RATIONAL POINTS AND OBSTRUCTIONS TO THEIR EXISTENCE
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The primary goal of the problems below is to build up familiarity with some useful lemmas and
examples that are related to the theme of the Winter School.

Notation. For a field k, we denote by k a choice of its algebraic closure, and by k° < k the
resulting separable closure. If k is a number field and v is its place, we write k,, for the corresponding
completion. If £ = Q, we write p < o0 to emphasize that p is allowed be the infinite place; for this
particular p, we write @, to mean R. For a base scheme S and S-schemes X and Y, we write X (Y)
for the set of S-morphisms Y — X. When dealing with affine schemes we sometimes omit Spec for
brevity: for instance, we write Br R in place of Br(Spec R). A ‘torsor’ always means a ‘right torsor.’

Acknowledgements. I thank the organizers of the Arizona Winter School 2015 for the opportunity
to design this problem set. I thank Alena Pirutka for helpful comments.

1. RATIONAL POINTS

In this section, k is a field and X is a k-scheme. A rational point of X is an element = € X (k), i.e.,
a section x: Speck — X of the structure map X — Speck.

k[Tlv--an]

1.1. Suppose that X = Spec Ty Find a natural bijection

(
X(k) «— {(x1,...,2n) € K™ such that fi(x1,...,2,) =0 foreveryi=1,...,m}.

MTaTo] g

Hint. Inspect the images of the T; under the k-algebra homomorphism Ui

corresponding to a rational point x: Speck — X.

Side remark. In conclusion, finding rational points is tantamount to finding k-rational
solutions of systems of polynomial equations with coeflicients in k.

1.2. (a) Prove that the image of a rational point z: Speck — X is necessarily a closed point of
the underlying topological space of X; in fact, prove that z is a closed immersion.

Hint. Work Zariski locally on X: for instance, a subset of Z of a scheme X is closed if
and only if Z n U is closed in U for every affine open U c X.

Side remark. For an arbitrary scheme morphism f: X — S, a section s: § — X of f is
always an immersion; if f is separated, then s is even a closed immersion (see [SP, 01KT]|
for the proofs of these facts).
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1.3.

1.4.

1.5.

1.6.

(b) Deduce a strengthening of the first part of @ for any finite extension L/k, the image
of any k-morphism Spec L — X is a closed point of the underlying topological space of
X. In particular, a point € X whose residue field k(x) is a finite extension of k is a
closed point.

Hint. The morphism Spec L — Spec k is finite, and hence universally closed (due to the
going up theorem).

Side remark. The claim remains true with ‘finite extension’ replaced by ‘algebraic
extension’—the same proof works because integral morphisms are still universally closed
(going up holds for integral morphisms; see |SP, 01WM] for a detailed argument).

(c) Prove a partial converse: if X is locally of finite type over k and = € X is a closed point,
then the residue field k(z) is a finite extension of k.

Hint. Apply Noether’s normalization lemma to Spec k(z): an affine k-scheme of finite
type admits a finite surjection to some affine space A}'. Then use the fact that if a field L
is module-finite over its subalgebra R < L, then R must also be a field. See [AK12, 15.4]
or [AM69, 7.9] for a complete proof.

If & is finite and X is of finite type, prove that X (k) is finite.
Hint. Work locally on X.
Side remark. Combine @ and to see that rational points are never Zariski dense

in a positive-dimensional variety over a finite field.
Use to prove that every k-group scheme G is necessarily separated.

Hint. Show that the following diagram is Cartesian:

G—2 G, G
J{ Lrhggl
Speck ——G.

Side remark. Separatedness of group schemes fails over non-field bases. To see this, choose
a discrete valuation ring R and glue the two generic points of the constant group Z/27Z R

together to obtain a nonseparated R-group scheme. See |SP, 06E7] for further examples.

Suppose that X is of finite type over k£ and connected. If X has a rational point, prove that
X is geometrically connected, i.e., that the base change X7 is still connected.

Hint. Reduce to showing connectedness of X for every finite extension k’/k. Then exploit
the fact that Spec k€’ — Spec k is finite flat, and hence both universally closed and universally
open, to conclude that the image of the base change x; of a rational point z: Speck — X
must meet every connected component of Xj.

Side remark. See [EGA IVy, 4.5.13| for a generalization: if ¥ — X is a morphism of
arbitrary k-schemes with X connected and Y geometrically connected (and hence nonempty!),
then X must also be geometrically connected. Note that this implies in particular that every
connected group scheme over a field is geometrically connected.

