}}, \mathbb{Q}_p).
\]

Eichler and Shimura show that the corresponding eigenspace is two-dimensional (this follows from a refinement of the Hodge decomposition) and the natural Galois action on it is the Galois representation \(\rho_f \). By the Cebotarev density theorem, the Galois representation \(\rho_f \) is determined by \(\rho_f(\text{Frob}_\ell) \) for \(\ell \neq 11, p \) and the relationship between \(\rho_f \) and \(f \) is encoded in the Eichler-Shimura relation

\[
\text{tr}(\rho_f(\text{Frob}_\ell)) = a_\ell
\]

for all such primes \(\ell \).

Higher-dimensional analogues of modular forms are automorphic representations and they can be associated to any connected reductive group \(G/\mathbb{Q} \) (or over a more general number field). Modular forms correspond to the group \(\text{SL}_2 \) (or \(\text{GL}_2 \)). In order to associate Galois representations to more general automorphic representations, one first relates automorphic representations to systems of Hecke eigenvalues occurring in the Betti cohomology of locally symmetric spaces, as we did above. If the corresponding locally symmetric spaces have the structure of algebraic varieties defined over number fields, as modular curves do, then one can sometimes find the desired Galois representations in their étale cohomology. If the locally symmetric spaces do not have an algebraic structure, the question of constructing Galois representations is much more difficult than in the algebraic case. Nevertheless, there has been a spectacular amount of progress recently due to Scholze [Sch15].

The goal of these lecture notes is to describe the recent progress in understanding the connection between automorphic representations and Galois representations in higher dimensions, concentrating on the construction of Galois representations associated to torsion classes in the Betti cohomology of locally symmetric spaces for \(\text{GL}_n/F \), where \(F \) is a totally real or imaginary CM field. This gives as a corollary the existence of Galois representations for a certain class of automorphic representations of \(\text{GL}_n/F \), namely those which are regular and \(L \)-algebraic. We will do this by combining the theory of Shimura varieties, which are higher-dimensional analogues of modular curves, with the theory of perfectoid spaces, as recently introduced by Scholze [Sch12a]. A central part of these notes concerns Scholze’s theorem that the tower of Shimura varieties with increasing level at \(p \) has the structure of a perfectoid space and that it admits a period morphism to a flag variety, the Hodge-Tate period domain.

Remark 1.0.4. While the focus of these notes is the geometry of Shimura varieties and the construction of Galois representations (thus understanding the automorphic to Galois direction), we started the introduction by mentioning a modularity result. The modularity result is proved by the so-called Taylor-Wiles patching method, which relies on working in \(p \)-adic families, both on the side of the Galois representations (coming from elliptic curves) and on the side of modular forms.

3From the representation-theoretic perspective, a modular form is actually a vector inside an automorphic representation of \(\text{SL}_2 \).

4In fact, in these notes we will focus on the case where \(F \) is an imaginary CM field.
The existence of the automorphic to Galois direction, $f \mapsto \rho_f$, is a prerequisite to applying the Taylor-Wiles method. Indeed, modularity is not proved by directly matching ρ_E with ρ_f, but rather by considering a universal Galois deformation ring for the residual representation $\bar{\rho}_E$ and comparing this ring to the Hecke algebra acting on a space of modular forms that f lives in. The map from the Galois deformation ring to the Hecke algebra is obtained by interpolating the correspondence $f \mapsto \rho_f$.

In order to prove such modularity results in higher dimensions (or even over imaginary quadratic fields), one needs to understand the automorphic to Galois direction first. Moreover, as the insight of Calegari-Geraghty shows [CG12], one needs to understand Galois representations attached not just to characteristic 0 automorphic representations, but also to classes in the cohomology of locally symmetric spaces with torsion coefficients, which are a reasonable substitute for p-adic and mod p automorphic forms.\footnote{In Section 2.2, we explain why torsion classes give a reasonable notion of mod p and p-adic automorphic forms for a general reductive group, by discussing Emerton’s notion of completed cohomology.}

1.1. **Organization.** In Section 2, we introduce locally symmetric spaces and Shimura varieties and give many examples. We also state the main result on the construction of Galois representations in Theorem 2.1.6, in a form that will be useful for the student project.

In Section 3, we recall the necessary background from p-adic Hodge theory on the (relative) Hodge-Tate filtration.\footnote{See also the lecture notes of Bhatt for more details on the Hodge-Tate filtration.}

In Section 4, we recall the theory of the canonical subgroup and construct the anticanonical tower, which has a perfectoid structure.

In Section 5, we show that (many) Shimura varieties with infinite level at p are perfectoid and describe the geometry of the Hodge-Tate period morphism.

In Section 6, we describe the project component of the minicourse, which aims to remove the nilpotent ideal in the construction of Galois representations.

1.2. **Notation.** If F is a local or global field, we let G_F denote the absolute Galois group of F. If S is a finite set of places of \mathbb{Q}, we let $G_{F,S}$ denote the Galois group of the maximal extension of F which is unramified at all primes of F lying above primes not in S.

If F is a number field, we let \mathbb{A}_F denote the adèles of F, $\mathbb{A}_{F,f}$ the finite adèles, $\mathbb{A}^p_{F,f}$ the finite adèles away from some prime p of F, and $\mathbb{A}^S_{F,f}$ the finite adèles of F away from some finite set of primes S.

We let $\mathbb{Q}_p^{\text{cycl}}$ be the p-adic completion of the field $\mathbb{Q}_p(\mu_{p^{\infty}})$ obtained by adjoining all the pth power roots of unity to \mathbb{Q}_p. We let $\mathbb{Z}_p^{\text{cycl}}$ be the ring of integers inside $\mathbb{Q}_p^{\text{cycl}}$.

If p is a prime of F, we let Frob_p denote a choice of geometric Frobenius at the prime p.

If G is a Lie group, we let G° denote the connected component of the identity in G.

If $R \subseteq S$ are rings and V is an R-module, we write $V_S := V \otimes_R S$.

\footnote{In Section 2.2, we explain why torsion classes give a reasonable notion of mod p and p-adic automorphic forms for a general reductive group, by discussing Emerton’s notion of completed cohomology.}
1.3. Acknowledgements. We thank Peter Scholze for suggesting the student project for the minicourse, and for sharing his ideas on perfectoid Shimura varieties over several years. We thank Johannes Anschütt, Christian Johansson, Judith Ludwig, Peter Scholze, and Romyar Sharifi for reading a draft version of these notes, for catching and correcting mistakes, and for many useful conversations.

2. Locally symmetric spaces and Shimura varieties

In this section, we introduce locally symmetric spaces for a general connected reductive group over \mathbb{Q}, give examples of locally symmetric spaces which admit the structure of complex algebraic varieties and which do not, and state the main result on the existence of Galois representations for torsion classes which occur in the cohomology of locally symmetric spaces for GL_n/F, where F is a CM field. We then discuss the notion of p-adically completed cohomology of locally symmetric spaces, as introduced by Emerton and Calegari-Emerton [Eme06, CE12] and explain why it gives a good notion of mod p and p-adic automorphic forms for general groups. Finally, we specialize to the case of Shimura varieties, give many examples of Shimura varieties, and describe the role that different Shimura varieties played in establishing instances of the Langlands correspondence.

2.1. Locally symmetric spaces. Let G/\mathbb{Q} be a connected reductive algebraic group. Let A_G denote the maximal \mathbb{Q}-split torus in the center of G. Let $K_\infty \subset G(\mathbb{R})$ denote a maximal compact subgroup and let $A_\infty = A_G(\mathbb{R})$. To G, we can attach a symmetric space as follows:

$$X = G(\mathbb{R})/K_\infty A_\infty.$$

This is a disjoint union of smooth real manifolds of some dimension d, it has an induced action of $G(\mathbb{R})$, and it can be endowed with a $G(\mathbb{R})$-invariant Riemannian metric.

Two subgroups Γ_1, Γ_2 of the same group are commensurable if the intersection $\Gamma_1 \cap \Gamma_2$ has finite index in both Γ_1 and Γ_2. A subgroup Γ of $G(\mathbb{Q})$ is arithmetic if it is commensurable with $G(\mathbb{Q}) \cap \text{GL}_N(\mathbb{Z})$, for some embedding $G \hookrightarrow \text{GL}_N$ of algebraic groups over \mathbb{Q}. For an arithmetic subgroup $\Gamma \subset G(\mathbb{Q})$, we can define the locally symmetric space

$$X_\Gamma := \Gamma \backslash X.$$

If Γ is torsion-free, the space X_Γ is a smooth real manifold of dimension d (otherwise it is an orbifold).

Suppose we have a model G/\mathbb{Z} of G which is a flat affine group scheme of finite type over \mathbb{Z}.

Exercise 2.1.1. Show that a finite index subgroup $\Gamma \subset G(\mathbb{Z})$ is an arithmetic subgroup of $G(\mathbb{Q})$.

7The term A_∞ is included to ensure that the locally symmetric spaces we obtain have finite volume.

8More generally, one can define a lattice $\Gamma \subset G(\mathbb{R})$ as a discrete subgroup with finite covolume with respect to the Haar measure on $G(\mathbb{R})$. A remarkable theorem of Margulis shows that, if $G(\mathbb{R})$ is a semisimple Lie group with no factor isogenous to $\text{SO}(n, 1)$ or $\text{SU}(n, 1)$, any lattice $\Gamma \subset G(\mathbb{R})$ is an arithmetic subgroup. See Section 3.3 of [Mil04] for more details on arithmetic subgroups.
From now on, we will only consider locally symmetric spaces X_Γ, where $\Gamma \subset G(\mathbb{Z})$ is a finite-index subgroup. In fact, we will only consider arithmetic subgroups which are congruence subgroups of $G(\mathbb{Z})$, i.e. subgroups which contain

$$\Gamma(N) := \ker (G(\mathbb{Z}) \to G(\mathbb{Z}/N\mathbb{Z}))$$

for some $N \in \mathbb{Z}_{\geq 1}$.

If Γ is a congruence subgroup, the cohomology $H^*_\text{Betti}(X_\Gamma, \mathbb{C})$ can be computed in terms of automorphic representations of G [BW00, Fra98]. This is easier to see in the case when the locally symmetric space X_Γ is compact. Then Matsushima’s formula expresses $H^*_\text{Betti}(X_\Gamma, \mathbb{C})$ in terms of the relative Lie algebra cohomology $H^*(\mathfrak{g}, K_\infty, \pi_\infty)$, where $\pi = \pi_f \otimes \pi_\infty$ runs over automorphic representations of G. The fact that one can express $H^*_\text{Betti}(X_\Gamma, \mathbb{C})$ in terms of (\mathfrak{g}, K_∞)-cohomology uses the induced Riemannian structure on X_Γ and Hodge theory for Riemannian manifolds.

We will mostly be interested in the converse direction: realizing certain automorphic representations of G as classes occurring in the Betti cohomology of locally symmetric spaces. Results of Franke guarantee that we can do this, at least for so-called cohomological automorphic representations.

Example 2.1.2.

(1) If $G = \text{SL}_2$ (and we can take $G = \text{SL}_2/\mathbb{Z}$), the corresponding symmetric space is the upper-half plane \mathbb{H}^2. The locally symmetric spaces are the Riemann surfaces corresponding to modular curves, which are discussed in the introduction. These locally symmetric spaces are non-compact Riemann surfaces.

(2) If $G = \text{Res}_{\mathbb{Q}[i]/\mathbb{Q}} \text{SL}_2$ (and we can take $G = \text{Res}_{\mathbb{Z}[i]/\mathbb{Z}} \text{SL}_2$), the corresponding symmetric space can be identified with 3-dimensional hyperbolic space

$$\text{SL}_2(\mathbb{C})/\text{SU}_2(\mathbb{C}) \simeq \mathbb{H}^3$$

It can be shown that $\text{SL}_2(\mathbb{Z})$ contains infinitely many conjugacy classes of finite-index subgroups which are non-congruence, but for $n \geq 3$, every finite-index subgroup of $\text{SL}_n(\mathbb{Z})$ is a congruence subgroup.
and the locally symmetric spaces are called *Bianchi manifolds*. They are examples of arithmetic hyperbolic 3-manifolds and, since their real dimension is odd, they have no chance of having the structure of algebraic varieties.

(3) If F is a totally real or imaginary CM field with ring of integers \mathcal{O}, set $G = \text{Res}_{F/\mathbb{Q}} \text{GL}_n$. In some cases, the corresponding locally symmetric spaces match ones we have already studied. For example, the symmetric space for GL_2/\mathbb{Q} is

$$\text{GL}_2(\mathbb{R})/\text{SO}_2(\mathbb{R}) R_{>0} \simeq \mathbb{H}^2,$$

the disjoint union of the upper and lower half complex planes. The corresponding locally symmetric spaces are disjoint unions of finitely many copies of modular curves.

If F is totally real and $n \geq 3$, the locally symmetric spaces do not have the structure of complex algebraic varieties. If F is an imaginary CM field and $n \geq 2$, the locally symmetric spaces also do not have the structure of complex algebraic varieties. One way to see this is as follows. Set

$$l_0 := \text{rank } G(\mathbb{R}) - \text{rank } K_\infty A_\infty.$$

(This is the so-called “defect” of the group G, see [BW00, CG12] for a discussion.) The axioms for a Shimura variety introduced in Section 2.4.7 below imply that $l_0 = 0$ whenever the group G admits a Shimura variety. However, when F is a general number field with r_1 real places and r_2 complex places, one can compute l_0 for $\text{Res}_{F/\mathbb{Q}} \text{GL}_n$ to be

$$l_0 = \begin{cases} r_1 \left(\frac{n-2}{2} \right) + r_2(n-1) & n \text{ even,} \\ r_1 \left(\frac{n-1}{2} \right) + r_2(n-1) & n \text{ odd.} \end{cases}$$

(4) If $G(\mathbb{R})$ is compact (or more generally, if $G(\mathbb{R})/A_\infty$ is compact), then $G(\mathbb{R})/K_\infty A_\infty$ is a finite set of points and the locally symmetric spaces attached to G are also just finite sets of points. This situation is very favorable for setting up the Taylor-Wiles method, because the cohomology of the locally symmetric space is then concentrated in degree 0. This happens, for example, in the case of a *definite* unitary group defined over a totally real field (whose signature at each infinite place is $(0,n)$).

In these notes, we will mostly use the adelic perspective on locally symmetric spaces. Recall that we have chosen a model G/\mathbb{Z} of G/\mathbb{Q}. Let $K \subset G(\mathbb{A}_f)$ be a compact open subgroup of the form $\prod_v K_v$, where v runs over primes of \mathbb{Q} and $K_v \subseteq G(\mathbb{Z}_v)$, and such that $K_v = G(\mathbb{Z}_v)$ for all but finitely many primes v. Define the double quotient

$$X_K := G(\mathbb{Q}) \setminus (X \times G(\mathbb{A}_f)/K),$$

where the action of $G(\mathbb{Q})$ on the two factors is via the diagonal embedding. The set $G(\mathbb{Q}) \setminus G(\mathbb{A}_f)/K$ is finite; this follows from [PR94][Thm 5.1]. Let g_1, \ldots, g_r be a set of double coset representatives. For $i = 1, \ldots, r$, let $\Gamma_i := G(\mathbb{Q}) \cap g_i K g_i^{-1}$. This is a discrete subgroup of $G(\mathbb{Q})$ and it is in fact a congruence subgroup of $G(\mathbb{Z})$. Then we have

$$X_K = G(\mathbb{Q}) \setminus (X \times G(\mathbb{A}_f)/K) = \sqcup_{i=1}^r \Gamma_i \setminus X = \sqcup_{i=1}^r X_{\Gamma_i},$$

so the adelic version of a locally symmetric space is a finite disjoint union of the locally symmetric spaces introduced above.
We say that K is neat if $G(\mathbb{Q}) \cap gKg^{-1}$ is torsion-free for any $g \in G(A_f)$, in which case X_K is a smooth real manifold of dimension d. If K is sufficiently small, then it is neat.

As seen in Example 2.1.2 (1) above, the locally symmetric spaces X_K can be non-compact. Borel and Serre [BS73] constructed a compactification of X_K (or rather, of the individual spaces X_F) as real manifolds with corners. ¹⁰ If X_K^{BS} denotes the Borel-Serre compactification of X_K, the inclusion

$$X_K \hookrightarrow X_K^{BS}$$

is a homotopy equivalence. This shows that X_K has the same homotopy type as that of a finite CW complex, so in particular the vector spaces $H^i_{\text{Betti}}(X_K, \mathbb{C})$ are finite-dimensional. Similarly, the cohomology groups $H^i_{\text{Betti}}(X_K, \mathbb{Z}/p^N\mathbb{Z})$ are finite $\mathbb{Z}/p^N\mathbb{Z}$-modules and the groups $H^i_{\text{Betti}}(X_K, \mathbb{Q}_p)$ are finite-dimensional for every prime p.

As K varies, we have a tower of locally symmetric spaces $(X_K)_K$. If K, K' are two compact-open subgroups of $G(A_f)$ and if $g \in G(A_f)$ is such that $g^{-1}K'g \subseteq K$, we have a finite étale morphism $c_g : X_{K'} \to X_K$ induced by $hK' \mapsto hgK$ for $h \in G(A_f)$. If one takes $K' := K \cap gKg^{-1}$, one obtains a correspondence

$$(c_g, c_1) : X_{K'} \to X_K \times X_K,$$

called a Hecke correspondence. This correspondence induces an endomorphism of $H^i_{\text{Betti}}(X_K)$, where we take the Betti cohomology of the locally symmetric space with coefficients in either $\mathbb{C}, \mathbb{Q}_p, \mathbb{Z}/p^N\mathbb{Z}$ for $N \in \mathbb{Z}_{\geq 1}$ and this endomorphism only depends on the double coset KgK.

Assume that $G = \text{Res}_{F/\mathbb{Q}} \text{GL}_n$ or that G is a unitary similitude group over \mathbb{Q} which preserves a non-degenerate alternating Hermitian form on the vector space F^n for some imaginary CM field F.¹¹¹² Let S' be the finite set of primes of \mathbb{Q} consisting of those primes which ramify in F and those primes v where $K_v \subseteq G(\mathbb{Q}_v)$ is not hyperspecial.¹² Choose a prime p for the coefficients that we will use throughout. Let $S = S' \cup \{p\}$. If $v \notin S$, let

$$\mathcal{T}_v := \mathbb{Z}_p[G(\mathbb{Z}_v) \setminus G(\mathbb{Q}_v) / G(\mathbb{Z}_v)]$$

be the Hecke algebra of bi-$G(\mathbb{Z}_v)$-invariant, compactly supported, \mathbb{Z}_p-valued functions on $G(\mathbb{Q}_v)$. (Recall that this is an algebra under the convolution of functions and that it is commutative.) Let \mathcal{T}^S be the abstract Hecke algebra over \mathbb{Z}_p.

$$\mathcal{T}^S := \otimes_{v \notin S} \mathcal{T}_v,$$

which acts by correspondences on X_K and therefore also on $H^i_{\text{Betti}}(X_K, \mathbb{Z}/p^N\mathbb{Z})$.

Notation 2.1.3. If we want to emphasize the group G which determines the Hecke algebra and the locally symmetric space it acts on, we denote the Hecke algebra by $\mathcal{T}^{G,S}$.

¹⁰We give more details on how to construct the Borel-Serre compactification in Section below.

¹¹The locally symmetric spaces in the second case are in fact unitary Shimura varieties - these are discussed below in Example 2.4.12.

¹²Recall that a group scheme is reductive if it is smooth and affine, with connected reductive geometric fibers. If v is unramified in F, then G admits a reductive model over $\text{Spec } \mathbb{Z}_v$. A hyperspecial subgroup of $G(\mathbb{Q}_v)$ is a subgroup that can be identified with the \mathbb{Z}_v-points of some reductive model \mathcal{G} of G over $\text{Spec } \mathbb{Z}_v$. Such subgroups of $G(\mathbb{Q}_v)$ are maximal as compact open subgroups of $G(\mathbb{Q}_v)$.
Remark 2.1.4. The Satake transform gives an explicit description of the spherical Hecke algebras \mathbb{T}_v. For example, if F is a number field with ring of integers \mathcal{O}_F, and $\mathcal{G} = \text{Res}_{\mathcal{O}_F/\mathbb{Z}} \text{GL}_n$, then $\mathbb{T}_v = \prod_{w | v} \mathbb{T}_w$, where the product runs over primes w in F above v and

$$\mathbb{T}_w[q_{w}^{1/2}] \simeq \mathbb{Z}_p[q_{w}^{1/2}][X_1^{\pm 1}, \ldots, X_n^{\pm 1}]^{S_n}.$$

Here, S_n denotes the symmetric group on n elements. This isomorphism depends on a choice of square root of q_w, the residue field cardinality of w.

Let $T_{i,w} \in \mathbb{T}_w[q_{w}^{1/2}]$ be the image of the ith symmetric polynomial in X_1, \ldots, X_n. Then $q^{(n+1)/2}T_{i,w} \in \mathbb{T}_w$ is independent of q_w.

We now specialize to the case when F is a totally real or imaginary CM field and $\mathcal{G} = \text{Res}_{\mathcal{O}_F/\mathbb{Z}} \text{GL}_n$. We will be interested in systems of Hecke eigenvalues occurring in $H_{\text{Betti}}^i(X_K, \mathbb{Z}/p^N\mathbb{Z})$ for some $N \in \mathbb{Z}_{\geq 1}$. Let

$$\mathbb{T}(K, i, N) := \text{Im}(\mathbb{T}^S \to \text{End}(H_{\text{Betti}}^i(X_K, \mathbb{Z}/p^N\mathbb{Z}))).$$

The goal will be to construct a Galois representation valued in $\mathbb{T}(K, i, n)$; we will not quite do this, but something that is good enough for applications: we will construct a determinant valued in $\mathbb{T}(K, i, n)$, at least modulo a nilpotent ideal.

A determinant is a strengthening of the notion of pseudo-representation, due to Chenevier [Che14], which should be thought of as something that behaves like the characteristic polynomial of a representation. We will use this notion because it is very flexible from the point of view of p-adic interpolation.

Definition 2.1.5.

1. Let A be a (topological) ring. An A-polynomial law between two A-modules M and N is a natural transformation on the category of A-algebras B between the two functors $A \to \text{Alg} \to \text{Sets}$ given by

$$B \mapsto M \otimes_A B$$

and $B \mapsto N \otimes_A B$.

2. Let A be a (topological) ring, and G a (topological) group. An n-dimensional determinant is an A-polynomial law $D : A[G] \to A$ which is multiplicative and homogeneous of degree n. For any $g \in G$, we call $D(1 - Xg) \in A[X]$ the characteristic polynomial of g. Moreover, D is said to be continuous if the map $G \to A[X], g \mapsto D(1 - Xg)$, is continuous.

The following is the main result on the existence of Galois representations. This is Theorem V.4.1 of [Sch15]

Theorem 2.1.6. There exists a nilpotent ideal $I \subset \mathbb{T}(K, i, N)$ of bounded nilpotence degree (which only depends on $[F : \mathbb{Q}]$ and on n) and a unique n-dimensional, continuous determinant

$$D : G_{F,S} \to \mathbb{T}(K, i, N)/I$$

such that for all $v \notin S$ and w a prime of F above v the following relation holds

$$D(1 - X\text{Frob}_{w}) = 1 - q_w^{(n+1)/2}T_{1,w}X + q_w^{2(n+1)/2}T_{2,w}X^2 - \cdots + (-1)^n q_w^n(1/2)T_{n,w}X^n.$$

Remark 2.1.7.

1. The determinant D (and the corresponding Galois representations obtained by specializing the determinant to geometric points) is constructed by p-adic interpolation (in other words by keeping track of congruences modulo p^N for $N \in \mathbb{Z}_{\geq 1}$) from the Galois representations associated to (conjugate) self-dual, regular L-algebraic automorphic representations of GL_m/F.

These Galois representations were constructed in several steps by many people: Kottwitz, Clozel, Harris-Taylor, Shin, Chenevier-Harris [Clo91, Kot92a, HT01, Shi11, CH09], building on fundamental contributions by many others. In almost all cases, one uses a similar method to the one outlined in the introduction in the case of weight 2 modular forms, i.e. one uses the étale cohomology of certain Shimura varieties, which are higher-dimensional analogues of modular curves.

(2) When $T(K,i,N)$ is localized at a maximal ideal $\mathfrak{m} \subset T(K,i,N)$ whose corresponding Galois representation $\bar{\rho}_m : G_{F,S} \to \text{GL}_n(\bar{\mathbb{F}}_p)$ is absolutely irreducible, Newton and Thorne [NT15] improve the bound on the nilpotence degree of I to $I^4 = 0$.

(3) We have stated the main result for the trivial local system on X_K for simplicity. The analogous result also holds with coefficients in a local system V_ξ on X_K corresponding to some irreducible algebraic representation ξ of G.

(4) It is possible to give a different proof of Theorem 2.1.6 as a result of Boxer’s thesis [Box15], which uses integral models rather than perfectoid Shimura varieties.

2.2. Completed cohomology. Completed cohomology, as introduced by Emer- ton in [Eme06], gives a way of defining p-adic automorphic forms for general reductive groups.

Let G/\mathbb{Q} be a connected reductive group with the corresponding tower of locally symmetric spaces $(X_K)_K$. Fix a tame level, i.e. a compact open subgroup $K^p \subset G(\mathbb{Q}_p)$. The completed cohomology groups are defined as

$$\widetilde{H}^i(K^p) := \lim_{\overset{\leftarrow}{N}} \left(\lim_{K_p} \left(H^i(X_{K^p K_p}, \mathbb{Z}/p^N \mathbb{Z}) \right) \right)$$

where K_p runs over all compact open subgroups of $G(\mathbb{Q}_p)$. For $N \in \mathbb{Z}_{\geq 1}$ we also define

$$\widetilde{H}^i(K^p, \mathbb{Z}/p^N \mathbb{Z}) := \lim_{K_p} \left(H^i(X_{K^p K_p}, \mathbb{Z}/p^N \mathbb{Z}) \right).$$

The group $\widetilde{H}^i(K^p)$ is a p-adically complete \mathbb{Z}_p-module. If S' is the finite set of bad primes determined by the tame level K^p and $S = S' \cup \{ p \}$, then $\widetilde{H}^i(K^p)$ has an action of the abstract Hecke algebra T^S. Moreover, $\widetilde{H}^i(K^p)$ also has an action of the full group $G(\mathbb{Q}_p)$. This is induced from the action of c_g^\ast for $g \in G(\mathbb{Q}_p)$ on the directed system $\left(H^i(X_{K^p K_p}, \mathbb{Z}/p^N \mathbb{Z}) \right)_{K_p \subset G(\mathbb{Q}_p)}$, sending a class at level K_p to a class at level $K_p \cap g K_p g^{-1}$. As a representation of $G(\mathbb{Q}_p)$, one can prove that $\widetilde{H}^i(K^p)$ is p-adically admissible, which means that

(1) it is p-adically complete and separated, and the \mathbb{Z}_p-torsion subspace $\widetilde{H}^i(K^p)[p^\infty]$ is of bounded exponent;

(2) each $\widetilde{H}^i(K^p)/p^N$, which is a smooth representation of $G(\mathbb{Q}_p)$, is also admissible as a representation of $G(\mathbb{Q}_p)$ (in the usual sense).
Recall that a smooth representation of $G(\mathbb{Q}_p)$ is one in which every vector. It is not hard to show that $\tilde{H}^i(K^p, \mathbb{Z}/p^N\mathbb{Z})$ are smooth representations of $G(\mathbb{Q}_p)$ for every $N \geq 1$. However, completed cohomology with \mathbb{Z}_p-coefficients is not a smooth representation of $G(\mathbb{Q}_p)$ - the smooth vectors in completed cohomology correspond to certain classical automorphic forms, which form a much smaller space than the space of all p-adic automorphic forms.

Remark 2.2.1. (1) One can also make the definition for compactly-supported cohomology as well as for homology and Borel-Moore homology. See [CE12, Eme14] for more details on these and the relationships between them. See [Eme14] also for an overview of the role that completed cohomology plays in the p-adic Langlands program, in terms of both local and global aspects.

(2) Once we introduce perfectoid Shimura varieties in Section 5, we will see that we can identify completed cohomology of tame level K^p with the cohomology of the perfectoid Shimura variety of tame level K^p.

(3) One can also make the following definition:

$$\hat{H}^i(K^p) := \lim_{\leftarrow} \left(\lim_{\rightarrow} (H^i(X_{K^p}, \mathbb{Z}_p)) / p^N \right),$$

which also has an action of the abstract Hecke algebra \mathbb{T}. Intuitively, the systems of Hecke eigenvalues (i.e. the maximal ideals of \mathbb{T}) in the support of $\hat{H}^i(K^p)$ are those which can be p-adically interpolated from systems of Hecke eigenvalues in the support of $H^i(X_{K^p}, \mathbb{Z}_p)$ for some finite level K_p, i.e. systems of Hecke eigenvalues corresponding to classical automorphic forms. The difference between $\tilde{H}^i(K^p)$ and $\hat{H}^i(K^p)$ can be expressed as a limit over torsion classes occurring in the cohomology of locally symmetric spaces at finite level, as seen in Exercise 2.2.2 below.

Exercise 2.2.2. Consider the short exact sequence of sheaves

$$0 \rightarrow \mathbb{Z}_p \rightarrow \mathbb{Z}_p \rightarrow \mathbb{Z}_p / p^N \mathbb{Z} \rightarrow 0$$

on X_{K^p, K_p} for every K_p. By analyzing the cohomology long exact sequence, prove that we have an injection

$$\hat{H}^i(K^p) \hookrightarrow \tilde{H}^i(K^p)$$

and describe its cokernel in terms of torsion classes, i.e. in terms of the groups $H^i(X_{K^p, K_p}, \mathbb{Z}_p)[p^N]$.

Remark 2.2.3. In particular, if the groups $H^i(X_{K^p, K_p}, \mathbb{Z}_p)[p^N]$ are zero for all $N \in \mathbb{Z}_{\geq 1}$ and all compact-open K_p, then we have an isomorphism $\tilde{H}^i(K^p) \simeq \hat{H}^i(K^p)$. This happens, for example, if G is a definite unitary group, so that the locally symmetric spaces are finite sets of points. This also happens in the case of modular curves. However, we will be primarily concerned with a general $G = \text{Res}_{F'/\mathbb{Q}} \text{GL}_n$, in which case the groups $H^i(X_{K^p, K_p}, \mathbb{Z}_p)$ are known to contain torsion.

Here are some further important properties of completed cohomology:

(1) The Hochschild-Serre spectral sequence can be used to recover cohomology at finite level from completed cohomology. More precisely, if $K_p \subset G(\mathbb{Q}_p)$
is a compact-open subgroup, then we have a spectral sequence
\[E_2^{i,j} = H^i(K_p, \tilde{H}^j(K^p)) \implies H^{i+j}(X_{K^pK_p}, \mathbb{Z}_p), \]
where \(H^i(K_p,) \) denotes the continuous group cohomology of \(K_p \).

(2) One can work with cohomology at finite level with coefficients in a locally symmetric space \(\mathcal{V}_\xi \) corresponding to some algebraic representation \(\xi \) of \(G \) and the completed cohomology groups one obtains match up. More precisely, assume that \(\xi \) is an algebraic representation of \(G \) defined over \(\mathbb{Q}_p \) (for simplicity, otherwise we would introduce a field of coefficients \(E \) which is a finite extension of \(\mathbb{Q}_p \)). Let \(\mathcal{V}^\circ_\xi \subset \mathcal{V}_\xi \) be a \(\mathbb{Z}_p \)-lattice stable under the action of \(G(\mathbb{Z}_p) \). The local system \(\mathcal{V}^\circ_\xi \) is defined as follows:
\[\mathcal{V}^\circ_\xi := G(\mathbb{Q}) \setminus (X \times G(\mathbb{A}_f)/K \times V^\circ_\xi). \]
The completed cohomology groups corresponding to the local system \(\mathcal{V}^\circ_\xi \) are defined as
\[\tilde{H}^i(K^p, \mathcal{V}^\circ_\xi) := \lim_N \left(\lim_{K_p} \left(H^i(X_{K^pK_p}, \mathcal{V}^\circ_\xi / p^N) \right) \right), \]
where \(K_p \) runs over compact-open subgroups of \(G(\mathbb{Z}_p) \). Then we have a natural, Hecke-equivariant isomorphism of \(p \)-adically admissible representations of \(G(\mathbb{Z}_p) \)
\[\tilde{H}^i(K^p, \mathcal{V}^\circ_\xi) \cong \mathcal{V}^\circ_\xi \otimes_{\mathbb{Z}_p} \tilde{H}^i(K^p). \]

(3) Let \((V^\circ_\xi)^\vee \) denote the \(\mathbb{Z}_p \)-dual of \(V^\circ_\xi \), endowed with the contragredient action of \(G(\mathbb{Z}_p) \). Let \(K_p \subset G(\mathbb{Z}_p) \) be a compact-open subgroup. By combining the first two items, one obtains a control theorem for completed cohomology in the form of a spectral sequence
\[E_2^{i,j} = \text{Ext}^j_{\mathbb{Z}_p[K_p]} \left((V^\circ_\xi)^\vee, \tilde{H}^i(K^p) \right) \implies H^{i+j}(X_{K^pK_p}, \mathcal{V}^\circ_\xi). \]

2.3. Shimura varieties. Roughly speaking, a Shimura variety is an algebraic variety defined over a number field whose underlying complex manifold is a locally symmetric space corresponding to some connected reductive group \(G/\mathbb{Q} \). As we have seen in Example 1, this can exist only in special circumstances, for certain groups \(G \). In this section, we will see many examples of groups that give rise to a Shimura variety, but we will review Hodge structures and give the precise definition of a Shimura variety first.

2.3.1. Review of Hodge structures. In this section, we recall some notions related to Hodge structures and variations of Hodge structures, which will be useful for explaining the axioms defining a Shimura datum in Section 2.4.7. For a more in-depth discussion of these notions, see Chapter II of [Mil04].

Recall that a (pure) Hodge structure on a finite-dimensional real vector space \(V \) is a direct sum decomposition of the complexification \(V_\mathbb{C} \) of \(V \) of the form
\[V_\mathbb{C} = \oplus_{(i,j) \in \mathbb{Z}^2} V^{i,j}. \]

\[\text{Since } K_p \text{ is a compact locally } \mathbb{Q}_p \text{-analytic group, the category of } p \text{-adically admissible representations of } K_p \text{ over } \mathbb{Z}_p \text{ has enough injectives. Therefore, the continuous cohomology groups } H^i(K_p,) \text{ can be identified with the derived functors of the functor "taking } K_p \text{-invariants" on the category of } p \text{-adically admissible } K_p\text{-representations.} \]
such that the following relation, known as Hodge symmetry, holds: for every \((i, j) \in \mathbb{Z}^2\), the complex conjugate of \(V^{i,j}\) is \(V^{j,i}\). The direct sum decomposition is called the Hodge decomposition. If \(V_C = \bigoplus_{k \in I} V^{i_k,j_k}\), we say that \(V\) has a Hodge structure of type \((i_k, j_k)_{k \in I}\). If, moreover, \(i_k + j_k = n\) for every \(k \in I\) then we say that the Hodge structure on \(V\) is pure of weight \(n\). The weight decomposition is the direct sum decomposition of \(V\) indexed by weight and it is already defined over \(\mathbb{R}\). A morphism of Hodge structures is a morphism of real vector spaces which respects the Hodge decomposition of their complexifications.

More generally, one can define rational and integral Hodge structures. An integral (resp. rational) Hodge structure is a free \(\mathbb{Z}\)-module (resp. finite-dimensional \(\mathbb{Q}\)-vector space) together with a Hodge decomposition of \(V_R\) such that the weight decomposition is defined over \(\mathbb{Q}\).

Example 2.2.3. If \(X/\mathbb{C}\) is a smooth projective variety\(^{14}\), then the Betti cohomology groups \(H^n(X(\mathbb{C}), \mathbb{Z})\) are endowed with integral Hodge structures coming from the Hodge decomposition

\[
H^n(X(\mathbb{C}), \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{C} = \bigoplus_{i+j=n} H^i(X, \Omega^j_X); \quad V^{i,j} := H^i(X, \Omega^j_X/\mathbb{C}).
\]

If \(X = A\) is an abelian variety over \(\mathbb{C}\), the Hodge decomposition is

\[
H^1(A(\mathbb{C}), \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{C} = H^0(A, \Omega^1_{A/\mathbb{C}}) \oplus H^1(A, \mathcal{O}_A);
\]

then \(H^1(A(\mathbb{C}), \mathbb{Z})\) has an integral Hodge structure of type \((1,0), (0,1)\). The dual \(H_1(A(\mathbb{C}), \mathbb{Z})\) has a Hodge structure of type \((-1,0), (0,-1)\). Giving a Hodge structure of this type on \(H_1(A(\mathbb{C}), \mathbb{Z})\) is equivalent to giving a complex structure on \(H_1(A(\mathbb{C}), \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{R}\).

The category of integral Hodge structures of type \((-1,0), (0,-1)\) is equivalent to the category of complex tori. (If \(A\) is an abelian variety, then \(A(\mathbb{C})\) is a complex torus, though not every complex torus arises from an abelian variety.)

Example 2.3.3. If \(n \in \mathbb{Z}\), we define the Hodge structure \(\mathbb{R}(n)\) to be the unique Hodge structure on \(\mathbb{R}\) of type \((-n, -n)\). We define \(\mathbb{Q}(n)\) and \(\mathbb{Z}(n)\) analogously.

Let \(S := \text{Res}_{\mathbb{C}/\mathbb{R}} \mathbb{G}_m\); this is a real algebraic group such that \(S(\mathbb{R}) = \mathbb{C}^\times\). The group \(S\) is the Tannakian group for the category of Hodge structures on real vector spaces.\(^{15}\) This implies that there is an equivalence of categories between the category of Hodge structures on finite-dimensional real vector spaces and the category of finite-dimensional representations of \(S\) on real vector spaces. We describe the functor in one direction: a representation of \(S\) on a real vector space \(V\) determines an action of \(\mathbb{C}^\times\) on the complexification \(V_C\). Then \(V_C\) decomposes as a direct sum of subspaces \(V^{i,j}\) with \(i, j \in \mathbb{Z}\), such that the action of \(\mathbb{C}^\times\) on \(V^{i,j}\) is through the cocharacter \(z \mapsto z^{-i}z^{-j}\). This direct sum decomposition defines a Hodge structure on \(V\). Thus, we can think of a Hodge structure on a real vector space \(V\) as a pair \((V, h)\), where \(h : S \to GL(V)\) is a homomorphism.

\(^{14}\)We could take, more generally, \(X\) to be a compact Kähler manifold, in which case the Betti cohomology decomposes as \(H^n(X, \mathbb{C}) = \bigoplus_{i+j=n} H^{i,j}(X)\), where \(H^{i,j}(X)\) denotes the space of cohomology classes of type \((i,j)\).

\(^{15}\)See, for example, Chapter I of [Mil90] for a discussion of Tannakian categories and the corresponding Tannakian groups as relevant to Shimura varieties.
A polarizable Hodge structure is a Hodge structure which can be equipped with a polarization. A polarization on a real Hodge structure (V, h) of weight n is a morphism of Hodge structures

$$\Psi : V \times V \to \mathbb{R}(-n)$$

such that the bilinear form $(v, w) \mapsto \Psi (v, h(i)w)$ is symmetric and positive definite. (One can similarly define polarizable integral and rational Hodge structures.)

Hodge structures coming from algebraic geometry are polarizable. For example, recall Riemann’s classification result for abelian varieties over \mathbb{C}.

Theorem 2.4. The functor $A \mapsto H_1(A, \mathbb{Z})$ defines an equivalence of categories between the category of abelian varieties over \mathbb{C} and the category of polarizable integral Hodge structures of type $(-1, 0), (0, -1)$.

2.4.1. Variations of polarizable Hodge structures. In order to have a Shimura variety, the symmetric space X should be interpreted as a “moduli space” of polarizable Hodge structures. The precise notion of “moduli space” we will use is that of a variation of Hodge structures.

For a Hodge structure on V of weight n, we define the associated Hodge–de Rham filtration $F_i V := \bigoplus_{i' \geq i} V_{i', j'} \subset V_C$.

Example 2.4.2. If X/\mathbb{C} is a smooth projective variety, the Hodge structure on the Betti cohomology $H^*(X(\mathbb{C}), \mathbb{Z})$ has the Hodge–de Rham filtration

$$F^i (H^*(X(\mathbb{C}), \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{C}) = \bigoplus_{i' \geq i} H^{i'}(X, \Omega_{X/\mathbb{C}}^{i'}).$$

Under the canonical comparison isomorphism between Betti and de Rham cohomology, the Hodge–de Rham filtration on $H^*(X(\mathbb{C}), \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{C}$ matches the filtration on the algebraic de Rham cohomology $H^*_{dR}(X)$ induced from the degeneration of the Hodge–de Rham spectral sequence

$$E_1^{i,j} = H^j(X, \Omega_{X/\mathbb{C}}^i) \Rightarrow H^{i+j}(X, \Omega_{X/\mathbb{C}}^*).$$

If $X = A$ is an abelian variety over \mathbb{C}, the Hodge–de Rham filtration is determined by $F^1 (H^1(A(\mathbb{C}), \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{C}) = H^0(A, \Omega_{A/\mathbb{C}}^1)$ (F^0 is everything and F^2 is zero).

We remark that, if X is defined over a number field E, then the algebraic de Rham cohomology $H^{i+j}_{dR}(X)$ is an E-vector space and the Hodge–de Rham filtration on algebraic de Rham cohomology is also defined over E. This observation, together with standard comparison results between the cohomology of schemes and of the corresponding rigid-analytic varieties, will be used in Section 3. The degeneration of the Hodge–de Rham spectral sequence, which is needed to obtain the Hodge filtration on de Rham cohomology, is a deep result, originally established using analytic techniques (Hodge theory), but it was later on proved purely algebraically in [DI87].

\[\text{16}^\text{More precisely, if } X/\mathbb{C} \text{ is a smooth projective variety, then its Betti cohomology carries a Hodge structure equipped with a rational polarization. The polarization comes from the hard Lefschetz theorem applied to a rational Kähler cohomology class.}\]

\[\text{17}^\text{We prefer to refer to the Hodge filtration as the Hodge–de Rham filtration in order to avoid confusion with the Hodge–Tate filtration which will be discussed in Section 3.}\]
A variation of (pure) Hodge structures should model the Hodge structure on the local system coming from the Betti cohomology of a continuous family of smooth projective varieties over some base. We start with an elementary definition, which we will apply to the case of Shimura varieties, and which can be formulated very concretely. We then give the more general definition.

Let X^+ be a simply-connected connected complex manifold. Fix a real vector space V and a positive integer n. Assume that for each $h \in X^+$ we have a Hodge structure on V of weight n. Let $V_{h}^{i,j} \subset V_{C}$ be the subspace of type (i,j) corresponding to the Hodge structure attached to h, and let $F_{h}^{i}(V_{C}) \subset V_{C}$ be the ith graded piece of the Hodge-de Rham filtration on V_{C} determined by h.

Definition 2.4.3. We say that the family of Hodge structures indexed by X^+ is a variation of Hodge structures of weight n if the following conditions are satisfied.

1. Firstly, for each (i,j), the subspace $V_{h}^{i,j}$ varies continuously with $h \in X^+$. This means that the dimension of the subspace $V_{h}^{i,j}$ is equal to a constant $d(i,j) \in \mathbb{Z}_{\geq 0}$, so there is a natural map to the Grassmannian parametrizing $d(i,j)$-dimensional subspaces of V_{C}

$$X^+ \rightarrow \text{Gr}^{d(i,j)}(V_{C}).$$

2. The Hodge filtration F_{h} varies holomorphically with $h \in X^+$. Let $F_{h}^{\text{std}}(V_{C})$ be the flag variety parametrizing descending filtrations on V_{C} of type $(d(i))_{i \in \mathbb{Z}}$, where $d(i) = \sum_{i' \geq i} d(i', n - i')$. The first condition guarantees that there exists a map

$$\pi_{\text{HdR}}^+ : X^+ \rightarrow F_{h}^{\text{std}}(V_{C}), h \mapsto F_{h}^{i}$$

of complex manifolds and this map is required to be holomorphic.

3. (Griffiths transversality) The tangent space of $F_{h}^{\text{std}}(V_{C})$ at a point corresponding to a filtration F^\ast on V_{C} is contained in $\oplus_{i \in \mathbb{Z}} \text{Hom}(F^{i}, V_{C}/F^{i})$. Let $h \in X^+$. The final condition is that we require that the differential $d\pi_{\text{HdR}}^+$, which is a map

$$d\pi_{\text{HdR}}^+ : T_{h}X^+ \rightarrow T_{F_{h}^{i}}F_{h}^{\text{std}}(V_{C}) \subset \oplus_{i \in \mathbb{Z}} \text{Hom}(F^{i}, V_{C}/F^{i}),$$

to satisfy the following transversality condition:

$$\text{Im}(d\pi_{\text{HdR}}^+) \subset \oplus_{i \in \mathbb{Z}} \text{Hom}(F^{i}, F^{i-1}/F^{i}) \subset \oplus_{i \in \mathbb{Z}} \text{Hom}(F^{i}, V_{C}/F^{i}).$$

Remark 2.4.4. In fixed weight n, the Hodge-de Rham filtration determines the Hodge decomposition via $V^{p,q} = F^{p}(V_{C}) \cap F^{q}(V_{C})$. This means that, if the Hodge structures parametrized by X^+ are all distinct, the holomorphic map

$$\pi_{\text{HdR}}^+ : X^+ \rightarrow F_{h}^{\text{std}}(V_{C})$$

is injective. We call such a map a period morphism. One of the protagonists of these lecture notes is the p-adic analogue of this morphism, called the Hodge-Tate period morphism. This will not be injective, in general, but in many situations we will be able to understand its fibers.