Suppose that X is smooth over k& and nonempty. Prove that there is a closed point x € X
with k(x)/k finite separable; in fact, prove that such x are Zariski dense.
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Hint. Exploit the local structure of a smooth morphism: if f: X — S is smooth of relative
dimension n, then there exists an open U < X for which f|y factors as U TN A — S with g
being étale (see [SP|, 054L] for this structure theorem).

Side remark. See [EGA IV, 17.16.3] for generalizations to arbitrary bases.

1.7. Let o be the ring of integers of a finite extension of Q,, and let IF be the residue field of
0. Prove Hensel’s lemma: for a smooth o-scheme X, the pullback map X (o) — X(F) is
surjective, i.e., every F-point of X may be lifted to an o-point.

Hint. As in exploit the local structure of a smooth morphism to reduce to the case
when X is étale over 0. In the étale case argue that every local ring of X with residue field F
must be o.

Side remark. See [EGA 1V, 18.5.17| for a generalization: o could be any Henselian local
ring.

1.8. Suppose that k is a finite extension of Q, and that X is of finite type, irreducible, and extends
to a smooth o-scheme X of finite type whose special fiber is nonempty. Prove that the points
of X valued in unramified extensions of k are Zariski dense.

Hint. If Z < X is a closed subscheme with dim Z < dim X, then its schematic closure in X
cannot cover the special fiber of X because “the relative dimension of a flat family is locally
constant on the source” (see [BLR90, 2.4/4] for a precise statement). With this at hand,
recall from [EGA Vg, 2.8.5] that o-flat closed subschemes of X correspond to the schematic
images of closed subschemes of X and use and

Side remark. This problem is a special case of [EGA V3, 14.3.11].

1.9. Suppose that X is of finite type over k and regular. Prove that every rational point
x: Speck — X factors through a k-smooth open subscheme U < X.

Hint. Choose a regular system of parameters at the image of x to obtain a morphism
g: U — A} for some affine open U < X containing x. To check that g is étale at x, note
that g is unramlﬁed at x by construction and flat at & because it induces an isomorphism
% AP g(z) = ﬁUx (and because R — Ris faithfully flat for every Noetherian local ring R).

Side remark. The claim still holds if %k is an arbitrary regular local ring (e.g., a discrete
valuation ring); for the proof, combine [BLR90, 3.1/2| and [EGA IV, 17.5.3].

2. RATIONAL POINTS ON TORSORS

In this section, k is a field and G is a k-group scheme of finite type.

e A right action of G on a k-scheme X is a morphism X x; G — X that induces a right
G(S)-action on X (S) for every k-scheme S.

e A triwvial torsor under GG is a k-scheme X equipped with the right action of G such that X is
isomorphic to G equipped with its right translation action (the isomorphism is required to
respect the actions of G). A choice of such an isomorphism is a trivialization of X.

e A torsor under G (or a G-torsor) is a k-scheme X equipped with a right action of G such
that for some finite extension k’/k the base change Xy is a trivial torsor under Gy .
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If G is commutative and smooth (smoothness is automatic if char k = 0), then there is a bijection

2.1.

2.2.

2.3.

2.4.

2.5.

{isomorphism classes of G-torsors X} «— H'(k,G(k*)). (%)

For a G-torsor X, find a natural bijection

{trivializations of X} «— {rational points x € X (k)}.

Hint. Inspect the image of the identity section e € G(k) under a trivialization.
Side remark. This is the basic link between the study of torsors and that of rational points.

If G fits into a short exact sequence 1 - G — H — Q — 1 of k-group schemes of finite type
and = € Q(k), prove that the fiber H, := H xg , Speck is a G-torsor. When is it trivial?

Hint. The sequence induced on S-points is left exact (but typically not right exact). To find
a criterion for triviality, inspect the map H (k) — Q(k).

Side remark. The assignment = — [H,] defines the connecting map of nonabelian coho-

mology: Q(k) — H'(k,G), where H'(k,G) is defined to be the pointed set of isomorphism
classes of G-torsors.

For a,b € k*, prove that G := Spec (%) has a structure of a k-group scheme and

X := Spec (M])) has a structure of its torsor.

(z2—ay?—b

Hint. Imitate multiplication in (k[t] to define a group structure on

@=a)
G(S) = {(u,v) e '(S,0g) such that u?— av? =1}
and its action on

X(S) = {(u,v) €eT'(S,05) such that u* — av? = b}.