Exercise 2.4.5. Check that the tangent space of $F_{h}^{\text{std}}(V_{C})$ at a point corresponding to a filtration F^\ast on V_{C} is indeed contained in $\oplus_{i \in \mathbb{Z}} \text{Hom}(F^{i}, V_{C}/F^{i})$.

18For example, we could take $X^+ = \mathbb{H}^2$, the upper half-plane.
A variation of polarizable Hodge structures on X^+ is a variation of Hodge structures on X^+ together with a bilinear form

$$\Psi : V \times V \to \mathbb{R}$$

such that Ψ induces for any $h \in X^+$ a polarization on the Hodge structure determined by h.

The concept of a variation of (polarizable) Hodge structures can be extended to the case of complex manifolds which are not necessarily connected in the obvious way. Using the weight decomposition (which is defined over \mathbb{R}), we can also define variations of (polarizable) Hodge structures that are not necessarily homogeneous of a given weight.

More generally, let X be a connected complex manifold. A variation of Hodge structures of some weight $n \in \mathbb{Z}$ on X is a locally constant sheaf of finitely generated \mathbb{Z}-modules $V_{\mathbb{Z}}$ on X (we call such an object a \mathbb{Z}-local system on X) together with the following additional structures. Define $\mathcal{E} := V_{\mathbb{Z}} \otimes \mathcal{O}_X$, where \mathcal{O}_X is the sheaf of holomorphic functions on X. Then \mathcal{E} is a holomorphic vector bundle on X equipped with a flat connection

$$\nabla : \mathcal{E} \to \mathcal{E} \otimes_{\mathcal{O}_X} \Omega^1_X,$$

induced from $\partial : \mathcal{O}_X \to \Omega^1_X$ (here, Ω^1_X denotes the sheaf of holomorphic differentials on X). The connection ∇ is called the Gauss-Manin connection. The vector bundle \mathcal{E} is equipped with a descending filtration $F^i \mathcal{E}$ by holomorphic sub-bundles such that

1. The filtration $F^i \mathcal{E}$ induces Hodge structures of weight n on the fibers of \mathcal{E}.
2. (Griffiths transversality) For all $i \in \mathbb{Z}$, the Gauss-Manin connection satisfies

$$\nabla : F^i \mathcal{E} \to F^{i-1} \mathcal{E} \otimes_{\mathcal{O}_X} \Omega^1_X \subset \mathcal{E} \otimes_{\mathcal{O}_X} \Omega^1_X.$$

If X is simply-connected, the local system $V_{\mathbb{Z}}$ on X is trivial. By choosing a trivialization of $V_{\mathbb{R}}$, we recover Definition 2.4.3. As above, we can extend this definition to not necessarily connected X and we can also define variations of polarizable Hodge structures. With this more general definition, we have the following example.

Example 2.4.6. Let $f : Y \to X$ be a smooth and projective morphism of complex varieties, such that X is smooth. Let $(R^n f_* \mathbb{Z})_H$ be the torsion-free part of $R^n f_* \mathbb{Z}$. Then the local system $(R^n f_* \mathbb{Z})_H$ on $X(\mathbb{C})$ is a variation of polarizable Hodge structures of weight n.

2.4.7. Definition of a Shimura variety. Shimura varieties are described by Shimura data, which are certain pairs (G, X), consisting of a connected reductive group G defined over \mathbb{Q}, and a $G(\mathbb{R})$-conjugacy class X of homomorphisms

$$S \to G_{\mathbb{R}}.$$

As we saw above that S is the Tannakian group for the category of real Hodge structures, for any finite-dimensional representation V of G on a real vector space, X parametrizes a family of Hodge structures with underlying vector space V. If we choose an element $h \in X$, we can identify X with $G(\mathbb{R})/K_{\mathbb{R}}^h$, where $K_{\mathbb{R}}^h$ is the stabilizer of h in $G(\mathbb{R})$ under conjugacy. We will impose certain additional conditions on (G, X) which will ensure that X carries a unique complex structure making the family of Hodge structures that X parametrizes a variation of polarizable Hodge structures.
In order for a pair \((G, X)\) as above to be a Shimura datum, it has to also satisfy the following axioms.

1. Let \(\mathfrak{g}\) denote the Lie algebra of \(G(\mathbb{R})\). For any choice of \(h \in X\), the composite
 \[h : S \to G_\mathbb{R} \to G^\text{ad}_\mathbb{R} \to \text{GL}(\mathfrak{g}), \]
 i.e. the composite with the adjoint action of \(G_\mathbb{R}\) on \(\mathfrak{g}\), induces a Hodge structure of type \((-1,1),(0,0),(1,-1)\) on \(\mathfrak{g}\).

2. For any choice of \(h \in X\), \(h(i)\) is a Cartan involution on \(G^\text{ad}(\mathbb{R})\).

3. \(G^\text{ad}\) has no factor defined over \(\mathbb{Q}\) whose real points form a compact group.

Note that, while the first two conditions are formulated for any choice of \(h \in X\), it is enough to check them for one choice of \(h \in X\). We discuss the role that each of the three axioms plays below. Assume, for simplicity, that \(X\) is connected.

The first axiom implies, in particular, that the Hodge structure on \(\mathfrak{g}\) induced by the adjoint representation has weight 0, which in turn implies that \(h(\mathbb{R}^\times)\) lies in the center of \(G(\mathbb{R})\) for one \(h \in X\) (equivalently, for all \(h \in X\)). Even though a given real representation \(V\) of \(G\) may not give rise to a family of Hodge structures which are homogeneous of a given weight, the fact that \(h(\mathbb{R}^\times)\) is central means that we can write \(V\) as a direct sum of \(G\)-invariant pieces which do give rise to Hodge structures that are homogeneous of a given weight, independent of the choice of \(h \in X\). In other words, the weight decomposition on \(V\) is independent of \(h \in X\).

We can now ask whether the family of Hodge structures parametrized by \(X\) can be made into a variation of polarizable Hodge structures, by endowing \(X\) with an appropriate complex structure. Choose \(V\) to be the direct sum of the representations in a faithful family of representations of \(G\). The fact that the weight decomposition on \(V\) is independent of \(h \in X\) is all that is needed to show that \(X\) carries a unique complex structure for which the family of Hodge structures varies holomorphically. Indeed, if we let \(\text{Fl}^\text{std}(V_C)\) be the product of the flag varieties defined above for each homogenous piece of \(V\), we have an injection
 \[X \hookrightarrow \text{Fl}^\text{std}(V_C). \]

The complex structure on \(X\) is induced from the natural complex structure on the flag variety \(\text{Fl}^\text{std}(V_C)\). Furthermore, the requirement for the family of Hodge structures on \(X\) satisfy Griffiths transversality is equivalent to \(\mathfrak{g} = F^{-1}\mathfrak{g}\). Since the Hodge structure on \(\mathfrak{g}\) has weight 0, this is in turn equivalent to asking that the Hodge structure on \(\mathfrak{g}\) be of type \((-1,1),(0,0),(1,-1)\). See Section 1.1 of [Del79] for more details.

For the second axiom, note that \(h(i)\) induces an involution of \(G^\text{ad}(\mathbb{R})\) because the adjoint action of \(h(-1)\) is trivial. The fact that \(h(i)\) is a Cartan involution of \(G^\text{ad}(\mathbb{R})\) means that the inner form over \(\mathbb{R}\) of \(G^\text{ad}\) defined by the fixed points of the involution \(g \mapsto h(i)g\overline{h(i)}^{-1}\) is compact. It is easy to see now that the second axiom is independent of the choice of conjugacy class of \(h(i)\). The second axiom guarantees that the variation of Hodge structures on \(X\) (obtained by choosing any \(V\) as above) is a variation of polarizable Hodge structures. See Section 1.1 [Del79] for more details. We note that this axiom implies that the stabilizer \(K^h_\infty \subset G(\mathbb{R})\) of any \(h \in X\) is compact modulo center.

The third axiom is fairly harmless to assume (since we could replace \(G\) with its quotient by a connected normal subgroup whose group of real points is compact), and it allows us to use strong approximation when \(G\) is simply-connected.
When \((G,X)\) is a Shimura datum, Deligne proves that \(X\) is a finite disjoint union of Hermitian symmetric domains in \([Del79]\). For a compact open subgroup \(K \subset G(\mathbb{A}_f)\), the double quotient
\[G(\mathbb{Q}) \backslash (X \times G(\mathbb{A}_f))/K \]
has the structure of an algebraic variety, called a Shimura variety. The Shimura variety has a canonical model which is a smooth, quasi-projective variety defined over a number field \(E\), called the reflex field of the Shimura datum. Choose a representative \(h \in X\). This gives rise to a cocharacter
\[\mu_h := h \times \mathbb{C}|_{(1st G_m \text{ factor})} : \mathbb{G}_{m,\mathbb{C}} \to G_{\mathbb{C}}. \]

The axioms in the definition of a Shimura datum imply that the cocharacter \(\mu_h\) is minuscule, i.e. its pairing with any root of \(G_{\mathbb{C}}\) is in the set \([-1, 0, 1]\). The \(G(\mathbb{C})\)-conjugacy class \(\{\mu_h\}\) is independent of \(h\). The reflex field \(E\) is the field of definition of the conjugacy class \(\{\mu_h\}\) (this may be smaller than the field of definition of the cocharacter \(\mu_h\)). From now on, we denote by \(X_K\) the canonical model of the Shimura variety over \(E\).

Example 2.4.8 (Modular curves). Let \(V\) be a 2-dimensional vector space over \(\mathbb{Q}\). We consider the algebraic group over \(\mathbb{Q}\) given by
\[G := GL(V). \]
Let \(X\) be the set of complex structures on \(V \otimes \mathbb{Q}_R\), i.e. of embeddings \(\mathbb{C} \subset \text{End}_{\mathbb{R}}(V \otimes \mathbb{Q}_R)\). Then \(X\) can be identified with a \(G(\mathbb{R})\)-conjugacy class of homomorphisms
\[h : S \to G_{\mathbb{R}} \]
via \(x \in X \mapsto h_x : S \to G_{\mathbb{R}},\) where for every \(z \in S(\mathbb{R}) \simeq \mathbb{C}^\times, h_x(z) \in GL(V_{\mathbb{R}})\) is identified with \(z \in \mathbb{C}^\times \subset \text{Aut}_{\mathbb{R}}(V \otimes \mathbb{Q}_R)\). One can check that the three axioms for \((G, X)\) to be a Shimura datum are satisfied.

By choosing a basis of \(V\), we can identify \(G\) with \(GL_2\) and \(X\) with \(\mathbb{H}^\pm\), the disjoint union of the upper and lower half planes. We see that the symmetric space for \(GL_2/\mathbb{Q}\) can be identified with the conjugacy class \(X\). The corresponding Shimura varieties are disjoint unions of finitely many copies of connected modular curves.

Let \(\Lambda\) be a fixed \(\mathbb{Z}\)-lattice in \(V\). By Example 2.3.2, we see that \(X\) can be identified with the set of integral Hodge structures of type \((-1, 0), (0, -1)\) on \(\Lambda\). All such Hodge structures are polarizable, so \(X\) can be identified with a moduli of Hodge structures of elliptic curves over \(\mathbb{C}\). This is the reason for the moduli interpretation of modular curves in terms of elliptic curves together with level structures.

The period morphism taking a Hodge structure to the corresponding Hodge-de Rham filtration can be identified with the natural embedding
\[\mathbb{H}^\pm \to \mathbb{P}^1(\mathbb{C}) \]
Note that this is equivariant for the action of \(GL_2(\mathbb{R})\) on both sides: given by Möbius transformations on the left hand side and factoring through the usual action of \(GL_2(\mathbb{R})\) on \(\mathbb{P}^1(\mathbb{C})\).

Exercise 2.4.9. Write down the identification \(\mathbb{H}^\pm \simeq X\) such that the usual action of \(GL_2(\mathbb{R})\) on \(\mathbb{H}^\pm\) given by the Möbius transformations
\[\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{R}), \gamma : z \mapsto \frac{az + b}{cz + d} \]
can be recovered from the conjugation action of \(GL_2(\mathbb{R}) \) on the set of homomorphisms \(S \rightarrow GL_2,\mathbb{R} \) from Example 2.4.8.

We end this section by giving examples of higher-dimensional Shimura varieties. The key examples that we will consider in these lecture notes will be Siegel modular varieties (which are the simplest Shimura varieties from the point of view of the moduli problem that they satisfy) and Shimura varieties for quasi-split unitary varieties (which also have an explicit moduli interpretation).

Example 2.4.10 (Siegel modular varieties). Let \(n \geq 1 \) and let

\[
(V, \psi) = \left(\mathbb{Q}^{2n}, \psi((a_i), (b_i)) = \sum_{i=1}^{n} (a_i b_{n+i} - a_{n+i} b_i) \right)
\]

be the split symplectic space of dimension 2\(n \) over \(\mathbb{Q} \). Consider the symplectic similitude group \(\tilde{G} := GSp(V, \psi) \); this is the algebraic group over \(\mathbb{Q} \) defined by

\[
\tilde{G}(R) = \{ (g, \lambda) \in GL(V \otimes \mathbb{Q} R) \times R^\times | \psi(gv, gw) = \lambda \cdot \psi(v, w), \forall v, w \in V \otimes \mathbb{Q} R \}
\]

for any \(\mathbb{Q} \)-algebra \(R \). In other words, \(\tilde{G} \) is the group of automorphisms of \(V \) preserving the symplectic form up to a scalar, called the similitude factor, which is a unit. We denote the symmetric space for \(\tilde{G} \) by \(\tilde{X} \). One can identify \(\tilde{X} \) with the Siegel double space, which has the following explicit description

\[
\{ Z \in M_n(\mathbb{C}) | Z = Z^t, \Im(Z) \text{ positive or negative definite} \},
\]

where \(\Im(Z) \) denotes the imaginary part of the matrix \(Z \). The Siegel double space has an action of \(GSp_{2n}(\mathbb{R}) \), via

\[
\Gamma = (A B) \in GSp_{2n}(\mathbb{R}), \Gamma : Z \mapsto (AZ + B)(CZ + D)^{-1},
\]

which is transitive. The stabilizer in \(GSp_{2n}(\mathbb{R}) \) of the matrix \(i \cdot \Id_n \) can be identified with \(U(n) \times \mathbb{R}_{>0} \); the unitary group \(U(n) \) is the identity component of a maximal compact subgroup of \(GSp_{2n}(\mathbb{R}) \). This shows that we do have an identification of the Siegel double space with the symmetric space for \(GSp_{2n} \).

Exercise 2.4.11. Check that the action of \(GSp_{2n}(\mathbb{R}) \) described above preserves the Siegel double space, that it is transitive, and compute the stabilizer of \(i \cdot \Id_n \).

The space \(\tilde{X} \) is a disjoint union of two copies of a Hermitian symmetric domain. Using the classification of Hermitian symmetric domains in [Del79], one sees that \(\tilde{X} \) can be identified with a conjugacy class of homomorphisms

\[
h : S \rightarrow \tilde{G}_{\mathbb{R}}
\]

such that the pair \((\tilde{G}, \tilde{X}) \) satisfies the three axioms in the definition of a Shimura datum. The corresponding Shimura varieties are called **Siegel modular varieties**. When \(n = 1 \), we have an isomorphism \(GSp_2 \simeq GL_2 \) of algebraic groups over \(\mathbb{Q} \), and in this case we recover the modular curves.

Fix the lattice \(\Lambda = \mathbb{Z}^{2n} \) in \(V \) (which is self-dual under the symplectic form \(\psi \)). For every \(h \in \tilde{X} \), let

\[
\mu_h := h \times _{\mathbb{R}} \mathbb{C}; \text{\,(1st \, \mathbb{C} - factor)}
\]

this defines a cocharacter \(\mu_h : \mathbb{G}_{m, \mathbb{C}} \rightarrow GSp_{2n, \mathbb{C}} \). For every \(h \in \tilde{X} \), the Hodge structure induced by \(\mu_h \) on \(V \) has type \((-1, 0), (0, -1)\) and is polarizable by the

\[\text{19These are } n \times n\text{-matrices, so for } n > 1\text{ the order of multiplication matters.}\]
second axiom in the definition of a Shimura datum. This Hodge structure gives rise by Theorem 2.4 to the abelian variety over \(\mathbb{C} \) with associated complex torus \(V^{(-1,0)}/\Lambda \). This abelian variety has dimension \(n \).

For \(\widetilde{K} \subset \widetilde{G}(\mathbb{A}_f) \) a neat compact open subgroup, the corresponding Shimura variety \(\widetilde{S}_{\widetilde{K}} \) is a moduli space of polarized \(g \)-dimensional abelian varieties with level-\(\widetilde{K} \)-structure. \(\widetilde{S}_{\widetilde{K}} \) has a model over the reflex field \(\mathbb{Q} \). It carries a universal abelian variety \(A_{\text{univ}} \) and a natural ample line bundle \(\omega \) given by the determinant of the sheaf of invariant differentials on \(A_{\text{univ}} \).

Example 2.4.12 (Shimura varieties of PEL type). Shimura varieties of PEL type are Shimura varieties which admit a moduli interpretation in terms of abelian varieties equipped with polarizations, endomorphisms and level structure. Siegel modular varieties give examples of PEL-type Shimura varieties, since they parametrize abelian varieties equipped with polarizations and level structure. General PEL-type Shimura varieties admit closed embeddings into Siegel modular varieties and they can be studied via these closed embeddings, but they can also be studied directly via their moduli interpretation. One of the key examples of PEL type Shimura varieties that we will consider in these lecture notes will be that of unitary Shimura varieties (and, in particular, those for quasi-split unitary groups).

Let \(F \) be an imaginary CM field, with \(F^+ \subset F \) maximal totally real subfield. Let \(x \mapsto x^* \) denote the non-trivial automorphism in \(\text{Gal}(F/F^+) \). Let \(V \) be a \(2n \)-dimensional \(F \)-vector space and let \(\psi(\cdot,\cdot) : V \times V \to \mathbb{Q} \) be a non-degenerate alternating \(*\)-Hermitian form on \(V \). Let \(G/\mathbb{Q} \) be the algebraic group of unitary similitudes of \((V,\psi) \): if \(R \) is a \(\mathbb{Q} \)-algebra, then \(G(R) := \{ (g,\lambda) \in \text{GL}(V \otimes_{\mathbb{Q}} R) \times R^\times | \psi(gv,gw) = \lambda \cdot \psi(v,w), \forall v,w \in V \otimes_{\mathbb{Q}} R \} \).

The group of real points \(G(\mathbb{R}) \) can be identified with

\[G \left(\prod_{i=1}^{[F^+:\mathbb{Q}]} U(p_i,q_i) \right), \]

where \(i \) indexes embeddings \(F^+ \to \mathbb{R} \) and \(U(p_i,q_i) \) is the real unitary group of signature \((p_i,q_i) \) with \(p_i + q_i = 2n \). (By the notation \(G(\) \), we mean that the similitude factors for all embeddings \(F^+ \to \mathbb{R} \) match.)

If \(F^+ = \mathbb{Q} \), then we only have one signature \((p,q) \). The corresponding group of real points \(G(\mathbb{R}) \) can then be identified with \(GU(p,q) \), the group of unitary similitudes which preserve up to a scalar the form

\[((a_j),(b_j)) = \sum_{j=1}^{p} a_j \bar{b}_j - \sum_{j=p+1}^{n} a_j \bar{b}_j. \]

Since we have chosen \(\dim_F V = 2n \), we can arrange that \(G \) is a quasi-split group if we have signature \((n,n) \) at every embedding \(F^+ \to \mathbb{R} \). (If we had chosen \(V \) with \(\dim_F V = 2n+1 \), then \(U(n+1,n) \) and \(U(n,n+1) \) are isomorphic quasi-split unitary groups.) Later on, we will work with the quasi-split group \(G \), for which \(\mathbb{G}_m \times \text{Res}_{F/\mathbb{Q}} \text{GL}_n \) is the Levi subgroup in a maximal parabolic (the so-called *Siegel parabolic*) subgroup of \(G \).
Remark 2.4.13. (1) For the purposes of studying the corresponding Shimura varieties, we can assume that the set of signatures \((p_i, q_i)_{i\in\{1,\ldots, [F:\mathbb{Q}]\}}\) is arbitrary. We do note that the Hasse principle for unitary groups gives a restriction on whether a unitary group with given signatures at real embeddings and with specific ramification conditions at finite places exists. See [Clo91] for more details; we will not dwell on this aspect since we will ultimately only need to work with the quasi-split group with signature \((n, n)\) at every real embedding.

(2) A necessary and sufficient condition for the resulting PEL-type Shimura varieties to be compact is for \(G\) to be anisotropic over \(\mathbb{R}\) [Lan13] (i.e. we want one of the signatures of \(G(\mathbb{R})\) to be \((0, n)\) or \((n, 0)\)). Since we are interested in the quasi-split case, we will work with minimal compactifications of Shimura varieties throughout.

A rational PEL datum is a tuple \((F, *, V, \psi, h)\), where \(F, *, V, \psi\) are as above and \(h\) is an \(\mathbb{R}\)-algebra homomorphism

\[
h : C \to \text{End}_{F \otimes \mathbb{Q}}(V \otimes \mathbb{Q} \mathbb{R}),
\]

such that \(\psi(h(z)v, w) = \psi(v, h(z)w)\) for all \(z \in C\) and such that the pairing

\[
\langle v, w \rangle := \psi(v, h(i)w)
\]

is symmetric and positive definite. Such a homomorphism puts a complex structure on \(V \otimes \mathbb{Q} \mathbb{R}\), which is the same as a Hodge structure of type \((-1, 0), (0, -1)\). By restricting \(h\) to \(C \times \mathbb{A}\) and noticing that it then preserves \(\psi\) up to a scalar in \(\mathbb{R} \times \mathbb{A}\), we get a homomorphism of algebraic groups over \(\mathbb{R}\):

\[
h|_{C \times \mathbb{A}} : S \to G_{\mathbb{R}}
\]

Let \(X\) be the \(G_{\mathbb{R}}\)-conjugacy class of \(h|_{C \times \mathbb{A}}\).

Exercise 2.4.14. Assume that the signatures of \(G\) at real embeddings are not all \((0, n)\) or \((n, 0)\). Check that the pair \((G, X)\) satisfies the axioms in the definition of a Shimura datum.

Choose a rational PEL datum as above, giving rise to a Shimura datum \((G, X)\). Let \(K \subset G(\mathbb{A}_f)\) be a compact open subgroup. Let \(X_K\) be the corresponding Shimura variety; it is a smooth, quasi-projective scheme over the reflex \(E\), of dimension \(\sum_{i=1}^{[F:\mathbb{Q}]} p_i q_i\). It represents the following moduli problem over \(E\). Let \(S\) be a connected, locally noetherian, Spec \(E\)-scheme and \(s\) a geometric point of \(S\). The moduli problem represented by \(X_K\) sends the pair \((S, s)\) to the set of isomorphism classes of tuples \((A, \lambda, \iota, \bar{\eta})\), which is described as follows.

1. \(A\) is an abelian scheme over \(S\) of dimension \(n \cdot [F^+: \mathbb{Q}]\).
2. \(\lambda : A \to A^\vee\) (where \(A^\vee\) is a dual abelian variety) is a polarization.
3. \(\iota : F \to \text{End}_0(A) := \text{End}(A) \otimes \mathbb{Z} \mathbb{Q}\) is an embedding of \(\mathbb{Q}\)-algebras giving an action of \(F\) on \(A\) by quasi-isogenies.\(^{20}\) This action satisfies the following compatibility with \(\lambda\): \(\lambda \circ \iota(x^*) = \iota(x^\vee) \circ \lambda\) for all \(x \in F\).
4. \(\bar{\eta}\) is a \(\pi_1^\text{et}(S, s)\)-invariant \(K\)-orbit of \(F \otimes \mathbb{A}_f\)-equivariant isomorphisms

\[
\eta : V \otimes \mathbb{A}_f \sim V_f A_s,
\]

\(^{20}\)These are the "endomorphisms" in the PEL-type moduli problem.
where $V_f A_s$ is the rational adelic Tate module of the abelian variety A_s, such that η takes the pairing induced by ψ on $V \otimes Q A_f$ to an A_f^\times-multiple of the λ-Weil pairing on $V_f A_s$. \footnote{This definition can be shown to be independent of the choice of geometric point s and can be extended to non-connected schemes in the obvious way.}

Such a tuple is required to satisfy the following \textit{determinant condition}: the complex structure on $V \otimes Q F$ induced by h gives rise to the Hodge decomposition $V \otimes Q C = V^{0,-1} \oplus V^{-1,0}$. Explicitly, we must have

$$\det(x|V^{-1,0}) = \det_{O_S}(x|\text{Lie } A), x \in F.$$

This should be understood as an equality of polynomials with O_S-coefficients rather than as an equality of numbers, where we choose a basis for F over Q and write the indeterminate $x \in F$ in terms of the chosen basis. In characteristic 0, this is just a condition on ranks of $F \otimes Q O_S$-modules. Intuitively, the determinant condition matches the Hodge structure of the abelian variety A, as it decomposes under the action of F, with the Hodge structures parametrized by the Hermitian symmetric domain X, which are also restricted by the action of F on (V, ψ).

Two such tuples $(A, \lambda, \iota, \tilde{\eta})$ and $(A', X', \iota', \tilde{\eta}')$, satisfying the determinant condition, are isomorphic if there exists an isogeny $A \to A'$ taking λ to a rational multiple of λ', and taking ι to ι', $\tilde{\eta}$ to $\tilde{\eta}'$.

If p is a good prime (for the PEL-type Shimura datum and for the level K) then one can also define an integral model of X_K, which is a smooth, quasi-projective scheme over the localization $O_{E(p)}$. This integral model is also constructed as the universal scheme representing a moduli problem, this time with integral data. For more details on integral models in the case of PEL-type Shimura varieties, see \cite{Kot92b}.

\begin{example} \label{example:Shimura-varieties-of-Hodge-type}
Shimura varieties of Hodge type form a class of Shimura varieties which contain the ones of PEL type. To define them, we will first describe morphisms of Shimura data.

\begin{definition} \label{definition:morphisms-of-Shimura-data}
A morphism of Shimura data $(G, X) \to (G', X')$ is a homomorphism of algebraic groups $G \to G'$ inducing a map $X \to X'$. We call a morphism of Shimura data an embedding if the map $G \to G'$ is injective.

A Shimura datum of \textit{Hodge type} is a Shimura datum (G, X) which admits an embedding $(G, X) \hookrightarrow (\tilde{G}, \tilde{X})$ into some Siegel datum (\tilde{G}, \tilde{X}). Given a Shimura datum of Hodge type and a compact open subgroup $K \subset G(A_f)$, one can find a compact open subgroup $\tilde{K} \subset \tilde{G}(A_f)$ such that we have a closed embedding of Shimura varieties (Proposition 1.15 of \cite{Del71})

$$X_K \hookrightarrow \tilde{X}_{\tilde{K}}.$$

The Shimura variety X_K is said to be of \textit{Hodge type}. The universal abelian variety A_{univ} over $\tilde{X}_{\tilde{K}}$ restricts to an abelian variety A_{univ} over X_K.

Let (V, ψ) be the $2n$-dimensional split symplectic space over Q as defined above and set $\tilde{G} = \text{GSp}(V, \psi)$. If $(G, X) \hookrightarrow (\tilde{G}, \tilde{X})$ is an embedding of Shimura data, then there exists a finite collection of tensors

$$s_{\alpha} \subset V^\otimes := \oplus_{m, r \in \mathbb{Z}_{\geq 0}} V^\otimes_m \otimes (V^*)^\otimes_r, m, r \in \mathbb{Z}$$

such that

$$\bar{v}_{\alpha} := \sum_{s_{\alpha}} \otimes s_{\alpha}$$

is the rational adelic Tate module of the abelian variety A_s, such that η takes the pairing induced by ψ on $V \otimes Q A_f$ to an A_f^\times-multiple of the λ-Weil pairing on $V_f A_s$. \footnote{This definition can be shown to be independent of the choice of geometric point s and can be extended to non-connected schemes in the obvious way.}

\end{example}
such that $G = \text{Stab}_G(\{s_\alpha\})$. This holds by Proposition 3.1 of [Del82]. If we consider any choice of $h \in X$ we get an action of S on V by composing h with $G(\mathbb{R}) \to \tilde{G}(\mathbb{R}) = \text{GSp}(V_{\tilde{\mathbb{R}}}, \psi)$. Since G stabilizes the collection $\{s_\alpha\}$, we see that the tensors $s_\alpha \otimes 1 \in V^{\otimes}_{\mathbb{R}}$ are also stabilized by S. This can be reformulated to say that the tensors s_α live in Hodge degree $(0,0)$, i.e. that they are Hodge tensors. Once we understand Siegel modular varieties, Shimura varieties of Hodge type can be studied by keeping track of Hodge tensors.

The symplectic form ψ gives rise to a Hodge tensor. In the case of Shimura varieties of PEL type, the additional Hodge tensors one needs to keep track of are particularly simple: they are given by the endomorphisms by the CM field F.

Indeed, an endomorphism of a Hodge structure V respecting the Hodge decomposition can be thought of as a degree $(0,0)$ element in $V \otimes V^\vee$. This explains why Shimura varieties of PEL type are a subclass of Shimura varieties of Hodge type.

3. Background from p-adic Hodge theory

3.1. The relative Hodge-Tate filtration. In this section, we recall the relevant background from p-adic Hodge theory. Let L be a complete, discretely valued field of characteristic 0 with perfect residue field k of characteristic p.\footnote{Later on, L will be a finite extension of \mathbb{Q}_p, more precisely the completion E_p of the reflex field E at a prime p above a good prime p.} Let $\pi : X \to Y$ be a proper smooth morphism of smooth schemes over $\text{Spec} \ L$. Consider the corresponding proper smooth morphism $\pi : Y \to X$ of smooth adic spaces over $\text{Spa}(L, \mathcal{O}_L)$, obtained by applying the adification functor

$$\{\text{Schemes}/\text{Spec} \ L\} \to \{\text{Adic spaces}/\text{Spa}(L, \mathcal{O}_L)\}.$$

We will call a morphism obtained this way algebraizable. In this section, we will

(1) give a construction of the relative Hodge-Tate filtration for $\pi : Y \to X$;
(2) explain its relationship to the relative p-adic-de Rham comparison isomorphism and to the relative Hodge-de Rham filtration;
(3) work out the specific example where $X = X_K$, a Shimura variety of Hodge type, and $Y = A_{\text{univ}}$, the universal abelian variety over X_K. If one is merely interested in the form of the relative Hodge-Tate filtration rather than in its construction and relationship to the Hodge-de Rham filtration, one can skip to Example 3.1.9.

Remark 3.1.1. For this section, we assume as prerequisites: adic spaces, perfectoid spaces, the flattened pro-étale topology, i.e the pro-étale topology as used in [Sch13]. The proofs of the statements from p-adic Hodge theory are given in Bhatt’s lecture series and lecture notes, so contend ourselves to stating the precise results we will use in the study of Shimura varieties. The references we follow are [Sch13], Section 3 of [Sch12b], and Section 2.2 of [CS15].

For \mathcal{X} a smooth adic space over $\text{Spa}(L, \mathcal{O}_L)$, we will consider the flattened pro-étale site $\mathcal{X}_{\text{proét}}$ of the adic space \mathcal{X}, on which we have the following sheaves, as defined in [Sch13]: the (integral) completed structure sheaf $\hat{\mathcal{O}}^{(+)}_{\mathcal{X}}$, the (integral) tilted completed structure sheaf $\check{\mathcal{O}}^{(+)}_{\mathcal{X}}$, the relative period sheaves $\mathcal{E}_{\text{dR}, \mathcal{X}}^{(+)}$, and the structural de Rham sheaves $\mathcal{O}_{\text{dR}, \mathcal{X}}^{(+)}$. We recall the definitions of these sheaves.
Definition 3.1.2.
(1) The integral completed structure sheaf \hat{O}_X^{+} is the inverse limit of the sheaves \mathcal{O}_X/p^n on $X_{pro\acute{e}t}$. The titled integral structure sheaf $\hat{O}_X^{pro\acute{e}t}$ is the inverse limit on $X_{pro\acute{e}t}$ of $\mathcal{O}_X^{pro\acute{e}t}/p$ with respect to the Frobenius morphism.

(2) The relative period sheaf $\mathcal{E}^{-}_{dR,X}$ is the completion of $W(\hat{O}_X^{pro\acute{e}t})[1/p]^{23}$ along the kernel of the natural map

$$\theta : W(\hat{O}_X^{pro\acute{e}t})[1/p] \to \hat{O}_X.$$

The relative period sheaf $\mathcal{E}^{-}_{dR,X}$ is $\mathcal{E}^{-}_{dR,X}[\xi^{-1}]$, where ξ is any element that generates the kernel of θ. This is well-defined because such a ξ exists pro\acute{e}tale locally on X, is not a zero divisor, and is unique up to a unit.

(3) We now define the sheaf $\mathcal{O}^{+}_{\mathcal{E}_{dR,X}}$ as the sheafification of the following presheaf. If $U = \text{Spa}(R, R^{+})$ is affinoid perfectoid, with (R, R^{+}) the completed direct limit of (R_i, R^{+}_i), the presheaf sends U to the direct limit over i of the completion of

$$\left(R_i^{+} \hat{\otimes}_{W(k)} W(R^{+}_i) \right)[1/p]$$

along $\ker \theta$, where

$$\theta : (R_i^{+} \hat{\otimes}_{W(k)} W(R^{+}_i))[1/p] \to R$$

is the natural map. We set $\mathcal{O}^{+}_{\mathcal{E}_{dR,X}} := \mathcal{O}^{+}_{\mathcal{E}_{dR,X}}[\xi^{-1}]$ as before.

These sheaves are equipped with the following structures. The relative period sheaves $\mathcal{E}^{-}_{dR,X}$ are equipped with compatible filtrations: $\text{Fil}^i\mathcal{E}^{-}_{dR,X} := \xi^i \mathcal{E}^{-}_{dR,X}$, with $\text{Gr}^i\mathcal{E}^{-}_{dR,X} = \hat{O}_X$. The structural de Rham sheaves $\mathcal{O}^{+}_{\mathcal{E}_{dR,X}}$ are equipped with filtrations and connections

$$\nabla : \mathcal{O}^{+}_{\mathcal{E}_{dR,X}} \to \mathcal{O}^{+}_{\mathcal{E}_{dR,X}} \otimes_{\mathcal{O}_X} \Omega^1_X$$

We have a natural identification

$$\left(\mathcal{O}^{+}_{\mathcal{E}_{dR,X}} \right)^{\nabla = 0} = \mathcal{E}^{-}_{dR,X}. $$

Example 3.1.3 (Perfectoid fields). Let C be an algebraically closed perfectoid field over L, with ring of integers \mathcal{O}_C. Let $X = \text{Spa}(C, \mathcal{O}_C)$, with tilt $X^\circ = \text{Spa}(C^\circ, \mathcal{O}_{C^\circ})$. Then $\mathcal{E}^{-}_{dR,L}(\text{Spa}(C^\circ, \mathcal{O}_{C^\circ}))$ can be identified with the ring $B^{dR,C}$ constructed by Fontaine. Indeed, this ring is obtained by taking the completion of $W(\mathcal{O}_{C^\circ})$ along the kernel of the map

$$\theta : W(\mathcal{O}_{C^\circ})[1/p] \to C$$

and then inverting a generator ξ of this kernel. The field $B^{dR,C}$ is the field of periods which shows up in the original comparison isomorphism between de Rham and p-adic étale cohomology, i.e. in the setting of schemes. The subring $B^{+}_{dR,C} \subset B^{dR,C}$ is a complete discrete valuation ring with residue field C and with uniformizer ξ, a generator of $\ker \theta$. There is a $\text{Gal}(\bar{L}/L)$-action on ξ, which is via the cyclotomic character. The sheaves $\mathcal{E}^{-}_{dR,X}$ should be thought of as relative versions of these period rings.

23Here, W denotes the Witt functor.
The structural de Rham sheaves are equal to the relative period sheaves for $X = \text{Spa}(L, O_L)$, and the connection $\nabla = 0$. The natural descending filtration on the ring $B_{dR,C}$ has graded pieces $\text{Gr}^i B_{dR,C} \simeq C(i)$.

The following is the relative p-adic-de Rham comparison isomorphism for a proper smooth morphism $\pi : Y \to X$ of smooth adic spaces over L. Assume that π is the analytification of a proper smooth morphism of schemes $\pi : Y \to X$ over L.

We consider the sheaf $R^i\pi_{dR}^* O_Y$ on X obtained by taking the ith cohomology sheaf of the derived pushforward $R\pi_*$ applied to the complex of relative differentials $\Omega^\cdot_{Y/X}$ on Y. The sheaf $R^i\pi_{dR}^* O_Y$ is an O_X-module equipped with a filtration (the Hodge-de Rham filtration) and with an integrable connection (the Gauss-Manin connection ∇_{GM}). The Gauss-Manin connection satisfies Griffiths transversality with respect to the Hodge-de Rham filtration.

Theorem 3.1.4. (Theorem 8.8 of [Sch13]) For all $i \geq 0$, there is a natural isomorphism of sheaves on $X_{\text{pro\acute{e}t}}$

$$R^i\pi_{dR}^\natural \hat{O}_{\bar{Y}} \otimes_{\hat{O}_{\bar{X}}} O_{B_{dR,X}} \simeq R^i\pi_{dR}^* O_Y \otimes_{O_X} O_{B_{dR,X}},$$

compatible with the filtrations and connections on both sides.

Example 3.1.5 (Perfectoid fields, continued). When $X = \text{Spa}(L, O_L)$, let C be the p-adic completion of an algebraic closure \bar{L} of L. The isomorphism in Theorem 3.1.4 gives rise to the comparison isomorphism between the p-adic étale cohomology of Y and the de Rham cohomology of Y

$$H^i(\bar{Y}_{L,\text{ét}}, \hat{\mathbb{Q}}_p) \otimes_{\mathbb{Q}_p} B_{dR,C} \simeq H^i_{dR}(Y) \otimes_L B_{dR,C}.$$

Because Y is defined over L (or because Y is algebraizable [DI87], see also Example 2.4.2), the Hodge-de Rham spectral sequence

$$E_1^{i,j} = H^i(Y, \Omega^j_Y) \Rightarrow H^{i+j}_{dR}(Y)$$

degenerates on the first page. The induced filtration on $H^{i+j}_{dR}(Y)$ is the Hodge-de Rham filtration, with graded pieces $H^i(\bar{Y}, \Omega^j_Y)$.

The comparison isomorphism is compatible with the filtrations on both sides: the filtration on the left hand side is induced from the usual filtration on $B_{dR,C}$, while the filtration on the right hand side is the convolution of the Hodge-de Rham filtration on $H^i_{dR}(Y)$ and the usual filtration on $B_{dR,C}$. By applying Gr^0 on both sides, we obtain the Hodge-Tate decomposition

$$H^i(\bar{Y}_{L,\text{ét}}, \hat{\mathbb{Q}}_p) \otimes_{\mathbb{Q}_p} C \simeq \bigoplus_{j=0}^i H^{i-j}(Y, \Omega^j_Y) \otimes_L C(-j).$$

Thus, in this case, we see that the Hodge-Tate filtration is split. In the relative setting, this is no longer true. Since we are interested in understanding a family of abelian varieties parametrized by a Shimura variety, we will only use the Hodge-Tate filtration later on, not the direct sum decomposition.

24 The filtration and connection on the left hand side are simply induced from the filtration and connection on $O_{B_{dR,X}}$. On the right hand side, one must take the convolution of the Hodge-de Rham filtration with the one on $O_{B_{dR,X}}$ and the connection is $\nabla_{GM} \otimes 1 + 1 \otimes \nabla$.
We will see that the Hodge-de Rham filtration on \(R^i \pi_{dR, *} \mathcal{O}_Y \) induces, via the comparison isomorphism in Theorem 3.1.4, a filtration on \(R^i \pi_* \hat{\mathbb{Z}}_{p,Y} \otimes \hat{\mathcal{O}}_{p,X} \), which we will call the \textit{relative Hodge-Tate filtration}. To make this precise, we construct two \(\mathbb{B}^+_{dR,X} \)-local systems on \(X \). The first one, which is closely related to the relative \(\mathbb{B}^+_{dR,X} \)-local system on \(X \).

To make this precise, we construct two \(\mathbb{B}^+_{dR,X} \)-local systems on \(X \). The first one, which is closely related to the relative \(\mathbb{B}^+_{dR,X} \)-local system on \(X \).

Consider the descending filtration \(\text{Fil}^j \mathbb{M}(0) \) on \(\mathbb{M}(0) \) induced by the canonical filtration on \(\mathbb{B}^+_{dR,X} \). For any \(j \in \mathbb{Z} \), there is an identification

\[
(\mathbb{M} \cap \text{Fil}^j \mathbb{M}_0) / (\mathbb{M} \cap \text{Fil}^{j+1} \mathbb{M}_0) = (\text{Fil}^{-j} R^i \pi_{dR,*} \mathcal{O}_Y) \otimes \hat{\mathcal{O}}_X(j)
\]

\[
\subset \text{Gr}^j \mathbb{M}_0 = R^i \pi_{dR,*} \mathcal{O}_Y \otimes \hat{\mathcal{O}}_X.
\]

In particular, we always have \(\mathbb{M}_0 \subset \mathbb{M} \). Moreover, considering the relative position of \(\mathbb{M} \) and \(\mathbb{M}_0 \) induces an ascending filtration on

\[
\text{Gr}^0 \mathbb{M} = R^i \pi_* \hat{\mathbb{Z}}_{p,Y} \otimes \hat{\mathcal{O}}_X
\]

given by

\[
\text{Fil}^{-j} (R^i \pi_* \hat{\mathbb{Z}}_{p,Y} \otimes \hat{\mathcal{O}}_X) := (\mathbb{M} \cap \text{Fil}^{-j} \mathbb{M}_0) / (\text{Fil}^j \mathbb{M} \cap \text{Fil}^{-j} \mathbb{M}_0).
\]

We call this filtration the \textit{relative Hodge-Tate filtration}.

Example 3.17 (Perfectoid fields, continued). When \(X = \text{Spa}(L, \mathcal{O}_L) \) and \(C \) the \(p \)-adic completion of an algebraic closure \(\bar{L} \) of \(L \), we obtain two lattices

\[
\mathbb{M} = H^1(Y_{L, \text{ét}}, \mathbb{Z}_p) \otimes \mathbb{Z}_p \mathcal{B}_{dR,C}, \quad \text{and} \quad \mathbb{M}_0 = H^1(\mathcal{Y}_{\text{dR}}) \otimes L \mathcal{B}_{dR,C}
\]

contained in the same \(\mathcal{B}_{dR,C} \)-vector space. We can define filtrations on both \(\mathbb{M}, \mathbb{M}_0 \) which measure the relative position of the two lattices. This induces the Hodge-de Rham filtration on \(\mathbb{M}_0 \) and the Hodge-Tate filtration on \(\mathbb{M} \).

For example, if we set \(i = 1 \), one obtains \(\xi \mathbb{M} \subset \mathbb{M}_0 \subset \mathbb{M} \), with \(\mathbb{M}_0/\xi \mathbb{M} \simeq H^1(\mathcal{Y}, \mathcal{O}_Y) \otimes L \mathcal{C} \) and \(\mathbb{M}/\mathbb{M}_0 \simeq H^0(\mathcal{Y}, \Omega^1_Y) \otimes L \mathcal{C}(-1) \). The Hodge-de Rham filtration on \(H^1(\mathcal{Y}) \otimes L \mathcal{C} \) is given by

\[
0 \to \xi \mathbb{M}/\xi \mathbb{M}_0 \to \mathbb{M}_0/\xi \mathbb{M}_0 \to \mathbb{M}_0/\xi \mathbb{M} \to 0,
\]

which becomes

\[
0 \to H^0(\mathcal{Y}, \Omega^1_Y) \otimes L \mathcal{C} \to H^1(\mathcal{Y}, \mathcal{O}_Y) \otimes L \mathcal{C} \to H^1(\mathcal{Y}, \mathcal{O}_Y) \otimes L \mathcal{C} \to 0.
\]

For example, if we set \(i = 1 \), one obtains \(\xi \mathbb{M} \subset \mathbb{M}_0 \subset \mathbb{M} \), with \(\mathbb{M}_0/\xi \mathbb{M} \simeq H^1(\mathcal{Y}, \mathcal{O}_Y) \otimes L \mathcal{C} \) and \(\mathbb{M}/\mathbb{M}_0 \simeq H^0(\mathcal{Y}, \Omega^1_Y) \otimes L \mathcal{C}(-1) \). The Hodge-de Rham filtration on \(H^1(\mathcal{Y}) \otimes L \mathcal{C} \) is given by

\[
0 \to \mathbb{M}_0/\xi \mathbb{M} \to \mathbb{M}/\xi \mathbb{M} \to \mathbb{M}/\mathbb{M}_0 \to 0,
\]

which becomes

\[
0 \to H^0(\mathcal{Y}, \Omega^1_Y) \otimes L \mathcal{C} \to H^1(\mathcal{Y}, \mathcal{O}_Y) \otimes L \mathcal{C} \to H^1(\mathcal{Y}, \mathcal{O}_Y) \otimes L \mathcal{C} \to 0.
\]
which becomes
\[0 \to H^1(\mathcal{Y}, \mathcal{O}_Y) \to H^1(\mathcal{Y}_{L,\text{ét}}, \mathbb{Z}_p) \otimes_{\mathbb{Z}_p} C \to H^0(\mathcal{Y}, \Omega^1_Y) \otimes_L C(-1) \to 0. \]
Note that the graded pieces of these two filtration are isomorphic (up to Tate twists) but the filtrations themselves are not directly related.