Side remark. The name of G is the “norm-1 torus” of the quadratic k-algebra %; to

convince yourself that the name is apt, compute the norm of an element x + yt € i tlg[_t]a). This

computation, interpreted in suitable generality, leads to a solution of the problem.

Prove that every G,,-torsor over k is trivial. Prove the same for G,-torsors. Deduce that
every G-torsor is trivial if G admits a filtration whose subquotients are either G,, or G,.

Hint. Use and recall Hilbert’s Theorem 90. For the last sentence, use the long exact
nonabelian cohomology sequence.

Side remark. Some important cases when the required filtration exists are when G is a
Borel subgroup of a split reductive group or when k is perfect and G is a smooth connected
unipotent group (see [SGA 311, Exp. XVII, Cor. 4.1.3] for the latter case).

If G is smooth, prove that every G-torsor trivializes over a finite separable extension k'/k.
Hint. Torsors under smooth G inherit smoothness, so applies.

Side remark. More generally, if S is a base scheme and G is a smooth S-group scheme,

then every G-torsor X trivializes over an étale cover S’ — S. The proof is the same modulo

the technicality that in this generality a G-torsor fppf sheaf X may not be a scheme but is

always an algebraic space (cf. |[SP, 04SK]); namely, |[SP, 0429] guarantees smoothness of X,

so [EGA IV, 17.16.3 (ii)] applied to an étale cover of X by a scheme provides a desired S’.
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2.6. Suppose that the field & is finite.
(a) If G is an abelian variety, prove that every G-torsor is trivial.

Hint. Use the sequences 0 — G[n] — G = G — 0, which, due to perfectness of k, stay
exact on k*-points even when char k | n. Also use the vanishing of the Herbrand quotient
of a finite module.

Side remark. If k is finite, then any torsor under a connected k-group scheme of finite
type is trivial: this is a theorem of Lang, who in [Lan56, Thm. 2] treated the key case
when G is in addition smooth.

(b) If X is a proper smooth geometrically connected k-curve of genus 1, prove that X (k) # ¢J.

Hint. Recall that the Jacobian Pic())( Ik of X is an elliptic curve over k. Pass to k to

prove that the canonical k-morphism X — Pic}x Ik is an isomorphism. Conclude that X
is a Picg( /- torsor and apply .
2.7. Suppose that £ is a finite extension of @, and that A is a nonzero abelian variety over k.

(a) Prove that up to isomorphism there are only finitely many A-torsors X for which the
associated class in H'(k, A) is killed by an integer that is prime to p.

Hint. Prove that even #H!(k, A[n]) is uniformly bounded as long as n is prime to
p. For this, use the local Euler characteristic formula, local duality, and the fact that
torsion subgroups of abelian varieties over k are finite.

Side remark. One could also apply Tate local duality for abelian varieties: if AV
denotes the dual abelian variety, then H!(k, A) and AY (k) are Pontryagin dual, see
[Mil06, 1.3.4]. The claim then follows from AV (k) being pro-p up to finite index.

(b) Prove that up to isomorphism there are infinitely many A-torsors.

Hint. Use the same technique to obtain the growth rate of #H'(k, A[p"]) as n — o
and prove that A(k)/p™A(k) grows slower. For the latter, use the fact that A(k) has a
finite index subgroup isomorphic to Z,[gk@” J-dim A (this fact is proved in [Mat55]).

2.8. Suppose that k is a finite extension of Q,. Let ' be an elliptic curve over k, and let X be a
torsor under E. The period of X is the order n of the corresponding class in H(k, E). The
index of X is the greatest common divisor of the degrees of closed points on X. Lichtenbaum
has proved in |Lic68, Thm. 3| that period equals index under our assumptions. Assuming
Lichtenbaum’s result, prove that X even has a closed point of degree n.

Hint. Use Lichtenbaum’s result to get a zero-cycle z of degree n on X. Apply Riemann—Roch
to the line bundle &'(z) to replace z by an effective zero cycle of degree n on X.

Side remark. The analogue of Lichtenbaum’s “period = index” conclusion fails for torsors
under higher dimensional abelian varieties over k.

3. BRAUER GROUPS

In this section, X is a scheme.

e An Azumaya algebra over X is a coherent Ox-algebra /' such that for some étale cover
{fi: X; — X} there are Ox,-algebra isomorphisms f*.</ =~ Maty, xn, (Cx,) for some n; € Z~y.
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Azumaya algebras ./ and &7’ over X are similar if there is an €x-algebra isomorphism
for some locally free coherent &y-modules & and &’ that are stalkwise nonzero.