Remark 3.1.8. In this section, we gave the construction of the relative Hodge-Tate filtration via the comparison isomorphism rather than the (perhaps, more standard) construction via the morphism of sites from the proétale to the étale site. For simplicity, assume that \(\mathcal{X} = \text{Spa}(L, \mathcal{O}_L) \) and let \(C \) be the \(p \)-adic completion of an algebraic closure \(\bar{L} \) of \(L \). The morphism of sites
\[\nu : \mathcal{Y}_{\text{proét}} \to \mathcal{Y}_{\text{ét}} \]
gives rise to a spectral sequence
\[E_2^{i,j} = H^i(\mathcal{Y}_{\text{ét}}, R^j \nu_* \hat{\mathcal{O}}_Y) \Rightarrow H^{i+j}(\mathcal{Y}_{\text{proét}}, \hat{\mathcal{O}}_Y) = H^{i+j}(\mathcal{Y}_{\text{ét}}, \mathbb{Q}_p) \otimes_{\mathbb{Q}_p} C \]
in [Sch13], Scholze shows that there are natural isomorphisms
\[\Omega^j_Y(-j) \simeq R^j \nu_* \hat{\mathcal{O}}_Y \]
for all \(j \geq 0 \). The Hodge-Tate spectral sequence
\[E_2^{i,j} = H^i(\mathcal{Y}, \Omega^j_Y) \otimes_L C(-j) \Rightarrow H^{i+j}(\mathcal{Y}_{\text{ét}}, \mathbb{Q}_p) \otimes_{\mathbb{Q}_p} C \]
then degenerates on the \(E_2 \) page because \(\mathcal{Y} \) is defined over the subfield \(L \subset C \) and the differentials are \(\text{Gal}(\bar{L}/L) \)-equivariant.\(^{26} \) The corresponding filtration on \(H^{i+j}(\mathcal{Y}_{\text{ét}}, \mathbb{Q}_p) \otimes_{\mathbb{Q}_p} C \) is the same as the Hodge-Tate filtration defined above. Proposition 2.2.5 of [CS15], which works in the relative case, shows that the two constructions of the Hodge-Tate filtration agree on the first filtration step.

We made the choice of presenting the construction of the Hodge-Tate filtration via the \(p \)-adic comparison isomorphism because this perspective is the one used in constructing the Hodge-Tate period morphism for Shimura varieties of Hodge type in [CS15] (and, as a result, also for Shimura varieties of abelian type in [She15]). We explain this further in section 5. We also chose to present this construction in order to emphasize the close analogy between the period morphisms for Hermitian symmetric domains and the Hodge-Tate period morphism.

Example 3.1.9 (The relative Hodge-Tate filtration for the universal abelian variety). Let \((G, X)\) be a Shimura datum of Hodge type, \(K \subset G(\mathbb{A}_f) \) a compact open subgroup, and \(X_K \) the corresponding Shimura variety over the reflex field \(E \). Since \(X_K \) admits a closed embedding into some Siegel modular variety, there exists an abelian scheme \(\pi : A^{\text{univ}} \to X_K \).

We let \(\mathfrak{p}|\mathfrak{p} \) be a prime of \(E, L := E_p, \) and consider the proper smooth morphism of adic spaces \(\pi : A \to X_K \) over \(\text{Spa}(L, \mathcal{O}_L) \). The relative Hodge-Tate filtration on \(R^1\pi_* \hat{\mathbb{Z}}_p \otimes_{\hat{\mathcal{O}}_{X_K}} \hat{\mathcal{O}}_{X_K} \) is encoded in the short-exact sequence of sheaves on \(X_K, \text{proét} \)
\[0 \to R^1\pi_* \mathcal{O}_A \otimes_{\mathcal{O}_{X_K}} \hat{\mathcal{O}}_{X_K} \to R^1\pi_* \hat{\mathbb{Z}}_p \otimes_{\hat{\mathcal{O}}_{X_K}} \hat{\mathcal{O}}_{X_K} \to \pi_* \Omega^1_A \otimes_{\mathcal{O}_{X_K}} \hat{\mathcal{O}}_{X_K}(-1) \to 0. \]

\(^{25}\)This last equality is the primitive comparison theorem of [Sch13], which underlies all other \(p \)-adic comparison theorems for rigid-analytic varieties.

\(^{26}\)When \(\mathcal{Y} \) comes from a scheme, we can also see degeneration of the Hodge-Tate spectral sequence from the degeneration of the Hodge-de Rham spectral sequence and from a dimension count.
Proposition 2.2.5 of [CS15] shows that the first map in the short exact sequence can be identified with the natural injection
\[R^1\pi_*\mathcal{O}_A \otimes \mathcal{O}_{\hat{X}_K} \to R^1\pi_*\hat{\mathcal{O}}_A \]
of sheaves on \(\mathcal{X}_{K,\text{proét}} \), where we have used the primitive relative comparison isomorphism
\[R^1\pi_*\hat{\mathbb{Z}}_p \otimes \hat{\mathbb{Z}}_p \hat{\mathcal{O}}_{\hat{X}_K} \simeq R^1\pi_*\hat{\mathcal{O}}_A. \]

4. The canonical subgroup and the anticanonical tower

In this section, we describe the theory of the canonical subgroup. We use this theory to explain the construction of the anticanonical tower of formal schemes over the ordinary locus of Siegel modular varieties, which has the following extremely useful properties

1. it overconverges, i.e. it extends to an \(\varepsilon \)-neighborhood of the ordinary locus;
2. its adic generic fiber gives rise to a perfectoid space.

These two properties, together with the Hodge-Tate period morphism, which is the focus of section 5, are the key ingredients in proving that Siegel modular varieties with infinite level at \(p \) are perfectoid. We follow Section III of [Sch15], but aim to give more background and fewer technical details.

4.1. The ordinary locus inside Siegel modular varieties. In this section, we will only work with the Siegel modular varieties of Example 2.4.10. The same techniques could also be applied directly to the unitary Shimura varieties described in Example 2.4.12, if they are associated to a quasi-split unitary group over \(\mathbb{Q} \). We leave this case as an exercise to the reader.\(^{27}\)

Let \(n \geq 1 \) and let
\[(V, \psi) = \left(\mathbb{Q}^{2n}, \psi((a_1), (b_1)) = \sum_{i=1}^{n} (a_i b_{n+i} - a_{n+i} b_i) \right) \]
be the split symplectic space of dimension \(2n \) over \(\mathbb{Q} \). Let \(\Lambda = \mathbb{Z}^{2n} \) be the standard lattice in \(V \), which is self-dual under the symplectic form \(\psi \). Consider the group of symplectic similitudes of \(\Lambda \), \(\text{GSp}(\Lambda, \psi) \).\(^{28}\) This is an algebraic group over \(\mathbb{Z} \). Fix a prime number \(p \) and a compact open subgroup \(K_p \subset \text{GSp}_{2n}(\mathbb{Q}_p) \) contained in
\[\left\{ g \in \text{GSp}_{2n}(\mathbb{Q}_p) \mid g \equiv 1 \pmod{N} \right\} \]
for some \(N \geq 3 \) such that \((N, p) = 1 \). (This condition is enough to ensure that any level \(K = K^p K_p \), with \(K_p \subset G(\mathbb{Q}_p) \) compact open is neat.)

Set \(K_p = \text{GSp}_{2n}(\mathbb{Z}_p) \), \(K := K^p K_p \) and let \(X_K \) be the model over \(\mathbb{Z}_p \) of the corresponding Shimura variety. This is the moduli space of principally polarized \(n \)-dimensional abelian varieties with \(K^p \)-level structure. Since we will keep the tame level \(K^p \) fixed in this section, we denote \(X_K \) by \(X_{K_p} \).

\(^{27}\)In fact, the same techniques should be applicable directly to any Shimura variety of PEL type where the ordinary locus is non-empty. The main theorem of [Wed99] shows that the ordinary locus inside the special fiber of the Shimura variety is non-empty if and only if \(p \) splits completely in the reflex field \(E \) of the Shimura datum.

\(^{28}\)In this section only, we use \(G \) rather than \(\tilde{G} \) for the symplectic group.
Remark 4.1.1. As seen above, the case $n = 1$ corresponds to the group GL_2 and the case of modular curves; the constructions and techniques used in this section will be interesting (and relatively novel) even in this case. One may specialize to the case $n = 1$ on a first reading of this section.

Let X_K^* be the minimal (Baily-Borel-Satake) compactification of X_K over $\mathbb{Z}(p)$ as constructed by Chai and Faltings [CF90]. This is a projective, but not necessarily smooth, scheme over $\mathbb{Z}(p)$, which carries a natural ample line bundle ω. Over X_K, ω is given by the top exterior power of the sheaf of invariant differentials on the universal abelian scheme.

On the level of generic fibers, we will also consider the versions with K_p-level structure for other compact open subgroups $K_p \subset G(\mathbb{Q}_p)$. We will be particularly interested in the case

$$\Gamma_0(p^m) := \{ g \in GSp_{2n}(\mathbb{Z}_p) \mid g \equiv (0 \; \ast) \pmod{p^m}, \det g \equiv 1 \pmod{p^m} \}. $$

For each $m \in \mathbb{Z}_{\geq 1}$, the Shimura variety $X_{\Gamma_0(p^m)}$ admits a morphism to $\text{Spec} \mathbb{Q}_p(\mu_{p^m})$. We will consider the tower $(X_{\Gamma_0(p^m)})_m$ over the perfectoid field $\mathbb{Q}_p^{\text{cycl}}$, by taking the base change at level m along the natural morphism $\text{Spec} \mathbb{Q}_p(\mu_{p^m}) \to \text{Spec} \mathbb{Q}_p^{\text{cycl}}$.

We let $X_{K_p}^{(s)}$ be the p-adic completion of $X_{K_p}^* \times_{\mathbb{Z}(p)} \mathbb{Z}_p^{\text{cycl}}$ along its special fiber. This is a formal scheme over $\text{Spf} \mathbb{Z}_p^{\text{cycl}}$. We let $X_{K_p}^{\text{cycl}}$ be its adic generic fiber, an analytic adic space over $\text{Spa}(\mathbb{Q}_p^{\text{cycl}}, \mathbb{Z}_p^{\text{cycl}})$. We refer to $X_{K_p} \subset X_{K_p}^{(s)}$ as the good reduction locus. This is because the universal abelian scheme over X_{K_p} has good reduction. The good reduction locus is contained inside the adic space $(X_{K_p} \times_{\mathbb{Z}(p)} \mathbb{Q}_p^{\text{cycl}})^{\text{ad}}$ but it is, in general, smaller.

Example 4.1.2. Let $A_{\mathbb{Z}_p}^1 := \text{Spec} \mathbb{Z}_p[x]$ be one-dimensional affine space over \mathbb{Z}_p and $\mathbb{P}_{\mathbb{Z}_p}^1$ be the one-dimensional projective space. The open immersion $A_{\mathbb{Z}_p}^1 \to \mathbb{P}_{\mathbb{Z}_p}^1$ is a toy model for $X_{K_p} \to X_{K_p}^*$. The formal scheme corresponding to $A_{\mathbb{Z}_p}^1$ is $\text{Spf} \mathbb{Z}_p(x)$, where

$$Z_p(x) = \left\{ \sum_{i=0}^{\infty} a_i x^i \mid a_i \in \mathbb{Z}_p, \lim_{i \to \infty} |a_i|_p = 0 \right\}$$

and its adic generic fiber is the closed unit ball $\text{Spa}(\mathbb{Q}_p(x), Z_p(x))$. On the other hand, the adic space $\mathcal{A}_{\mathbb{Q}_p}^{1, \text{ad}}$ corresponding to the scheme $A_{\mathbb{Q}_p}^1$ is the increasing union of closed balls

$$\bigcup_{m \geq 0} \text{Spa}(\mathbb{Q}_p(p^m x), \mathbb{Z}_p(p^m x))$$

over $m \geq 0$.

Exercise 4.1.3. Check that for $\mathbb{P}_{\mathbb{Z}_p}^1$, both constructions give rise to the same space $\mathbb{P}_{\mathbb{Q}_p}^{1, \text{ad}}$.

For any $m \in \mathbb{Z}_{\geq 1}$, we consider the adic space $(X_{\Gamma_0(p^m)} \times_{\mathbb{Q}_p(\mu_{p^m})} \mathbb{Q}_p^{\text{cycl}})^{\text{ad}}$, equipped with the natural projection to $(X_{K_p} \times_{\mathbb{Z}(p)} \mathbb{Q}_p^{\text{cycl}})^{\text{ad}}$. We define $\mathcal{X}_{\Gamma_0(p^m)}^*$ to be the inverse image of the good reduction locus $X_{K_p}^*$ under this projection. We also have the compactification $\mathcal{X}_{\Gamma_0(p^m)}^*$, defined as $(X_{\Gamma_0(p^m)} \times_{\mathbb{Q}_p(\mu_{p^m})} \mathbb{Q}_p^{\text{cycl}})^{\text{ad}}$.
Remark 4.1.4. The adic space $X_{G_0(p^\infty)}$ parametrizes pairs (A, D), where A is an abelian variety equipped with a principal polarization, K^p-level structure, and having “good reduction” and $D \subset A[p^n]$ is a totally isotropic subgroup scheme of rank $p^n m$.

The special fiber \breve{X}_{K_p} of X_{K_p} (at least after base change to \mathbb{F}_p) admits a stratification called the Newton stratification, which is defined in terms of the p-divisible groups (up to isogeny, and together with their extra structures) of the abelian varieties parametrized by \breve{X}_{K_p}. For now, we describe one Newton stratum: the ordinary locus. When it is non-empty, which holds for Siegel modular varieties, the ordinary locus is open and dense in \breve{X}_{K_p}.

We start by recalling the Hasse invariant. Let S be a scheme of characteristic p and let $\pi: A \rightarrow S$ be an abelian scheme of dimension n. The sheaf $\pi_* \Omega_{A/S}$ on S is locally free of rank n. We let $\omega_{A/S}$ be its top exterior power; this is a line bundle on S. Let $A^{(p)}$ denote the pullback of A along the absolute Frobenius of S. The Verschiebung isogeny $A^{(p)} \rightarrow A$ induces a morphism $\omega_{A/S} \rightarrow \omega_{A^{(p)}/S} \simeq \omega_{A/S}^\otimes p$, which can be identified with a section $Ha(A/S) \in \omega_{A/S}^{(p-1)}$. This section is called the Hasse invariant of A/S.

Definition 4.1.5. We say that an abelian scheme A/S of dimension n is ordinary if for all geometric points \breve{s} of S, the set $A[p](\breve{s})$ (obtained by evaluating the sheaf $A[p]$ on $S_{\breve{s}}$ on the geometric point \breve{s}) has p^n elements.

This definition only depends on the p-divisible group $G := A[p^\infty]$.

Exercise 4.1.6. Prove that A is ordinary if and only if the p-divisible group $G_{\breve{s}}$ is isomorphic to $(\mu_{p^n})^n \times (\mathbb{Q}_p / \mathbb{Z}_p)^n$ for all geometric points \breve{s} of S.

The following is a well-known result, in the formulation of Lemma III.2.5 of [Sch15].

Lemma 4.1.7. The section $Ha(A/S) \in \omega_{A/S}^{(p-1)}$ is invertible if and only if A/S is ordinary.

Proof. The Hasse invariant is the determinant of the map on co-tangent spaces induced by the Verschiebung morphism. Thus, the Hasse invariant is invertible if and only if the Verschiebung $V: A^{(p)} \rightarrow A$ induces an isomorphism on tangent spaces. This is equivalent to asking that Verschiebung be finite étale, which is in turn equivalent to asking that ker V has p^n (the degree of V) distinct geometric points above any geometric point \breve{s} of S. If we let $F: A \rightarrow A^{(p)}$ be the Frobenius isogeny (i.e. the relative Frobenius of A) then $VF := p: A \rightarrow A$ and F is a purely inseparable map. Thus $A[p](\breve{s}) = (\ker V)(\breve{s})$ and we get the desired equivalence. □

Now consider $\breve{A}^{univ}/\breve{X}_{K_p}$. The complement of the vanishing locus of the Hasse invariant $Ha := Ha(\breve{A}^{univ}/\breve{X}_{K_p})$ is called the ordinary locus $\breve{X}_{K_p}^{ord} \subset \breve{X}_{K_p}$. Both Ha and the ordinary locus (defined as the complement of the vanishing locus of Ha) can be extended to the minimal compactification $\breve{X}_{K_p}^*$ and the subscheme $\breve{X}_{K_p}^{ord}$ is open and dense inside $\breve{X}_{K_p}^*$.

Remark 4.1.8. The codimension of the boundary $\breve{X}_{K_p}^* \setminus \breve{X}_{K_p}^{ord}$ of the minimal compactification is n. Indeed, the boundary of the minimal compactification can be described in terms of smaller Siegel modular varieties and the relative dimension of the Siegel modular variety for GSp$_{2m}$ over $\mathbb{Z}_{(p)}$ is $\frac{m(m+1)}{2}$. For $n \geq 2$, Koecher’s
extension principle (see [Lan16] for the most definitive version) guarantees that H^f extends canonically to the whole \bar{X}_{K_p}. The case $n = 1$, i.e. the case of modular curves, can be done in an ad hoc manner, for example using q-expansions.

The ordinary locus also extends canonically to the whole \bar{X}_{K_p}. This type of result can be proved in much greater generality, for example for any Newton stratum in a Shimura variety of Hodge type, using the moduli interpretation of boundary strata in \bar{X}_{K_p}. This is due to recent work of Lan and Stroh [LS16].

We define the formal scheme $X^*_{K_p}(0) \to \bar{X}_{K_p}$ as follows. First, define the functor $X^*_{K_p}(0) \to \bar{X}_{K_p}$ over \mathbb{Z}^cycl_p which sends any p-adically complete flat \mathbb{Z}_p^cycl-algebra S to the set of pairs (f, u) where $f : \text{Spf} S \to \bar{X}_{K_p}$ is a map and $u \in H^0(\text{Spf} S, f^*\omega^{1-\epsilon})$ is a section such that

$$u \cdot \text{Ha}(\bar{f}) = 1 \in S/p.$$

up to the equivalence $(f, u) \simeq (f', u')$ if $f = f'$ and there exists some $h \in S$ with $u' = u(1 + ph)$. Lemma III.2.12 of [Sch15] shows that the functor $X^*_{K_p}(0)$ is representable by a formal scheme which is flat over \mathbb{Z}_p^cycl. Locally over an affine $\text{Spf}(R\otimes_{p, T}Z^\text{cycl}_p) \subset X^*_{K_p}$, one can choose a lift \bar{H}^f of H^f and obtain

$$X^*_{K_p}(0) \times X^*_{K_p} \text{Spf}(R\otimes_{p, T}Z^\text{cycl}_p) = \text{Spf} \left((R\otimes_{p, T}Z^\text{cycl}_p)/\langle u\bar{\text{Ha}} - 1 \rangle \right)$$

Remark 4.1.9. If we had a (global) characteristic 0 lift \bar{H}^f of H^f, then we could define the ordinary locus $X^*_{K_p} \subset X^*_{K_p}$ as the complement of the vanishing locus of \bar{H}^f and we could define $X^*_{K_p}(0)$ as the p-adic completion of the ordinary locus along its special fiber, after base change to \mathbb{Z}_p^cycl.

We cannot always guarantee that there exists a lift of H^f but the amenliness of the line bundle ω guarantees that there always exists a lift of H^f over any $N \in \mathbb{Z}_{\geq 1}$. This gives a definition of $X^*_{K_p} \subset X^*_{K_p}$. Alternatively, we could define the ordinary locus over \mathbb{Z}_p^cycl modull-theoretically, by asking that it parametrize abelian varieties with $A[p](s)$ of size at least p^n over all geometric points s. No matter which definition of the ordinary locus over \mathbb{Z}_p^cycl we choose, its special fiber is always $\bar{X}^*_{K_p}$ and the formal completion along $\bar{X}^*_{K_p}$ is the formal scheme $X^*_{K_p}(0)$.

Remark 4.1.10. If we let $\bar{X}^*_{K_p}(0)$ be the adic generic fiber of $X^*_{K_p}(0)$. Then we can see that $X^*_{K_p}(m, \epsilon) \subset X^*_{K_p}(0)$ by the condition $|H^f| \geq 1$.

Let $0 \leq \epsilon < 1/2$ be such that there exists an element $p^\epsilon \in \mathbb{Z}_p^\text{cycl}$ of p-adic valuation ϵ. As mentioned in the beginning of this section, our goal is to define a tower of formal schemes $X^*_{K_p}(m, \epsilon)$ over \mathbb{Z}_p^cycl indexed by $m \in \mathbb{Z}_{\geq 0}$ which has the following properties:

1. For $m = 0$ and $\epsilon = 0$ we recover the formal scheme $X^*_{K_p}(0)$ (intuitively, this is the formal scheme corresponding to the ordinary locus). For general ϵ, the formal scheme $X^*_{K_p}(0, \epsilon)$ is a neighborhood of the ordinary locus.

2. The transition morphisms $X^*_{K_p}(m + 1, \epsilon) \to X^*_{K_p}(m, \epsilon)$ reduce modulo $p^{1-\epsilon}$ to the relative Frobenius morphism. This will imply that the adic generic fibers $(X^*_{K_p}(m, \epsilon))_{m \in \mathbb{Z}_{\geq 0}}$ give rise to a perfectoid space over \mathbb{Z}_p^cycl.
(3) For each \(m \in \mathbb{Z}_{\geq 1}\), there is a compatible system maps
\[
\mathcal{X}_{K_p}^*(m, \varepsilon) \sim \mathcal{X}_{\Gamma_0(p^m)}^*(\varepsilon)_{\text{anti}} \hookrightarrow \mathcal{X}_{\Gamma_0(p^m)}^*,
\]
where the first map is an isomorphism and the second is an open embedding of adic spaces. The adic space \(\mathcal{X}_{\Gamma_0(p^m)}^*(\varepsilon)_{\text{anti}}\) is an "\(\varepsilon\)-neighborhood" of the so-called anticanonical part of the ordinary locus in \(\mathcal{X}_{\Gamma_0(p^m)}^*\). The inverse system \(\mathcal{X}_{\Gamma_0(p^m)}^*(\varepsilon)_{\text{anti}}\) of adic spaces gives rise to a perfectoid space \(\mathcal{X}_{\Gamma_0(p^\infty)}^*(\varepsilon)_{\text{anti}}\) over \(\mathbb{Z}_p^{\text{cycl}}\).

Take the inverse limit of topological spaces
\[
|\mathcal{X}_{\Gamma_0(p^m)}| := \lim_{m \in \mathbb{Z}_{\geq 1}} |\mathcal{X}_{\Gamma_0(p^m)}|.
\]
In section 5, we will first construct a perfectoid version of the anticanonical tower \(\mathcal{X}_{\Gamma(p^\infty)}^*(\varepsilon)_{\text{anti}}\) at full level \(\Gamma(p^\infty)\). We will then show that, after translation by the action of \(G(\mathbb{Q}_p)\), the topological space \(|\mathcal{X}_{\Gamma(p^\infty)}^*(\varepsilon)_{\text{anti}}|\) covers the whole topological space \(|\mathcal{X}_{\Gamma(p^\infty)}|\). This will give rise to a perfectoid space \(\mathcal{X}_{\Gamma(p^\infty)}\) such that
\[
\mathcal{X}_{\Gamma(p^\infty)} \sim \lim_{m \in \mathbb{Z}_{\geq 1}} \mathcal{X}_{\Gamma(p^m)}.
\]

For the rest of this section, we explain how to construct the tower of formal schemes \(\mathcal{X}_{K_p}^*(m, \varepsilon)\). We first explain the construction of the tower \(\mathcal{X}_{K_0}^*(m, 0)\) over \(\mathcal{X}_{K_0}(0)\) in Section 4.2. Then we use the theory of the canonical subgroup to construct an "\(\varepsilon\)-neighborhood" \(\mathcal{X}_{K_0}^*(m, \varepsilon)\) of \(\mathcal{X}_{K_0}^*(m, 0)\). Finally, everything can be extended to the minimal compactifications using Hartog’s extension principle. See Section III of [Sch15] for the details on compactifications.

4.2. The anticanonical tower over the ordinary locus. Let \(R\) be a \(p\)-adically complete, flat \(\mathbb{Z}_p^{\text{cycl}}\)-algebra and let \(A \to \Spec R\) be an abelian scheme with reduction \(A_0 \to \Spec (R/p)\). \(A_0\) is equipped with the Frobenius \(F : A_0 \to A_0[p]\) and the Verschiebung \(V : A[p] \to A\) isogenies. For any \(m \in \mathbb{Z}_{\geq 1}\), the \(p^m\)-torsion \(A_0[p^m]\) fits into a short exact sequence of finite locally free group schemes over \(R/p\)
\[
0 \to \ker F^m \to A_0[p^m] \to G_0 \to 0,
\]
where \(G_0 := \ker V^m : A_0[p^m] \to A_0\). If \(A_0\) is ordinary, i.e. if \(\text{Ha}(A_0/\Spec (R/p))\) is invertible, then \(G_0\) is a finite étale group scheme, which therefore lifts uniquely to a group scheme \(G\) over \(\Spec R\). We get a short exact sequence
\[
0 \to C_m \to A[p^m] \to G \to 0.
\]
The subgroup \(C_m \subset A[p^m]\) is called the canonical subgroup of \(A\) of level \(m\).

Exercise 4.2.1. Let \(R\) be a \(p\)-adically complete, flat \(\mathbb{Z}_p^{\text{cycl}}\)-algebra and let \(A/\Spec R\) be an ordinary abelian variety. Take \(C_m \subset A[p^m]\) to be the canonical subgroup of \(A\) of level \(m\).

1. Prove that
\[
A' := A/C_m
\]
is also an ordinary abelian variety over \(\Spec R\).

2. Understand the relationship between the canonical subgroup \(C_1\) of \(A\) and the subgroup \(A[p]/C_1 \subset (A/C_1)[p] = A'[p]\).
For \(m = 0 \), we take \(\mathcal{X}_{K_p}(0,0) := \mathcal{X}_{K_p}(0) \). Note that we have an abelian variety \(\mathcal{A}_{K_p}(0,0) \) over \(\mathcal{X}_{K_p}(0,0) \), which is principally polarized, carries level \(K^p \)-structure and whose reduction is ordinary.

For \(m \in \mathbb{Z}_{\geq 1} \), we define \(\mathcal{X}_{K_p}(m,0) \) to be abstractly isomorphic to \(\mathcal{X}_{K_p}(0) \), but the map to the base of the tower \(\mathcal{X}_{K_p}(m,0) \to \mathcal{X}_{K_p}(0,0) \) is the canonical lift to characteristic 0 of the \(m \)th relative Frobenius morphism

\[
F_m : \mathcal{X}_{K_p}(m,0) \to (\mathcal{X}_{K_p}(0)/p)^{(p^m)} \simeq \mathcal{X}_{K_p}(0)/p.
\]

We explain how to construct such a characteristic 0 lift: let \(\mathcal{C}_m \) be the canonical subgroup of the abelian variety \(\mathcal{A}_{K_p}(0,0) \). The abelian variety \(\mathcal{A}' := \mathcal{A}_{K_p}(0,0)/\mathcal{C}_m \) is also principally polarized and carries a level \(K^p \)-structure. By the universal property of \(\mathcal{X}_{K_p} \), \(\mathcal{A}' \) comes by pullback from a morphism

\[
\mathcal{X}_{K_p}(m,0) \to \mathcal{X}_{K_p},
\]

and, since \(\mathcal{A}' \) is ordinary, this morphism lifts uniquely to a morphism

\[
\tilde{F}_m : \mathcal{X}_{K_p}(m,0) \to \mathcal{X}_{K_p}(0,0).
\]

We call the morphism \(\tilde{F}_m \) a canonical Frobenius lift. Modulo \(p \), \(\tilde{F}_m \) agrees with the \(m \)th relative Frobenius, up to the isomorphism \((\mathcal{X}_{K_p}(0)/p)^{(p^m)} \simeq \mathcal{X}_{K_p}(0)/p \).

For \(m' \in \mathbb{Z} \), \(m' \geq m \), we obtain in the same way a morphism

\[
\mathcal{X}_{K_p}(m',0) \to \mathcal{X}_{K_p}(m,0)
\]

which is a canonical lift of the \((m - m') \)th relative Frobenius, thus we have an inverse system of formal schemes \((\mathcal{X}_{K_p}(m,0))_{m \in \mathbb{Z}_{\geq 0}} \).

This tower satisfies the first two desired properties by construction. We are left to identify the adic generic fibers \(\mathcal{X}_{K_p}(m,0) \) of the formal schemes \(\mathcal{X}_{K_p}(m,0) \) with open adic subspaces of \(\mathcal{X}_{\Gamma_0(p^m)} \).

Let \(\mathcal{X}_{\Gamma_0(p^m)}(0)_{\text{anti}} \) be the open and closed locus inside the ordinary locus

\[
\mathcal{X}_{\Gamma_0(p^m)}(0) \subset \mathcal{X}_{\Gamma_0(p^m)}
\]

which parametrizes pairs \((A,D) \) such that

1. \(A \) is an ordinary abelian variety equipped with a principal polarization and a \(K^p \)-level structure (and with good reduction);
2. \(D \subset A[p^m] \) is a totally isotropic subgroup scheme of order \(p^{mn} \) such that \(D[p] \cap C_1 = \{0\} \), where \(C_1 \) is the canonical subgroup of level 1 of \(A \).

We see from the moduli interpretation in 4.1.4 that \(\mathcal{X}_{\Gamma_0(p^m)}(0)_{\text{anti}} \) is indeed an open subspace of \(\mathcal{X}_{\Gamma_0(p^m)} \). We call \(\mathcal{X}_{\Gamma_0(p^m)}(0)_{\text{anti}} \) the anticanonical part of the ordinary locus at level \(m \).

Lemma 4.2.2. For every \(m \in \mathbb{Z}_{\geq 1} \), we have a natural isomorphism of adic spaces

\[
\mathcal{X}_{K_p}(m,0) \xrightarrow{\sim} \mathcal{X}_{\Gamma_0(p^m)}(0)_{\text{anti}}.
\]

Proof. Over \(\mathcal{X}_{K_p}(m,0) \) we have an ordinary abelian variety \(\mathcal{A}_{K_p}(m,0) \) together with a canonical subgroup \(\mathcal{C}_m \) of level \(m \), which is totally isotropic. The morphism

\[
\mathcal{X}_{K_p}(m,0) \to \mathcal{X}_{\Gamma_0(p^m)}
\]

is defined to be the one giving rise to the pair \((\mathcal{A}_{K_p}(m,0)/\mathcal{C}_m, A_{K_p}(m,0)[p^m]/\mathcal{C}_m) \) over \(\mathcal{X}_{K_p}(m,0) \), by pullback from the universal objects over \(\mathcal{X}_{\Gamma_0(p^m)} \). Using Exercise 4.2.1, we identify the image of this map with \(\mathcal{X}_{\Gamma_0(p^m)}(0)_{\text{anti}} \).
Consider also the morphism

\[X_{\Gamma_0(p^m)} \to X_{K_p} \]

defined by \((A, D) \mapsto A/D\) (with the canonical principal polarization and level \(K^p\)-structure).

The composition of the two morphisms above

\[X_{K_p}(m, 0) \to X_{\Gamma_0(p^m)} \to X_{K_p} \]
is an open embedding: it corresponds to pulling back the universal abelian variety over \(X_{K_p}\) to \(A_{K_p}(m, 0)\). Furthermore, the second map is étale. With the same proof as in the case of schemes, one deduces that the first map is an open embedding of adic spaces. \(\square\)

The tower \((X_{\Gamma_0(p^m)}(0))_{\text{anti}}\) is called the anticanonical tower over the ordinary locus. It gives rise to a perfectoid space \(X_{\Gamma_0(p^\infty)}(0)\) which lives over the ordinary locus.

4.3. The overconvergent anti-canonical tower. We start by showing the existence of a canonical subgroup (of some level \(m\)) of an abelian scheme, as long as the valuation of the Hasse invariant of that abelian scheme is not too large (with respect to \(m\)). This will generalize the existence of the canonical subgroup in the case where the abelian scheme is ordinary, i.e. when the Hasse invariant is invertible, and will follow roughly the same line of argument.

Let \(0 < \varepsilon < 1/2\). Let \(R\) be a \(p\)-adically complete flat \(\mathbb{Z}^{\text{cycl}}\)-algebra, and let \(A \to \text{Spec } R\) be an abelian scheme, with reduction \(A_0 \to \text{Spec } (R/p)\). Let \(m \in \mathbb{Z}_{\geq 1}\).

The following is Corollary III.2.6 of [Sch15].

Proposition 4.3.1. Assume that

\[(\text{Ha}(A_0/\text{Spec } (R/p))) \left(p^{m-1} \right) | p^\varepsilon. \]

Then there exists a unique closed subgroup \(C_m \subset A[p^m]\) such that

\[C_m \equiv \ker F^m \subset A[p^m] \mod p^{1-\varepsilon}. \]

Proof. We sketch the argument in [Sch15]. As in the ordinary case, the key is to consider the group scheme \(\mathcal{G}_0 := A_0[p^m]/\ker F^m\). The assumption on the Hasse invariant is made such that \(p^\varepsilon\) kills the Lie complex of \(\mathcal{G}_0\). The results of Illusie’s thesis on deformation theory imply that there exists a finite flat group scheme \(\mathcal{G}\) over \(R\) such that \(\mathcal{G}\) and \(\mathcal{G}_0\) agree modulo \(p^{1-\varepsilon}\). Furthermore, the map \(A_0[p^m] \to \mathcal{G}_0\) modulo \(p^{1-\varepsilon}\) gives rise to a map \(A[p^m] \to \mathcal{G}\) that agrees with the original map modulo \(p^{1-2\varepsilon}\). The canonical subgroup \(C_m\) is defined as \(\ker (A[p^m] \to \mathcal{G})\). \(\square\)

Now we make the analogous constructions to the ones in Section 4.2 using the fact that the canonical subgroup of any given level \(m\) overconverges (as shown above).

\(\text{Over } X_{\Gamma_0(p^m)}(0)_{\text{anti}}, \).

While the canonical subgroup of any given level \(m\) overconverges, i.e. can be extended to an \(\varepsilon = \varepsilon(m)\) neighborhood of the ordinary locus, if we let \(m \to \infty\), we get \(\varepsilon \to 0\). The canonical tower does not overconverge.
We define the formal scheme $\mathcal{X}_{K_p}^*(\varepsilon) \to \mathcal{X}_{K_p}^*$ analogously to the way we defined $\mathcal{X}_{K_p}(0)$ above. First, define the functor $\mathcal{X}_{K_p}^*(\varepsilon) \to \mathcal{X}_{K_p}^*$ over $\mathbb{Z}_p^{\text{cycl}}$ which sends any p-adically complete flat $\mathbb{Z}_p^{\text{cycl}}$-algebra S to the set of pairs (f, u) where $f : \text{Spf} S \to \mathcal{X}_{K_p}^*$ is a map and $u \in H^0(\text{Spf} S, f^*\omega_{\mathbb{Q}(1-p)})$ is a section such that

$$u \cdot \text{Ha}(f) = p^\varepsilon \in S/p,$$

up to the equivalence $(f, u) \simeq (f', u')$ if $f = f'$ and there exists some $h \in S$ with $u' = u(1 + p^{1-\varepsilon}h)$. Lemma III.2.12 of [Sch15] shows that the functor $\mathcal{X}_{K_p}^*(\varepsilon)$ is representable by a formal scheme which is flat over $\mathbb{Z}_p^{\text{cycl}}$ and we have an explicit description of this formal scheme over affines $\text{Spf}(R \hat{\otimes}_{\mathbb{Z}_p} \mathbb{Z}_p^{\text{cycl}}) \subset \mathcal{X}_{K_p}^*$. The adic generic fiber $\mathcal{X}_{K_p}^*(\varepsilon) \subset \mathcal{X}_{K_p}^*$ is the open subset defined by $|\text{Ha}| \geq p^\varepsilon$.

The following result may be particularly important for the student project. (This reformulates Lemma III.2.16 of [Sch15].)

Lemma 4.3.2. For $m \in \mathbb{Z}_{\geq 1}$ sufficiently large, the space $\mathcal{X}_{K_p}^*(p^{-m}\varepsilon)$ is affinoid.

Proof. Since the line bundle ω is ample, there exists a positive integer m such that

$$H^i(X_{K_p}^*, \omega^{p^m(p-1)}) = 0, \forall i > 0.$$

Then one can find a global characteristic 0 lift $\widetilde{\text{Ha}}^{p^m}$ of Ha^{p^m}. The condition $|\widetilde{\text{Ha}}^{p^m}| \geq p^\varepsilon$ is equivalent to $|\text{Ha}| \geq p^{-m}\varepsilon$. As $\widetilde{\text{Ha}}^{p^m}$ is a section of an ample line bundle, the condition $|\widetilde{\text{Ha}}^{p^m}| \geq p^\varepsilon$ defines an affinoid space; this affinoid space is precisely $\mathcal{X}_{K_p}^*(p^{-m}\varepsilon)$. \qed

Exercise 4.3.3. Use Lemma 4.3.2 to show that both the canonical tower (which at level m parametrizes pairs of the form (A, C_m)) and the anticanonical tower (which at level m parametrizes pairs (A, D) with $D[p] \cap C_1 = \{0\}$) are affinoid.

For $m \in \mathbb{Z}_{\geq 1}$, we let the formal scheme at level m in the tower be $\mathcal{X}_{K_p}(m, \varepsilon) := \mathcal{X}_{K_p}(p^{-m}\varepsilon)$, with the morphism to the base of the tower $\mathcal{X}_{K_p}(\varepsilon)$ given by a canonical lift \widetilde{F}_m of the mth relative Frobenius modulo $p^{1-\varepsilon}$.

We explain how to do this for $m = 1$. We need to construct a canonical lift of the relative Frobenius, i.e. a map of formal schemes

$$\widetilde{F}_1 : \mathcal{X}_{K_p}(p^{-1}\varepsilon) \to \mathcal{X}_{K_p}(\varepsilon)$$

which reduces to the relative Frobenius modulo $p^{1-\varepsilon}$. For this, we simply need to show that the natural the map

$$\mathcal{X}_{K_p}(p^{-1}\varepsilon) \to \mathcal{X}_{K_p}$$

induced by quotienting out the universal abelian variety by the level 1 canonical subgroup factors through $\mathcal{X}_{K_p}(\varepsilon)$. The key point is now to observe that quotienting out by the canonical subgroup of level 1 raises Ha to the pth power. Thus, from the initial condition $u \cdot \text{Ha}(A) = p^{\varepsilon}$ on $\mathcal{X}_{K_p}(p^{-1}\varepsilon)$, we get $u^p \cdot \text{Ha}(A/C_1) = p^\varepsilon$, which gives the desired factorization through $\mathcal{X}_{K_p}(\varepsilon)$.

Using this argument at higher levels, we obtain the tower of formal schemes \((X_{K_p}(p^{-m}\varepsilon))_m \), where the transition map at level \(m \) is given by the relative Frobenius modulo \(p^{1-\varepsilon} \).\[31]\] From this property of the transition morphisms, we can see that the tower of adic generic fibers \((X_{K_p}(p^{-m}\varepsilon))_m\) gives rise to a perfectoid space.

We are left with one question, namely identify the adic generic fiber \(X_{K_p}(p^{-m}\varepsilon) \) as an open subspace of the Shimura variety \(X_{\Gamma_0(p^m)} \). Let \(X_{\Gamma_0(p^m)}(\varepsilon) \) be the inverse image of \(X_{K_p}(\varepsilon) \) under the map \(X_{\Gamma_0(p^m)} \to X_{K_p} \).

Lemma 4.3.4. \(X_{K_p}(p^{-m}\varepsilon) \) is isomorphic to the open and closed locus \(X_{\Gamma_0(p^m)}(\varepsilon)_{\text{anti}} \) in \(X_{K_p}(\varepsilon) \) where the universal totally isotropic subgroup \(D \subset A(\varepsilon)[p^m] \) satisfies \(D[p] \cap C_1 = \{0\} \) for \(C_1 \subset A(\varepsilon)[p] \) the canonical subgroup of level 1.

We remark that in order to identify \(X_{\Gamma_0(p^m)}(\varepsilon)_{\text{anti}} \) with \(X_{K_p}(p^{-m}\varepsilon) \), we use the map induced by \((A, D) \to A/D\).

When \(D[p] \cap C_1 = \{0\} \), this decreases the valuation of the Hasse invariant, so it indeed defines a map \(X_{\Gamma_0(p^m)}(\varepsilon)_{\text{anti}} \to X_{K_p}(p^{-m}\varepsilon) \).

These maps are compatible as \(m \) varies. For each \(m \in \mathbb{Z}_{\geq 1} \), we have a commutative diagram

\[
\begin{array}{ccc}
X_{\Gamma_0(p^{m+1})}(\varepsilon)_{\text{anti}} & \sim \to & X_{K_p}(p^{-m-1}\varepsilon) \\
\downarrow & & \downarrow \\
X_{\Gamma_0(p^m)}(\varepsilon)_{\text{anti}} & \sim \to & X_{K_p}(p^{-m}\varepsilon)
\end{array}
\]

where the horizontal maps are as described above, the left vertical map is the natural projection (i.e. the forgetful map from the moduli-theoretic point of view), and the right vertical map is the canonical lift of relative Frobenius.

Remark 4.3.5. Unlike the canonical tower, the overconvergent anticanonical tower \((X_{\Gamma_0(p^m)}(\varepsilon))_m\) inside the tower \((X_{\Gamma_0(p^m)})_m\) has constant radius \(\varepsilon \).

5. Perfectoid Shimura varieties and the Hodge-Tate period morphism

In this section, we construct the Hodge-Tate period morphism and use it to show that Siegel modular varieties (and other Shimura varieties) with infinite level at \(p \) are perfectoid.

5.1. Siegel modular varieties with infinite level at \(p \) are perfectoid

In Section 4, we showed that \(X_{\Gamma_0(p^\infty)}(\varepsilon)_{\text{anti}} \) is perfectoid. For each \(m \geq 1 \), consider the congruence subgroups

\[
\Gamma_1(p^m) := \{ g \in \text{GSp}_{2n}(\mathbb{Z}_p) \mid g \equiv \begin{pmatrix} I_{dn} & \ast \\ 0 & I_{dn} \end{pmatrix} \pmod{p^m} \}
\]

and

\[
\Gamma(p^m) := \{ g \in \text{GSp}_{2n}(\mathbb{Z}_p) \mid g \equiv \begin{pmatrix} I_{dn} & 0 \\ 0 & I_{dn} \end{pmatrix} \pmod{p^m} \}.
\]

\[31\) More precisely, the map from level \(m \) to the base of the tower agrees with the \(m \)th relative Frobenius modulo \(p^{1-\varepsilon} \), which is a multiple of \(p^{1-\varepsilon} \).
In this section, we sketch how to use what we know about the $\Gamma_0(p^{\infty})$-tower to show that there exists a perfectoid space $X^*_{\Gamma(p^{\infty})}$ such that

$$X^*_{\Gamma(p^{\infty})} \sim \lim_{m \to \infty} X^*_{\Gamma(p^m)}.$$

Recall that in particular this relationship implies that on topological spaces we have

$$|X^*_{\Gamma(p^{\infty})}| = \lim_{m \to \infty} |X^*_{\Gamma(p^m)}|,$$

so we already have a good candidate for the underlying topological space, by taking the inverse limit of topological spaces at finite level. The topological spaces at finite level $|X^*_{\Gamma(p^m)}|$ are all spectral spaces, as they are the underlying topological spaces of quasi-compact and quasi-separated adic spaces, and the transition maps are spectral maps, since they underlie maps of adic spaces. This means that $|X^*_{\Gamma(p^{\infty})}|$ is itself a spectral topological space. The hard part is endowing this topological space with a perfectoid structure.

This is achieved in two steps: first, one constructs a perfectoid structure on a strict neighborhood of the anticanonical part $|X^*_{\Gamma(p^{\infty})}|$ of $|X^*_{\Gamma(p^{\infty})}|$, then one translates this perfectoid structure to cover the entire space $|X^*_{\Gamma(p^{\infty})}|$. For the first part, one key input is Faltings’s almost purity theorem, which we now recall.

Theorem 5.1.1. Let L be a perfectoid field and R a perfectoid L-algebra. Let S/R be finite étale. Then S is a perfectoid L-algebra and S° is almost finite étale over R°.

For us, the perfectoid field L will be $\mathbb{Q}_{p^{\text{cycl}}}$. Even with this result, one needs to break up the construction in two steps: going from level $\Gamma_0(p^{\infty})$ to level $\Gamma_1(p^{\infty})$ and going from level $\Gamma_1(p^{\infty})$ to level $\Gamma(p^{\infty})$.