The set of similarity classes of Azumaya algebras over X forms an abelian group with —®4, —
as the group operation. This Azumaya Brauer group of X is denoted by Bra, X.

The Brauer group of X is Br X := H% (X, G,,).

If X is regular, Noetherian, and has an ample invertible sheaf (in the sense of [EGA II, 4.5.3]),
then Bry, X = BrX and both of these groups are torsion, see |Gro68a, Prop. 1.4] and
|[dJ, Thm. 1.1]. For example, this holds if X is a smooth quasi-projective scheme over a field.

Caution. Some authors use different definitions! For example, instead of meaning Br X the term
the Brauer group of X may mean either Bra, X or (Br X )iors.

3.1.

3.2.

3.3.

3.4.

Prove that similarity of Azumaya algebras over X is an equivalence relation.
Hint. Construct an Ox-algebra isomorphism End,, (6)®g,End,, (") = End,, (E®py &).

Prove that an Azumaya algebra o/ over X is in particular a locally free &'x-module whose
rank at every point x € X is a square. Deduce that for every fixed n € Z~g, the locus where
the rank of o7 is n? is an open and closed subscheme of X.

Hint. Use étale descent: a quasi-coherent &'x-module is locally free of finite rank if and only
if it is so after pullback to an étale cover, see [SGA 1,ew, Exp. VIII, Prop. 1.10].

Suppose that X = Speck with k a field.
(a) Find a natural bijection
{PGL,-torsors over X}/ ~ «— {Azumaya algebras over X of rank n?}/ ~ .
(On both sides, “/ ~” means “up to isomorphism.”)

Hint. For any field K, by the Skolem—Noether theorem, PGL, (K) is the group of
automorphisms of the matrix algebra Mat,, x, (K ). To conclude, exploit effectivity
of Galois descent for K-algebras, and the formalism of nonabelian Galois cohomology.

Side remark. The bijection continues to hold for any scheme X.
(b) Find the following maps:
H'(k,PGL,) — H?(k, jtn) — (Brk)[n].
Combine them with @ to prove that every Azumaya k-algebra gives an element of Br k.

Hint. For the first map, use the long exact nonabelian cohomology sequence of the
central extension 1 — p, — SL, — PGL,, — 1 and prove that H'(k,SL,) = 1. For the
second map, use [2.4.

Prove that if a field k is a filtered union of its subfields k;, then
Brk = lim Br;.
Hint. An Azumaya k-algebra has a description involving only finitely many elements of k.

Side remark. More generally, if (X;);cs is a filtered inverse system of quasi-compact and
quasi-separated schemes with affine transition morphisms, then Br(lim X;) = lim Br X; (and
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lim X; is representable by a scheme), see [SGA 411, Exp. VII, Cor. 5.9]. For example, the
assumptions are met if each X; is affine: X; = Spec R;; in this case, the conclusion is the
equality Br(lim R;) = lim Br R;.

3.5. Prove that the Brauer group of a finite field is trivial.

Hint. A finite field has cohomological dimension 1 (but does not have strict cohomological
dimension 1, so a small argument is still needed!).

3.6. If k is a finite extension of Q, and o is its ring of integers, prove that Bro = 0.

Hint. To prove that every Azumaya o-algebra is a matrix algebra, use the side remark of
@ to reduce to proving triviality of PGL,-torsors over 0. Deduce this triviality from
Hensel’s lemma (see [1.7.)) and Lang’s theorem (see the side remark of ().

Side remark. More generally, Bro = 0 whenever o is a Henselian local ring whose residue
field has a trivial Brauer group, see |[Gro68bl 11.7 2°)].

3.7. If K is a number field and K®P is its maximal abelian extension, prove that Br Kb = 0.
Hint. Combine with the reciprocity sequence

0 Brk’ —@,Brk, =™ Q/Z -0
to reduce to proving that for every completion K] of a finite abelian extension K'/K and
every integer n > 1 there are a finite abelian extension L/K containing K'/K and a place w
of L lying above v such that [L,, : K] is divisible by n. To find a required L, adjoin roots of
unity to K’ or, alternatively, reduce further to the case when n is a power of a prime p, recall
that no finite place of K’ splits completely in the cyclotomic Z,-extension of K’, and treat
real v separately.

Side remark. The claim also holds for global fields of positive characteristic.
3.8. Let R be a discrete valuation ring and K its field of fractions.

(a) Prove that H'(R,PGL,) — H'(K,PGL,) has trivial kernel, i.e., that there is no
nontrivial (PGL,,)g-torsor T whose base change to K is trivial.

Hint. Suppose that the class of T belongs to the kernel, let B ¢ (PGL,,)r be a Borel
subgroup scheme, and consider the fppf quotient Q := 7 /B (which is a schemeEI). Use
the valuative criterion and the properness of Q inherited from the projective R-scheme
(PGL,,)r/B to show that Q(R) # ¢J. Then choose a g € Q(R), note that the g-fiber of
T — Q is a B-torsor, and apply the analogue of over R to conclude that T(R) # .

Side remark. The same proof shows that H'(R,G) — H'(K,G) has trivial kernel
for any split reductive R-group scheme G. It is an (open in general!) conjecture of
Grothendieck and Serre that H' (R, G) — H'(K, Q) is injective whenever R is a regular
local ring with fraction field K and G is a reductive R-group scheme.

(b) Prove that Br R — Br K is injective.

1Replresentability of Q by a scheme follows, for instance, from the combination of [Ana73, 4.D] and [SGA 3111 new)
Exp. XXII, Cor. 5.8.5]. However, for the argument at hand the representability of Q by an algebraic space would
suffice; such representability follows already from [SP, 06PH].
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3.9. (a)

(b)

Hint. Combine @ with the side remark of @ and use the nonabelian cohomology
sequence of the central extensions

1-G, —» GL, - PGL,, — 1.
Side remark. In fact, Br X — Br k(X) is injective whenever X is an integral Noetherian
regular scheme with function field k(X), see [Gro68a, 1.8|.
Prove that BrZ = 0.

Hint. Combine the injectivity of BrZ — BrQ mentioned in the side remark of @
with the exact sequence

2, invp
0—-BrQ— (—ngoo BrQ, —— Q/Z -0
and with the vanishing of BrZ, for p < co supplied by

Side remark. If O is the ring of integers of a number field K, then Br O = (Z/2Z)" 1,
where r = max(1, #{real places of K}), see [Gro68bl, Prop. 2.4].

For a proper smooth curve X over a finite field, prove that Br X = 0.

Hint. Reduce to the case when X is connected and argue as in @

3.10. Recall Tsen’s theorem: if k(X) is the function field of an integral curve X over an algebraically
closed field k, then Brk(X) = 0.

Prove that if k£ is a perfect field, then Brk — Br ]P’,lC is an isomorphism.

Hint. Use the spectral sequence H*(Gal(k®/k), H (P}.,G,,)) = H"I (P}, G,,) and write out
its exact sequence of low degree terms:

0 — PicP} — (PicP}.)S**/F) _ Brk — Ker (BrP, — BrPL.) — H'(Gal(k®/k), PicPL.).

Then combine Tsen’s theorem with the side remark of to get BrPL, = 0. Conclude
by noting that Galois acts trivially on PicP}, =~ Z because the degree of a divisor is preserved
under any automorphism of P} ..

Side remark. By [Gro68b, 5.8], Br X = 0 for every proper curve X over a separably closed
field, so the same proof gives the bijectivity Br k — Br IP’,}J even when k is imperfect.

3.11. Suppose that X is equipped with a structure map f: X — Speck for some field k.

(a)

If X(k) # &, prove that Brk B, By x s injective.

Hint. Inspect the Brauer group morphisms induced by f and by its section Speck — X.

Side remark. The question has little to do with Brauer groups and is a special case of
the following generality: if f: X — Y is a morphism of schemes, s is its section, and
F: Schemes® — Sets is a functor, then F(f) is injective because F'(s) o F'(f) = idp(y).

If k is a number field and [ [, X (k,) # &, prove that Brk B, By x s injective even

when X (k) = .

Hint. If (p,)» € [ [, X (ky), then the map (Br(p,) o Br(f)), : Brk — [ [, Brk, is nothing
else than the usual injection Brk — @, Brk,.
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4. THE HASSE PRINCIPLE

In this section, K is a number field and X is a K-scheme of finite type. A rational point z € X (K)
gives rise to local points z,, € X (K,), one for each place v of K. In particular,

XEK) 2@ =  [1,X(K)#D.

One may wonder whether the existence of local points forces the existence of a global point:

[, X(K,) 3 =  X(K)#@.