First, one shows that there exists a perfectoid space $X^*_{\Gamma_1(p^{\infty})}$ such that

$$X^*_{\Gamma_1(p^{\infty})} \sim \lim_{m \to \infty} X^*_{\Gamma_1(p^m)}.$$

This is Proposition III.2.33 of [Sch15] and is the trickiest part of the construction. The problem is that for $n > 1$, the finite maps $X^*_{\Gamma_1(p^m)} \to X^*_{\Gamma_0(p^m)}$ are ramified along the boundary of the minimal compactification of the Shimura variety. Because the maps are not finite étale, one cannot simply use Theorem 5.1.1 in this case. Theorem 5.1.1 is still used away from the boundary, however the key input comes from Tate’s normalized traces, which we discuss briefly as we sketch the proof of Proposition 5.1.2 below. The main result is obtained from the statement below, by taking an inverse limit over m.

Proposition 5.1.2. Assume $n \geq 2$. For any $m \geq 1$, there exists a unique perfectoid space

$$X^*_{\Gamma_1(p^m) \cap \Gamma_0(p^{\infty})}$$

over $\mathbb{Q}_p^{\text{cycl}}$ such that

$$X^*_{\Gamma_1(p^m) \cap \Gamma_0(p^{\infty})} \sim \lim_{m' \to \infty} X^*_{\Gamma_1(p^{m'}) \cap \Gamma_0(p^{\infty})}.$$

32For our purposes, we can define a spectral topological space as any topological space that is homeomorphic to the underlying topological space of an affine scheme. For more on spectral spaces and spectral maps, in the context of adic space, see, for example, [Wed].
Moreover, $X^\ast_{\Gamma_0(p^{m'})\cap\Gamma_0(p^\infty)}(\varepsilon)_{\text{anti}}$ is affinoid and so are the spaces $X^\ast_{\Gamma_1(p^{m})\cap\Gamma_0(p^\infty)}(\varepsilon)_{\text{anti}}$ for m' sufficiently large.

Proof. We sketch the proof of this result; our goal is to highlight how Tate’s normalized traces are used. Fix $m \geq 1$ and consider the map $X^\ast_{\Gamma_0(p^{m})}(\varepsilon)_{\text{anti}} \rightarrow X^\ast_{\Gamma_0(p^\infty)}(\varepsilon)_{\text{anti}}$. This is finite, and étale when restricted to $X^\ast_{\Gamma_1(p^{m})}(\varepsilon)_{\text{anti}}$. For any integer $m' \geq m$, define $X^\ast(m, m')$ as the normalization of the pullback of $X^\ast_{\Gamma_1(p^{m'})}(\varepsilon)_{\text{anti}}$ to $X^\ast_{\Gamma_0(p^{m'})}(\varepsilon)_{\text{anti}}$.

For m' sufficiently large, the space $X^\ast_{\Gamma_0(p^{m'})}(\varepsilon)_{\text{anti}}$ is affinoid as seen in Lemma 4.3.2. As the map $X^\ast(m, m') \rightarrow X^\ast_{\Gamma_0(p^{m'})}(\varepsilon)_{\text{anti}}$ is finite, the space $X^\ast(m, m')$ is affinoid as well; one can write it as $\text{Spa}(S_{m'}, S^+_m)$, with $S^+_m = S^o_m$. Moreover, if m' is sufficiently large, Lemma III.2.23 of [Sch15] shows that one can recover S^+_m only in terms of the good reduction locus of the Shimura variety; more precisely, we have

\[S^+_m = H^0(X(m, m'), \mathcal{O}_X(m, m')). \]

Define $X(m, \infty)$ to be the pullback of $X^\ast_{\Gamma_0(p^{m})}(\varepsilon)_{\text{anti}}$ to $X^\ast_{\Gamma_0(p^\infty)}(\varepsilon)_{\text{anti}}$. As we are pulling back a finite étale map and since we already know that $X^\ast_{\Gamma_0(p^\infty)}(\varepsilon)_{\text{anti}}$ is perfectoid, the space $X(m, \infty)$ is perfectoid. Define $S_\infty := H^0(X(m, \infty), \mathcal{O}_X(m, \infty))$ and $S^{+}_\infty = S^\infty$. Finally, take

\[X^\ast(m, \infty) := \text{Spa}(S_\infty, S^{+}_\infty). \]

Lemma III.2.23 of [Sch15] shows that $X^\ast(m, \infty)$ is an affinoid perfectoid space over $\mathbb{Q}_{p}^{\text{cycl}}$ and that

\[X^\ast(m, \infty) \sim \lim_{\longleftarrow m'} X^\ast(m, m'). \]

Making explicit, one needs to show that the map $\lim_{\longleftarrow m'} S^{+}_{m'} \rightarrow S^{+}_\infty$ is injective, with dense image. For this, one constructs certain canonical continuous retractions $S_\infty \rightarrow S_{m'}$. The existence of the retractions proves injectivity. Moreover, one proves that these retractions converge when $m' \rightarrow \infty$ to the identity on S_∞; this proves density.

The retractions are induced by pulling back to the good reduction locus of the Shimura variety with level $\Gamma_1(p^{m}) \cap \Gamma_0(p^\infty)$ Tate’s normalized trace maps on the good reduction locus at level $\Gamma_0(p^\infty)$. More precisely, if we work with the formal schemes $X_{\Gamma_0(p^{m'})}(\varepsilon)_{\text{anti}}$ and $X_{\Gamma_0(p^{m'})}(\varepsilon)_{\text{anti}}$, then Tate’s normalized traces are maps

\[\overline{tr}_{m'} : \mathcal{O}_{X_{\Gamma_0(p^{m'})}(\varepsilon)_{\text{anti}}}(1/p) \rightarrow \mathcal{O}_{X_{\Gamma_0(p^{m'})}(\varepsilon)_{\text{anti}}}(1/p) \]

such that the image of $\mathcal{O}_{X_{\Gamma_0(p^{m'})}(\varepsilon)_{\text{anti}}}$ is contained in $p^{-c'_{m'}} \mathcal{O}_{X_{\Gamma_0(p^{m'})}(\varepsilon)_{\text{anti}}}$ for some constant $C_{m'}$, which goes to 0 as $m' \rightarrow \infty$. Moreover, for $x \in \mathcal{O}_{X_{\Gamma_0(p^{m'})}(\varepsilon)_{\text{anti}}}(1/p)$, we have

\[x \rightarrow \lim_{m' \rightarrow \infty} \overline{tr}_{m'}(x). \]

These normalized trace maps are constructed in Section III.2.4 of [Sch15]. The construction uses the fact that the transition morphisms in the ε neighborhood of the anticanonical tower reduce to the relative Frobenius modulo $p^{1-\varepsilon}$. This ensures that the image of the trace map

\[\text{tr}_{m', m'} : \mathcal{O}_{X_{\Gamma_0(p^{m'})}(\varepsilon)_{\text{anti}}} \rightarrow \mathcal{O}_{X_{\Gamma_0(p^{m'})}(\varepsilon)_{\text{anti}}} \]
Exercise 5.1.4. Recently by Hansen and Kedlaya, it is shown how to construct interesting examples of “sousperfectoid spaces”, a concept introduced i.e. to show the existence of a perfectoid space X to the whole Shimura variety. We'd like to show that the entire topological space has a perfectoid structure. For this, one uses the fact that $\Gamma(\mathbb{Z})/\Gamma(p^m)$ is not too far from being contained in $\Gamma(\mathbb{Z})/\Gamma(p^m)$, which makes it an isomorphism after inverting p. We can further deduce that the map $\lim_{\rightarrow m'} S_{m'}^+ \to S_\infty^+$ has dense image using the fact that $S_{m'}^+ = S_0^+$ and $S_\infty^+ = S_\infty^+$.

Remark 5.1.3. One may be able to use Tate’s normalized traces described above to construct interesting examples of “sousperfectoid spaces”, a concept introduced recently by Hansen and Kedlaya.

Exercise 5.1.4. Show that, for $n = 1$, the maps $\mathcal{X}_{\Gamma(\mathbb{Z})}^e(p^m)(\varepsilon)_{\text{anti}} \to \mathcal{X}_{\Gamma(\mathbb{Z})}^e(p^m)(\varepsilon)_{\text{anti}}$ are in fact finite étale. As a result, note that Theorem 5.1.1 can be applied directly to the whole Shimura variety.

The next step is to use Theorem 5.1.1 to go from level $\Gamma_1(p^\infty)$ to level $\Gamma(p^\infty)$, i.e. to show the existence of a perfectoid space $\mathcal{X}_{\Gamma(p^\infty)}^e(\varepsilon)_{\text{anti}}$ such that

$$\mathcal{X}_{\Gamma(p^\infty)}^e(\varepsilon)_{\text{anti}} \sim \lim_{\rightarrow m} \mathcal{X}_{\Gamma_1(p^m)}^e(\varepsilon)_{\text{anti}}.$$

In this case, the result is easy, because the maps $\mathcal{X}_{\Gamma_1(p^m)}^e(\varepsilon)_{\text{anti}} \to \mathcal{X}_{\Gamma_1(p^m)}^e(\varepsilon)_{\text{anti}}$ are finite étale for every $m \geq 1$.

At this point, one only has a perfectoid space $\mathcal{X}_{\Gamma_1(p^m)}^e(\varepsilon)_{\text{anti}}$, which only covers a part of the topological space

$$|\mathcal{X}_{\Gamma(p^\infty)}^e| = \lim_{\rightarrow m} |\mathcal{X}_{\Gamma_1(p^m)}^e|.$$

We’d like to show that the entire topological space has a perfectoid structure. For this, one uses the fact that $|\mathcal{X}_{\Gamma(p^\infty)}^e|$ has a continuous action of the group $\text{GSp}_{2n}(\mathbb{Q}_p)$ and the translates of $|\mathcal{X}_{\Gamma(p^m)}^e(\varepsilon)_{\text{anti}}|$ under this action cover the entire space $|\mathcal{X}_{\Gamma(p^\infty)}^e|$. The rigorous way of proving this is via the Hodge-Tate period morphism, which has as target a flag variety \mathcal{F}_ℓ, which also has an action of $\text{GSp}_{2n}(\mathbb{Q}_p)$. One of the most important properties of the Hodge-Tate period morphism is that it is equivariant for the action of $\text{GSp}_{2n}(\mathbb{Q}_p)$ on both the Shimura variety at infinite level (or, for now, on the corresponding topological space) and on the flag variety \mathcal{F}_ℓ.

Recall that (V, ψ) denotes the split symplectic space of dimension $2n$ over \mathbb{Q}. Let \mathcal{F}/\mathbb{Q} be the flag variety parametrizing subspaces $W \subset V$ of dimension n which are totally isotropic under ψ. We consider the corresponding adic space \mathcal{F}_ℓ. The Hodge-Tate period morphism is first defined at the level of topological spaces:

$$|\pi_{\text{HT}}| : |\mathcal{X}_{\Gamma(p^\infty)}^e| \to |\mathcal{F}_\ell|.$$

For simplicity, in these notes we will only describe the map on the good reduction locus $|\mathcal{X}_{\Gamma(p^\infty)}^e|$. For each pair (L, L^+), with $L/\mathbb{Q}_p^{\text{cycl}}$ a complete non-archimedean

This action can only be seen at level $\Gamma(p^\infty)$; this is for the same reason that completed cohomology has an action of the group $\text{GSp}(\mathbb{Q}_p)$, even though at finite level one only has an action of $\text{GSp}_{2n}(\mathbb{Z}_p)$. To see the action of $\text{GSp}_{2n}(\mathbb{Q}_p)$ on $|\mathcal{X}_{\Gamma(p^\infty)}^e|$, it is easiest to first redefine the moduli problem in terms of abelian varieties up to isogeny, as in Example 2.4.12; then it is easy to see the group action on the p-part of the level structure.
field and $L^+ \subset L$ an open and bounded valuation subring, define

$$X_{\Gamma (p^\infty)} (L, L^+) := \lim_{\longrightarrow} X_{\Gamma (p^m)} (L, L^+).$$

From this definition, one can check that $X_{\Gamma (p^\infty)} (L, L^+)$ has a moduli interpretation in terms of abelian varieties A/L, equipped with a principal polarization, with a K^p-level structure η^p, and with a symplectic isomorphism $\eta_p : \mathbb{Z}_p^{2n} \rightarrow T_p A$. We have

$$|X_{\Gamma (p^\infty)}| = \lim_{(L, L^+)} X_{\Gamma (p^\infty)} (L, L^+),$$

where the limit on the right hand side is not filtered, but each point comes from a unique minimal pair (L, L^+). The following is a reformulation of Lemma III.3.4 of [Sch15], restricted to the good reduction locus.

Lemma 5.1.5. There exists a $GSp_{2n} (\mathbb{Q}_p)$-equivariant, continuous map of topological spaces

$$|\pi_{HT}| : |X_{\Gamma (p^\infty)}| \rightarrow |\mathscr{F}|,$$

which is defined at the level of points by sending an abelian variety A/L together with a symplectic isomorphism

$$\eta_p : \mathbb{Z}_p^{2n} \rightarrow T_p A$$

to the (first piece of the) Hodge-Tate filtration $\text{Lie } A \subset T_p A \otimes_{\mathbb{Z}_p} L \rightarrow L^{2n}$.

Proof. First, define the map $|\pi_{HT}|$ on points by the recipe in the statement of the lemma. Since $GSp_{2n} (\mathbb{Q}_p)$ acts on the level structure η_p, the map $|\pi_{HT}|$ is $GSp_{2n} (\mathbb{Q}_p)$-equivariant by definition.

To show that there exists a map of topological spaces which agrees with $|\pi_{HT}|$ on points, it is enough to work locally on $|\mathcal{X}_{\Gamma (p^\infty)}|$. We will actually construct a cover of $|\mathcal{X}_{\Gamma (p^\infty)}|$ which is pulled back from a cover of $|\mathcal{X}_{K_p}|$. We work in the setting of Example 3.1.9, i.e. by considering the proper smooth morphism $\pi : \mathcal{A} \rightarrow \mathcal{X}_{K_p}$ of smooth adic spaces over $\text{Spa}(\mathbb{Q}_p, \mathbb{Z}_p)$. The relative Hodge-Tate filtration of the universal abelian variety is encoded by the natural injection

$$R^1 \pi_* \mathcal{O}_A \otimes_{\mathcal{O}_{\mathcal{X}_{K_p}}} \hat{\mathcal{O}}_{\mathcal{X}_{K_p}} \hookrightarrow R^1 \pi_* \hat{\mathcal{O}}_A \simeq R^1 \pi_* \hat{\mathcal{O}}_p \otimes_{\mathcal{O}_p} \hat{\mathcal{O}}$$

of sheaves on the flattened pro-étale site of \mathcal{X}_{K_p}.

Locally on \mathcal{X}_{K_p}, one can find a pro-finite étale cover $\bar{U} \rightarrow \mathcal{X}_{K_p}$ such that \bar{U} is affinoid perfectoid. We show that it is possible to pull back \bar{U} to an affinoid perfectoid space \bar{U}_∞ such that $[\bar{U}_\infty]$ covers $|\mathcal{X}_{\Gamma (p^\infty)}|$. For each $m \geq 0$, the map $\mathcal{X}_{\Gamma (p^m)} \rightarrow \mathcal{X}_{K_p}$ is finite étale. Thus, we can form the pullback $\bar{U}_m := \bar{U} \times_{\mathcal{X}_{K_p}} \mathcal{X}_{\Gamma (p^m)}$ and, by Theorem 5.1.1, this is an affinoid perfectoid cover of $\mathcal{X}_{\Gamma (p^\infty)}$. We then take the inverse limit of the \bar{U}_m as $m \rightarrow \infty$, which we can do for affinoid perfectoid spaces, and we obtain an affinoid perfectoid space \bar{U}_∞. This is still an element of the flattened pro-étale site of \mathcal{X}_{K_p}.

We now evaluate the injection

$$R^1 \pi_* \mathcal{O}_A \otimes_{\mathcal{O}_{\mathcal{X}_{K_p}}} \hat{\mathcal{O}}_{\mathcal{X}_{K_p}} \hookrightarrow R^1 \pi_* \hat{\mathcal{O}}_A \simeq R^1 \pi_* \hat{\mathcal{O}}_p \otimes_{\mathcal{O}_p} \hat{\mathcal{O}}$$
on \tilde{U}_∞. Since $R^1\pi_*\mathcal{O}_\mathcal{A}$ can be identified with $\text{Lie }\mathcal{A}$, we get a totally isotropic submodule $(\text{Lie }\mathcal{A}) \otimes_{\mathcal{O}_{c\times K_p}} \mathcal{O}_{\tilde{U}_\infty} \subset \mathcal{O}_{\tilde{U}_\infty}^\beta$, which defines a map of adic spaces $\tilde{U}_\infty \to \mathcal{F}_\ell$.

The induced map on topological spaces is automatically continuous. By checking on points, one sees that this map factors through the restriction of $|\pi_{\text{HT}}|$ to $|\tilde{U}| \times |\mathcal{X}_{K_p}|$ $|\mathcal{X}_{\Gamma(p^\infty)}|$. Moreover, the map $|\tilde{U}_\infty| \to |\tilde{U}| \times |\mathcal{X}_{K_p}|$ $|\mathcal{X}_{\Gamma(p^\infty)}|$ is both surjective and open, as it is a pro-finite étale cover and pro-finite étale maps are open. Thus, $|\pi_{\text{HT}}|$ is continuous. □

Remark 5.1.6. In fact, if we let $Z_{\Gamma(p^m)}$ be the boundary of $\mathcal{X}_{\Gamma(p^m)}^*$, we can define the spectral topological space $|Z_{\Gamma(p^m)}| := \lim_{\rightarrow} |Z_{\Gamma(p^m)}|$ and the construction of the map $|\pi_{\text{HT}}|$ in Lemma 5.1.5 extends to the open Shimura variety $|\mathcal{X}_{\Gamma(p^m)}^*| \setminus |Z_{\Gamma(p^m)}|$ with the same proof, thus we have a continuous, $\text{GSp}_{2n}(\mathbb{Q}_p)$-equivariant map $|\pi_{\text{HT}}| : |\mathcal{X}_{\Gamma(p^m)}^*| \setminus |Z_{\Gamma(p^m)}| \to |\mathcal{F}_\ell|$.

Let $0 \leq \varepsilon < \frac{1}{2}$. Recall that $\mathcal{X}_{\Gamma(p^m)}^*(\varepsilon) \subset \mathcal{X}_{\Gamma(p^m)}^*$ is the locus where $|\mathcal{H}_a| \geq p^\varepsilon$. Let $|\mathcal{X}_{\Gamma(p^m)}^*(\varepsilon)| \subset |\mathcal{X}_{\Gamma(p^m)}^*|$ be the preimage of $|\mathcal{X}_{\Gamma(p^m)}^*(\varepsilon)|$. We have $|\mathcal{X}_{\Gamma(p^m)}^*(\varepsilon)| = \text{GSp}_{2n}(\mathbb{Z}_p)|\mathcal{X}_{\Gamma(p^m)}^*(\varepsilon)|_{\text{anti}}|$. This can be checked at finite level - for example at level $\Gamma_0(p)$, where the ε-neighborhood $\mathcal{X}_{\Gamma(p)}^*(\varepsilon)$ of the anticanonical locus is defined (recall that everything else is just pulled back from this level). In fact, by doing this, we see that we can replace $\text{GSp}_{2n}(\mathbb{Z}_p)$ by finitely many translates of $|\mathcal{X}_{\Gamma(p^m)}^*(\varepsilon)|_{\text{anti}}$ by elements of $\text{GSp}_{2n}(\mathbb{Z}_p)$; thus, $|\mathcal{X}_{\Gamma(p^m)}^*(\varepsilon)|$ is quasi-compact. The key result is now the following (Lemma III.3.10 of [Sch15]).

Proposition 5.1.7. There exist finitely many elements $\gamma_1, \ldots, \gamma_k \in \text{GSp}_{2n}(\mathbb{Q}_p)$ such that $|\mathcal{X}_{\Gamma(p^m)}^*| = \bigcup_{i=1}^k \gamma_i \cdot |\mathcal{X}_{\Gamma(p^m)}^*(\varepsilon)|$.

Proof. We sketch the main steps in the proof.

1. First, one shows that if $|\pi_{\text{HT}}|$ is the map in Remark 5.1.6, and $\mathcal{F}_\ell(\mathbb{Q}_p)$ denotes the \mathbb{Q}_p-points of the adic space \mathcal{F}_ℓ, then $|\pi_{\text{HT}}|^{-1}(\mathcal{F}_\ell(\mathbb{Q}_p)) = \text{closure of } |\mathcal{X}_{\Gamma(p^m)}^*(\varepsilon)| \setminus |Z_{\Gamma(p^m)}(0)|$.

This is Lemma III.3.6 of [Sch15]. The idea is that for an ordinary abelian variety, the Hodge-Tate filtration is \mathbb{Q}_p-rational and measures the relative position of the canonical subgroup.

In general, we can describe the inverse image of $\mathcal{F}_\ell(\mathbb{Q}_p)$ under the Hodge-Tate period morphism as the closure of the ordinary locus of the perfectoid Shimura variety $\mathcal{X}_{\Gamma(p^m)}^*$. Up to higher rank points, one can in fact identify this inverse image with the ordinary locus; this is because the
Hodge-Tate period morphism respects the Newton stratification on points of rank 1.

(2) For $0 < \varepsilon < \frac{1}{2}$, one shows that there exists an open subset $U \subset F\ell$ containing $F\ell(Q_p)$ and such that

$$|\pi_{HT}|^{-1}(U) \subset |X_{\Gamma(p^{\infty})}^*(\varepsilon)| \setminus |Z_{\Gamma(p^{\infty})}(\varepsilon)|.$$

This is Lemma III.3.7 of [Sch15]. Using induction, one reduces to the locus of good reduction. The proof then relies on Step 1 and on a compactness argument using the constructible topology on spectral spaces. For the compactness argument, one uses the continuity of the map

$$|\pi_{HT}| : |X_{\Gamma(p^{\infty})}| \to |F\ell|$$

and the fact that the space $|X_{\Gamma(p^{\infty})}|$ is spectral with quasi-compact open subset $|X_{\Gamma(p^{\infty})}(\varepsilon)|$.

(3) One shows that there exist finitely many elements $\gamma_1, \ldots, \gamma_k \in \text{GSp}_{2n}(Q_p)$ such that

$$|X_{\Gamma(p^{\infty})}^*| \setminus |Z_{\Gamma(p^{\infty})}| = \bigcup_{i=1}^{k} \gamma_i : (|X_{\Gamma(p^{\infty})}^*| \setminus |Z_{\Gamma(p^{\infty})}|).$$

This is Lemma III.3.9 of [Sch15]. This uses an open subset U as in Step 2; the quasi-compactness of $F\ell$ implies that finitely many $\text{GSp}_{2n}(Q_p)$-translates of U cover $F\ell$. The fact that $|\pi_{HT}|$ is $\text{GSp}_{2n}(Q_p)$-equivariant allows one to conclude by taking preimages of everything.