If it does, then X satisfies the Hasse principle. If it does not, then X wviolates the Hasse principle.

4.1. (a) Prove that Proj ( (%[x’y] ) satisfies the Hasse principle for every a € Q*.

(z2—ay?)
Hint. If a is positive and has an even p-adic valuation for every finite prime p, then a is

a square in Q*.

Side remark. The question is a simple special case of the theorem of Hasse—Minkowski:

e

if f e Q[z1,...,x,] is a homogeneous quadratic polynomial, then Proj (Q
satisfies the Hasse principle, see [Ser73, Ch. IV, §3.2, Thm. 8| for a proof.

Prove that Proj ( Klz.y] ) satisfies the Hasse principle for every a € K*.

(22 —ay?)

Hint. Reduce to proving the injectivity of H'(K, u2) — [], H'(Ky, p2), and then
to that of HY(K,Z/2Z) — [], H'(K,,Z/2Z). To conclude, note that no quadratic
extension of K is split everywhere. If passage to Z/27Z is undesirable, then use “Kummer
theory” to carry out the same argument.

Side remark. In fact, the full Hasse-Minkowski theorem also holds over an arbitrary
number field.

Prove that Proj (%) violates the Hasse principle (over Q(+/7)).

Hint. Use the factorization 7% — 24 = (T2 — 2)(T? + 2)((T + 1) + )((T — 1)® + 1)
to prove the absence of rational points over Q(+/7). Combine the factorization with
Hensel’s lemma to prove that 16 is an g™ power already in Q,, if p is odd. To also treat
the place above 2, note that 2 ramifies in Q(1/7) and that the logarithm isomorphism
(1 + 2"Zg, x) = (277, +) for n > 2 shows that Qo(1/7) = Qa2(+/—1). To handle the
infinite places, note that 16 is an g™ power in R.

Side remark. For the necessary and sufficient conditions on K and n € Z~q so that
Proj < Klz.y] ) satisfies the Hasse principle for every a € K*, see INSWO08| 9.1.11 (i)].

(z"—ay™)

4.2. Prove that Z/nZ-torsors over K satisfy the Hasse principle.

4.3.

Hint. Use the correspondence between Z/nZ-torsors over K and elements of H'(K,Z/nZ)
to reduce to proving the injectivity of H*(K,Z/nZ) — [, H'(Ky,Z/nZ). Then exploit the
identification H!(K,Z/nZ) = Hom(Gal(K*/K),Z/nZ) and note that no nontrivial extension
of number fields is completely decomposed at every place.

A Severi—Brauer variety over K is a K-scheme S for which there is a K®-isomorphism
Sks = P for some n > 0.
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(a) Find a natural bijection
{(PGL,+1)k-torsors}/ ~ <«— {n-dimensional Severi-Brauer varieties over K}/ ~ .

(On both sides, “/ ~” means “up to isomorphism.”)

Hint. Recall from [MFK94] Ch. 0, §5, b) on p. 20| that the automorphism functor of
P™ is representable by PGL,,;1. Then combine the general principle of “twists” together
with the effectivity of Galois descent for quasi-projective varieties to deduce the bijection

HY(K*®/K,PGLy,1(K®)) «— {n-dimensional Severi-Brauer varieties over K}/ ~ .
Apply to conclude.
Side remark. The assumption that the field K be a number field is irrelevant for @

b) Prove that an n-dimensional Severi—Brauer variety S is isomorphic to P% if and only if
y p K y

S(K) # &.

Hint. The ‘only if’ direction is trivial. For the ‘if’ direction, fix an s € S(K) and note
that (S,s) is a twist of (P%,(1:0:...:0)). To conclude, either find a short exact
sequence

1 -G - Aut(P*,(1:0:...:0)) - GL, — 1

and use the resulting nonabelian cohomology sequence over K, or note that the passage
to the dual projective space identifies twists of (P%,(1 : 0 : ... : 0)) with those of
(P, hyperplane {zo = 0}) and that the latter are all trivial because the morphism
determined by the very ample line bundle corresponding to the twist of the divisor
{zo = 0} is an isomorphism, as may be checked after passage to the separable closure.

Side remark. The assumption that the field K be a number field is irrelevant for @
(¢) Prove that Severi-Brauer varieties satisfy the Hasse principle.
Hint. Combine @ and @ to reduce to proving the injectivity of
HY(K,PGLy41) — [ ], HY(Ky, PGLy41)
for every n = 0. Then use @ and the injectivity of
BrK — |][,BrK,.

4.4. The goal of this question is to work out an example of Lind |Lin40| and Reichardt [Rei42]:

X := Proj (%) . where the grading has = and y in degree 1 and z in degree 2,

violates the Hasse principle; in other words, z* — 17y* = 222 has a nonzero solution in Q, for
every p < o0, but does not have any nonzero solution in Q.

(a) Prove that X is a smooth geometrically connected curve of genus 1.

Hint. Compute on affine coordinate patches. The genus of a proper smooth plane curve

. (d=1)(d—2
of degree d is %

(b) Prove that 2% — 17y* = 222 has a nonzero solution in F,, for every prime p ¢ {2, 17}.
Hint. Apply @
(c) Prove that X(Q,) # J for every prime p ¢ {2,17}.

Hint. Apply and to a suitable a smooth model of X over Spec Z[%N]
10
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(e)

Use the 2-adic logarithm to prove that X(Q2) # ¢J. Prove that X(Qi7) # & by
exploiting the fact that 17 splits in Q(+/2). Observe that X (R) # (.

Hint. The logarithm induces an isomorphism (1 4 2"Zy, x) =~ (2"Zs, +) for every n > 2.
Prove that X(Q) = &.

Hint. Start with integers (a, b, ) satisfying a* — 17b6* = 2¢? and prove that every prime
dividing ¢ must be a square in Fy7. Conclude that ¢ must be a square in Fy7. Check that
2 is not a fourth power in Fy7.

5. THE BRAUER—MANIN OBSTRUCTION

In this section, K is a number field, A is its ring of adeles, and X is a separated K-scheme of finite
type, so that X (Ax) < [, X(K,) (see[5.1][(d)).
e The Brauer—-Manin set of X is
X(Ag)P = {(zy)y € X(Ag) for which Y inv,(z}(B)) =0 forevery BeBrX}.

The Brauer—Manin set fits into inclusions

X(K)c X(Ag)P < X(Ak) = ], X(Ky).

o If [T, X(K,) # & but X(Ag)B = &, so that necessarily X(K) = &, then X has a Brauer-
Manin obstruction to the local-global principle. In this case, the absence of rational points of
X is explained by the emptiness of the Brauer—-Manin set.

The aim of the first few questions is to solidify the understanding of these ideas.

5.1. (a)

(b)

Prove that there is a nonempty open U < Spec Ok and a separated U-scheme X of
finite type for which one may fix an isomorphism Xk =~ X. Prove uniqueness of X up to
shrinking U: if X — U and X’ — U’ both extend X, then the composite isomorphism
X = X = X extends to an isomorphism Apy» = A, for some nonempty open

U'cUnU'.

Hint. Describe X as a separated K-scheme of finite type by finitely many equations
and use these equations over a small enough U to “reglue” to a desired X'. To extend
an (iso)morphism, work locally on the source and use the functor of points definition of
being locally of finite presentation.

Side remark. The question is an instance of general “limit formalism.” See |[EGA 1V3| §8,
esp. 8.10.5] for many useful results of this sort.

With X as in prove that the restricted product [ [ (X (K,), X(O,)) is an independent
of X subset of | [, X (K5).

Hint. Use the valuative criterion of separatedness for the subset claim. Use the
uniqueness of X up to shrinking U for the independence claim.

For an X as in @ and each finite set of places ¥ containing the places that do not
correspond to a closed point of U, prove that pullback maps induce an isomorphism

X Toes Ko X [Tpgs; Ov) — [yes X(Ky) x [Logs X(O0).

Hint. To treat the case of an affine X', translate into a statement about rings. To then
prove the surjectivity, choose an element (p,), of the target, cover X by finitely many
11



5.2.

5.3.

5.4.

5.5.

affines &;, and subdivide the v’s into finitely many parts P; in such a way that all the
py’s with v € P; factor through the same A;. To prove the injectivity, use that the
diagonal of X is a closed immersion and that the only ideal of [ [, ey Ky X [ [,¢5 Oy with
vanishing projections is the zero ideal.

Side remark. More generally, as proved in [Bhal4, Thm. 1.3|, X ([, Ri) — [[; X (R:)
for every set of rings {R;}; and every quasi-compact and quasi-separated scheme X.

(d) Using|(b)|to interpret the restricted product, prove that X (Ax) = [, X (K,).

Hint. Combine the functor of points definition of being locally of finite presentation
with
(e) If X is proper, prove that X (Ag) =[], X(K.