(4) Finally, one shows that with the same $\gamma_1, \ldots, \gamma_k$ as above one has the desired equality

$$|X_{\Gamma(p^{\infty})}^*| = \bigcup_{i=1}^{k} \gamma_i : |X_{\Gamma(p^{\infty})}^*|.$$

This again relies on a compactness argument as in Step 2 above. The idea is that the right hand side is a quasi-compact open subset of $|X_{\Gamma(p^{\infty})}^*|$ which contains $|X_{\Gamma(p^{\infty})}^*| \setminus |Z_{\Gamma(p^{\infty})}|$ by Step 3 above. Any such subset must be the whole space. One concludes this by reducing to finite level, considering classical points, and again using a compactness argument for the constructible topology on a spectral space.

\[\square \]

As a result, we see that $|X_{\Gamma(p^{\infty})}^*|$ is covered by finitely many translates of $|X_{\Gamma(p^{\infty})}^*|_{\text{anti}}$, which is the underlying topological space of an affinoid perfectoid space. This proves the existence of the perfectoid space $X_{\Gamma(p^{\infty})}^*$. With a bit more work, one can also show that there exists a contious map of adic spaces

$$\pi_{HT} : X_{\Gamma(p^{\infty})}^* \to F\ell,$$

which agrees with the previously defined map $|\pi_{HT}|$.

Remark 5.1.8. The closed subset $|Z_{\Gamma(p^{\infty})}| \subset |X_{\Gamma(p^{\infty})}|$ has an induced structure of a perfectoid space. If $Z_{\Gamma(p^{\infty})}$ denotes the boundary with the induced perfectoid structure, then the existence of the map of adic spaces

$$\pi_{HT} : X_{\Gamma(p^{\infty})}^* \setminus Z_{\Gamma(p^{\infty})} \to F\ell$$
follows by the same argument as in the proof of Lemma 5.1.5, using instead of \tilde{U}_∞ the affinoid perfectoid cover given by the disjoint union of finitely many copies of $X_{\Gamma(p^{\infty})}(\varepsilon)_{\text{anti}} \setminus Z_{\Gamma(p^{\infty})}(\varepsilon)_{\text{anti}}$. The tricky part is to show that the Hodge-Tate period morphism extends to the boundary. For this, one needs the notion of a \textit{good triple} and corresponding results from Section II of [Sch15].

\textbf{On the geometry of the flag variety and the period morphism.} We summarize here some facts about the geometry of $\mathcal{F} \ell$ in the Siegel case. The flag variety admits the Plücker embedding

$$\mathcal{F} \ell \hookrightarrow \mathbb{P}^{2n-1}_n, W \mapsto \wedge^n W.$$

Any subset $J \subset \{1, 2, \ldots, 2n\}$ of cardinality n determines a homogeneous coordinate s_J on \mathbb{P}^{2n-1}_n. One can cover $\mathcal{F} \ell$ by open affinoid subsets $\mathcal{F} \ell_J$, which are defined by the conditions $|s_{J'}| \leq |s_J|$ for all $J' \subset \{1, 2, \ldots, 2n\}$ of cardinality n. These affinoid subsets are permuted transitively by the action of $\text{GSp}_{2n}(\mathbb{Z}_p)$. For example, $\mathcal{F} \ell_{\{n+1, \ldots, 2n\}}(\mathbb{Q}_p)$ parametrizes those totally isotropic direct summands $M \subset \mathbb{Z}_p^{2n}$ such that $M \oplus (\mathbb{Z}_p^2 \oplus n^\circ) \simeq \mathbb{Z}_p^{2n}$.

\textbf{Exercise 5.1.9.} Show that the preimage of $\mathcal{F} \ell_{\{n+1, \ldots, 2n\}}(\mathbb{Q}_p)$ under π_{HT} is given by the closure of $X^*_{\Gamma(p^{\infty})}(0)_{\text{anti}}$.

Since $X^*_{\Gamma(p^{\infty})}(0)_{\text{anti}}$ is affinoid perfectoid, thus of the form $\text{Spa}(R, R^\circ)$, and since taking the closure only adds higher rank points, which amounts to only changing the integral structure, i.e., R°, we see that the preimage of $\mathcal{F} \ell_{\{n+1, \ldots, 2n\}}(\mathbb{Q}_p)$ under π_{HT} is affinoid perfectoid.

We claim that something stronger holds, namely the preimage of the whole of $\mathcal{F} \ell_{\{n+1, \ldots, 2n\}}$ is affinoid perfectoid. To see this, note that the action of the diagonal element $\gamma = (p, \ldots, p, 1, \ldots, 1) \in (\mathbb{Q}_p^\times)^n \times (\mathbb{Q}_p^\times)^n \subset \text{GSp}_{2n}(\mathbb{Q}_p)$ contracts $\mathcal{F} \ell_{\{n+1, \ldots, 2n\}}$ towards the point of $\mathcal{F} \ell_{\{n+1, \ldots, 2n\}}(\mathbb{Q}_p)$ corresponding to $0^n \oplus \mathbb{Z}_p^n \subset \mathbb{Z}_p^{2n}$. In particular, the action of γ contracts $\mathcal{F} \ell_{\{n+1, \ldots, 2n\}}$ towards the image of the anticanonical locus $X^*_{\Gamma(p^{\infty})}(0)_{\text{anti}}$ under π_{HT}. To make this precise, for any $0 < \varepsilon \leq \frac{1}{2}$, one can find some large integer N such that

$$\pi^{-1}_{\text{HT}}(\gamma^N \cdot \mathcal{F} \ell_{\{n+1, \ldots, 2n\}}) \subset X^*_{\Gamma(p^{\infty})}(\varepsilon)_{\text{anti}}$$

is a rational subset. This shows that $\gamma^N \cdot \mathcal{F} \ell_{\{n+1, \ldots, 2n\}}$ is affinoid perfectoid and thus that $\mathcal{F} \ell_{\{n+1, \ldots, 2n\}}$ is itself affinoid perfectoid. Since the action of $\text{GSp}_{2n}(\mathbb{Z}_p)$ permutes the cardinality n subsets J, we also see that the preimage of any $\mathcal{F} \ell_J$ under π_{HT} is affinoid perfectoid.

\textbf{Remark 5.1.10.} The idea of using an element of $\text{GSp}_{2n}(\mathbb{Q}_p)$ to contract a subset of $X^*_{\Gamma(p^{\infty})}$ towards the anticanonical locus seems quite fruitful. For example, this idea is used in [Lud16] to construct a perfectoid version of the Lubin-Tate tower at level $\Gamma_0(p^{\infty})$.

\textbf{Example 5.1.11.} For $n = 1$, the flag variety $\mathcal{F} \ell$ can be identified with the one-dimensional adic projective space \mathbb{P}^1. The Plücker embedding is the identity map. If (x_1, x_2) are the usual coordinates on \mathbb{P}^1, we see that $\mathcal{F} \ell = \mathbb{P}^1$ has a cover by two affinoid subsets $\mathcal{F} \ell\{2\}$ and $\mathcal{F} \ell\{1\}$, defined by the conditions $|x_1| \leq |x_2|$ and respectively $|x_2| \leq |x_1|$. The image of the anticanonical locus under π_{HT} is given by $\{((x_1, x_2), 1) \in \mathbb{P}^1(\mathbb{Q}_p) | x_1, x_2 \in \mathbb{Z}_p\}$ and the image of the canonical locus is the point
(1, 0) \in \mathbb{P}^1(\mathbb{Q}_p). The action of $\begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix}$ \in \text{GL}_2(\mathbb{Q}_p)$ contracts $\mathcal{F}_\ell(2)$ towards the anticanonical locus.

To summarize the discussion in this section, we have the following result.

Theorem 5.1.12.

1. For any sufficiently small tame level $K^p \subset \text{GSp}_{2n}(\mathbb{A}^p_f)$, there exists a perfectoid space $X^\text{s}_{\Gamma(p^{\infty}), K^p}$ over $\mathbb{Q}_p^{\text{cyc}}$ such that
 \[X^\text{s}_{\Gamma(p^{\infty}), K^p} \sim \lim_{m \to \infty} X^\text{s}_{\Gamma(p^m), K^p}. \]

2. There exists a $\text{GSp}_{2n}(\mathbb{Q}_p)$-equivariant map of adic spaces
 \[\pi_{\text{HT}} : X^\text{s}_{\Gamma(p^{\infty}), K^p} \to \mathcal{F}_\ell \]
 which agrees with the map defined explicitly on points in Lemma 5.1.5.

3. Let S be a finite set of bad primes for the tame level K^p. The map π_{HT} is equivariant with respect to the natural Hecke action of the abstract spherical Hecke algebra \mathbb{T}^S on $X^\text{s}_{\Gamma(p^{\infty}), K^p}$ and the trivial action of \mathbb{T}^S on \mathcal{F}_ℓ.

4. The map π_{HT} is “affinoid”, in the following sense: for any subset $J \subset \{1, \ldots, 2n\}$ of cardinality n, the preimage of $\mathcal{F}_\ell J$ under π_{HT} is affinoid perfectoid.\(^{34}\)

5. Let $\omega_{\mathcal{F}_\ell} := (\wedge^NW_{\mathcal{F}_\ell})^\vee$ be the natural ample line bundle on \mathcal{F}_ℓ. Recall that one also has the natural line bundle ω_{K^p} on $X^\text{s}_{\Gamma(p^{\infty}), K^p}$, obtained by pullback from any finite level. There is a natural, $\text{GSp}_{2n}(\mathbb{Q}_p)$-equivariant isomorphism
 \[\omega_{K^p} \cong \pi_{\text{HT}}^* \omega_{\mathcal{F}_\ell}. \]
 This isomorphism is also \mathbb{T}^S-equivariant.

Shimura varieties of Hodge type. If (G, X) is a Shimura datum of Hodge type, Theorem IV.1.1 of [Sch15] shows that the corresponding Shimura varieties with infinite level at p have the structure of a perfectoid space. Let $K^p \subset G(\mathbb{A}_f)$ be a compact open subgroup. For any choice of compact open subgroup $K_p \subset G(\mathbb{Q}_p)$, we let $X_{K^p K_p}$ be the Shimura variety for G, at level $K^p K_p$, and defined over the reflex field E. We also let $X^\text{s}_{K^p K_p}$ be the minimal compactification of $X_{K^p K_p}$. Let C be a complete, algebraically closed extension of $\overline{\mathbb{Q}}_p$. We consider the adic space
\[X^{\text{s}}_{K^p K_p} := \left(X^{\text{s}}_{K^p K_p} \times_{\text{Spec } E} \text{Spec } C \right)^{\text{ad}}. \]

Theorem 5.1.13. For any sufficiently small tame level K^p, there exists a perfectoid space X_{K^p} over $\text{Spa}(C, \mathcal{O}_C)$ such that
\[X_{K^p} \sim \lim_{K^p \to K} X_{K^p K_p}. \]

The proof goes by embedding the Shimura variety of Hodge type into a Siegel modular variety and using the fact that Siegel modular varieties with infinite level at p are perfectoid spaces, as explained in Section 5.1.

Remark 5.1.14. There is also a version of this result for minimal compactifications. There is one subtlety, having to do with the fact that one does not necessarily have closed embeddings on the level of minimal compactifications. Because of this, one

\(^{34}\)This implies the following, apparently stronger, statement: for any $J \subset \{1, \ldots, 2n\}$ the preimage of any rational open $U \subseteq \mathcal{F}_\ell J$ under π_{HT} is an affinoid perfectoid space.
must consider a slightly modified space $X^\bullet_{K^p_K p}$ at finite level, obtained by taking the scheme-theoretic image of $X^\bullet_{K^p_K}$. into the corresponding compactification of the Siegel modular variety. However, the map $X^\bullet_{K^p_K} \rightarrow X^\bullet_{K^p_K p}$ is a universal homeomorphism. By Proposition 10.2.6 of [Wei14], the corresponding adic spaces have the same associated diamond; in particular, the spaces have the same étale cohomology. Because of this, we write $\mathcal{X}^\bullet_{K^p}$ for the minimal compactification of the perfectoid Shimura variety X_{K^p}. On the level of diamonds, it is the inverse limit of the diamonds corresponding to $X^\bullet_{K^p_K}$.

One can define the Hodge-Tate period morphism more generally, for Shimura varieties of Hodge type, in order to give a sense of the role that the Shimura datum plays in the definition of a functorial period morphism and to illustrate the analogy with the complex picture described in Section 2.3. We will use Section 2 of [CS15] as a reference.

Let (G, X) be a Shimura datum of Hodge type and let μ denote the Hodge cocharacter determined by a choice of $h \in X$. Recall that the axioms for (G, X) to be a Shimura datum imply that μ is a minuscule cocharacter. The cocharacter μ determines two opposite parabolic subgroups of G:

$$P^\text{std}_\mu := \{ g \in G \mid \lim_{t \to \infty} \text{ad}(\mu(t))g exists \},$$

$$P_\mu := \{ g \in G \mid \lim_{t \to 0} \text{ad}(\mu(t))g exists \}.$$

Remark 5.1.15. From the Tannakian point of view, the first parabolic can be thought of as the “stabilizer of the Hodge-de Rham filtration” and the second one as the “stabilizer of the Hodge-Tate filtration”.

Indeed, the Hodge cocharacter μ induces a grading on the Tannakian category $\text{Rep}_C(G)$, the category of finite-dimensional representations G on C-vector spaces. This means that for any $(V, \varphi) \in \text{Rep}_C(G)$, the composition $\varphi \circ \mu$ defines an action of $G_{m, C}$ on V, which is the same as a grading

$$V = \oplus_{p \in \mathbb{Z}} V^p$$

of the C-vector space V. Note that this is not the same as defining a grading on V as a representation of G. The grading depends functorially on V and is compatible with tensor products in $\text{Rep}_C(G)$.

To the grading on $\text{Rep}_C(G)$ one can naturally associate two filtrations. We let $\text{Fil}^\bullet(\mu)$ be the descending filtration on $\text{Rep}_C(G)$ defined by $\text{Fil}^p(V) = \oplus_{p' \geq p} V^{p'}$ for each $(V, \varphi) \in \text{Rep}_C(G)$. The parabolic subgroup P^std_μ can be defined as the stabilizer of $\text{Fil}^\bullet(\mu)$ in G. The other filtration is the ascending filtration $\text{Fil}^\bullet(\mu)$ defined by $\text{Fil}^p_\mu(V) = \oplus_{p' \leq p} V^{p'}$ for $(V, \varphi) \in \text{Rep}_C(G)$; the parabolic P_μ is the stabilizer of $\text{Fil}^\bullet(\mu)$ in G.

Choose an embedding of Shimura data $(G, X) \hookrightarrow (\bar{G}, \bar{X})$ with $\bar{G} = \text{GSp}(V, \psi)$, and compatible levels $K \subset G(A_f)$, $\bar{K} \subset \text{GSp}(A_f)$. The representation V of $G(\mathbb{Q})$ determines a \mathbb{Q}-local system on the Shimura variety $X_K(\mathbb{C})$. This local system is the same as the relative rational Betti homology \mathcal{V}_B of abelian variety $\mathcal{A}(\mathbb{C})$ over $X_K(\mathbb{C})$, obtained by restriction from the universal abelian variety over $\tilde{X}_\mathbb{K}(\mathbb{C})$. By
considering the relative de Rham homology of A, we also have a vector bundle V_{dR} on X_K, equipped with an integrable connection. The filtration $\text{Fil}^\bullet(V_C)$ gets identified, under the comparison between relative Betti and de Rham homologies, with the Hodge-de Rham filtration on V_{dR}. This is the sense in which we mean that P_{std}^μ is the "stabilizer of the Hodge-de Rham filtration".

The conjugacy classes of both parabolics are defined over the reflex field E of the Shimura datum. The two parabolics determine two flag varieties $\text{Fl}^\mu_{std} G$, $\text{Fl}^\mu_{G,\mu}$ over E, which parametrize parabolic subgroups in the given conjugacy class, or equivalently, filtrations on $\text{Rep}_C(G)$ conjugate to $\text{Fil}^\bullet(\mu)$. There is an embedding $X \hookrightarrow \text{Fl}^\mu_{G,\mu}$, $h \mapsto \text{Fil}^\bullet(\mu_h)$.

The map $\pi_{\text{HT},dR}$ defined in Section 2.3 factors through the above embedding. The two flag varieties and the embedding $\pi_{\text{HT},dR}$ are functorial in the Shimura data. For a general Shimura variety of Hodge type, we have a Hodge-Tate period morphism π_{HT}, which should be thought of as a p-adic analogue of π_{dR}. The following is part of Theorem 2.1.3 of [CS15].

Theorem 5.1.16.
(1) For any choice of tame level $K^p \subset G(A_f)$, there is a morphism of adic spaces

$$\pi_{\text{HT}} : X_{K^p} \to \mathcal{F}_{G,\mu}.$$

This is functorial in the Shimura datum and agrees with the morphism constructed in Theorem 5.1.12 for Siegel modular varieties.

(2) The map π_{HT} is equivariant with respect to the Hecke action of $G(\mathbb{Q}_p)$ on X_{K^p} and the natural action of $G(\mathbb{Q}_p)$ on $\mathcal{F}_{G,\mu}$.

(3) The map π_{HT} is equivariant with respect to the action of Hecke operators away from p on X_{K^p} and the trivial action of these Hecke operators on $\mathcal{F}_{G,\mu}$.

Proof. We say a few words about the proof. The main idea is to choose a symplectic embedding $(G, X) \hookrightarrow (\tilde{G}, \tilde{X})$, and keep track of Hodge tensors, the finite collection of elements $s_\alpha \in V^\otimes$ which are stabilized by $G \subset \tilde{G}$. The relative p-adic étale cohomology

$$V_p := R^1\pi_{s,\text{ét}}^\mu \mathbb{Q}_p$$

of the abelian variety $\pi : A \to X_{K^p}$ (restricted from the Siegel modular variety) is trivialized over X_{K^p}. Moreover, under the trivialization, the p-adic realizations of Hodge tensors $s_{\alpha,p} \in V_p^\otimes$ are identified with the $s_\alpha \in V^\otimes$. This can be rephrased as saying that the G-torsor of trivializations of $(V_p, s_{\alpha,p})$ has a section over X_{K^p}, which can be thought of as an object in the flattened pro-étale site of X_{K^p}.

The relative Hodge-Tate filtration gives rise to the Hodge-Tate period morphism; in order to show that this morphism factors through the appropriate flag variety $\mathcal{F}_{G,\mu}$, it is enough to show that the G-torsor described above has a P^μ-structure. This amounts to showing that the p-adic realizations of Hodge tensors respect the Hodge-Tate filtration. The same argument automatically proves that the resulting morphism is independent of the choice of embedding $(G, X) \hookrightarrow (\tilde{G}, \tilde{X})$.

The latter statement can be seen as a consequence of the fact that the de Rham realizations of Hodge tensors respect the Hodge de Rham filtration, of the relationship between the Hodge-de Rham and Hodge-Tate filtrations described in Section 3, and of the fact that the de Rham and p-adic realizations of Hodge
tensors are matched by the \(p \)-adic-de Rham comparison isomorphism. The latter result is known for abelian varieties defined over number fields and is due to Blasius [Bla94].

Remark 5.1.17. For Shimura varieties of PEL type, the construction of the map \(\pi_{HT} \) in Theorem 5.1.16 is simpler, as one can keep track of the extra endomorphisms in the moduli problem and cut down to the desired flag variety directly.

Example 5.1.18. If \(F \) is an imaginary quadratic field, \(\text{Res}_{F/Q} \text{GL}_2 \) can be related to the unitary similitude group \(G/Q \) with signature \((2,2)\) at infinity. The corresponding Shimura variety is of PEL type. Assume that \(p = \bar{p} \) splits in \(F \). Let \(K \) be a complete nonarchimedean field which is an extension of \(\mathbb{Q}_p^{\text{cycl}} \) and \(K^+ \subset K \) an open and bounded valuation subring. For any abelian variety \(A/K \) parametrized by the Shimura variety for \(G \), we can write its \(p \)-divisible group as a direct product

\[
A[p^{\infty}] = A[p^{\infty}] \times A[\bar{p}^{\infty}].
\]

The compatibility between the action of \(F \) on \(A \) by quasi-isogenies and the polarization \(\lambda \) means that conjugation in \(F \) is induced by the Rosati involution corresponding to \(\lambda \). Therefore, \(A[\bar{p}^{\infty}] \) is determined by \(A[p^{\infty}] \). We understand the latter via the Hodge-Tate period morphism. The target \(\mathcal{F}l_{G,\mu} \) of this morphism can be identified with the Grassmannian of 2-dimensional subspaces of a 4-dimensional vector space. This space can described via the Plücker embedding into \(\mathbb{P}^5 \).

6. **Project description: The nilpotent ideal**

The goal of the project for this minicourse is improve Theorem 2.1.6 by eliminating the nilpotent ideal \(I \). The strategy for eliminating the nilpotent ideal is the following.

1. Prove that the compactly-supported cohomology of an appropriate Shimura variety (for the groups \((G)\text{Sp}_{2n}\) or \((G)\text{U}(n,n)\)) at level \(\Gamma_0(p^{\infty}) \) (or perhaps \(\Gamma_1(p^{\infty}) \)) vanishes above the middle degree.
2. Refine the arguments of [NT15] to construct the desired Galois representation (or determinant) by relating the locally symmetric space for \(\text{GL}_n \) to the cohomology of the corresponding Shimura variety at level \(\Gamma_0(p^{\infty}) \) or \(\Gamma_1(p^{\infty}) \).

The first part is a statement about a Shimura variety and so could be approachable with the tools developed by Scholze. We will start the week by discussing the first part in the case of modular curves. In this setting, the key idea to prove (1) is to exploit the fact that the anticanonical tower is already perfectoid at level \(\Gamma_0(p^{\infty}) \), while the canonical tower is affinoid. Both of these extremes should give the desired bounds in this case.

If we are successful in the case of modular curves, the next step will be to understand subsets of higher-dimensional Shimura varieties with mixed behavior - not perfectoid, not affinoid, but somewhere in between. This part of the project is more speculative, but there should be a lot of nice geometry to explore.

Finally, if we are successful on the side of the Shimura variety, we will move to thinking about the second step. This will involve a detailed study of the boundary of Borel-Serre compactifications and also working with completed cohomology in the derived sense. The methods of [NT15] should be more or less directly applicable.
References

[CFS90] Ching-Li Chai and Gerd Faltings, *Degeneration of abelian varieties*, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 22, Springer-Verlag, Berlin, 1990, With an appendix by David Mumford.

K.W. Lan and B. Stroh, Compactifications of subschemes of integral models of Shimura varieties.

T. Wedhorn, Adic spaces, Preliminary version, available online at https://www2.math.uni-paderborn.de/fileadmin/Mathematik/People/wedhorn/Lehre/AdicSpaces.pdf.

E-mail address: caraiani@math.uni-bonn.de

University of Bonn, Endenicher Allee 60, Bonn 53115