Hint. To ensure that X — U in is proper, apply Chow’s lemma [SP, 0200] to
X — Spec K and shrink U (alternatively, apply [EGA IV} 8.10.5 (xii)]). Then conclude
by combining the valuative criterion of properness with

For an (z,) € X(Ag) < [ [, X(K,) and a B € Br X, prove that inv,(z}(B)) = 0 for all but
finitely many v.

Hint. Use the side remark of to find an X as in @ for which B extends to a
B e Br X. Then apply

Side remark. In particular, the infinite sum in the definition of X (A )P" makes sense.
Prove that X (K) < X (Ag)P".

Hint. Use the reciprocity sequence

0 Brk — @,Brk, =™ Q/Z -0
to show that for every B € Br X and every z € X (K) with pullbacks z, € X (K,) one has
3, invy (w4(B)) = 0.
Suppose that f: X — X’ is a morphism of separated K-schemes of finite type.
(a) Prove that f(Ax): X(Ax) — X'(Ax) maps X (Ag)B" into X'(Ag)Pr.
Hint. If (z,), € X(Ag)P" and B’ € Br X/, then f*B’ € Br X so
2 vy ((f 0 2y)*B') = 35, invy (z3(f*B')) = 0.

(b) Assume that [ [, X(K,) # &, so that necessarily [ [, X'(K,) # &. If X’ has a Brauer—
Manin obstruction to the local—global principle, prove that so does X.

Hint. If X'(Ag)B = &, then the conclusion ofl@' forces X (Ag)P" = &.

Recall that each X (K,) has a “v-adic topology” inherited from K,: if X has a closed immersion
into some A", then the v-adic topology on X (K,) is just the subspace topology of the v-adic
topology on A™(K,) = K'; in general, the v-adic topology on X (K,) is described by also
requiring that U ( v) ») be open for each affine open U < X. The identification
X(Ag) = ) of -@then endows X (Ag) with the restricted product topology.

For|(a) @, and [(c)| below, suppose that the separated finite type K-scheme X is reqular.
12
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(a) For a Brauer class B € Br X and a place v, prove that the map
X(K,) - Q/z, Xy > invy () B)
is locally constant for the v-adic topology on X (K,).

Hint. Reduce to the case of an affine connected X. Then use the equality Br X = Bry, X
and the side remark of [3.3.][(a)] to represent B by a (PGL,,)x-torsor T'— X, and hence
reduce to proving local constancy on X (K,) of the fibral isomorphism class of T'. For
this local constancy, fix a (PGLy,) g, -torsor Ty — Spec K, and consider the isomorphism
functor Isompgy,, (T, (Tp) x) defined by

X-schemes 35 S+ {(PGL,)s-torsor isomorphisms Ts — (Ty)s} € Sets

and prove that it is an fppf (or even étale) torsor under the inner form Autpgr,, (T") of
(PGL,)x (to make this step easier, first solve the question [6.1]). Then deduce that
Isompgr, (T, (To) x) is representable by a smooth X-scheme, that the locus where the
fiber of T is isomorphic to Ty is the image of Isompgr,, (T, (To)x)(Ky) — X (K,), and
that this image is open due to the smoothness of Isompgr, (T, (To)x) — X.

Side remark. Neither regularity nor separatedness of the finite type K-scheme X is
needed for the claim to hold: without these assumptions, the local constancy on X (K,)
of the fibral isomorphism class of B may be viewed as a special case of |[Ces14, 3.4 (b)].

(b) Prove that the evaluation of a Brauer class B € Br X defines a continuous map
X(Ax) — Q/Z, (2,) = 3, inv, (3 B),
where Q/Z is endowed with the discrete topology.
Hint. Combine @ with the techniques used in the hint of
(c) Prove that X (Ax)B" is closed in X (Ag).
Hint. Use and the fact that an arbitrary intersection of closed sets is closed.

Side remark. Due to the side remark of |(a), the regularity of the separated finite type
K-scheme X is not needed for the claims of [(b)| and |(c)| to hold.

5.6. The goal of this question is to work out an example of Birch and Swinnerton-Dyer |[BSD75|:
@[Ua%%yaz] >

(wv — 22 4+ 592, (u + v)(u + 2v) — 22 + 5z2)

X := Proj (

has a Brauer—-Manin obstruction to the local-global principle. In other words, X(Q,) # &
for every p < o0 but X (Ag)®" = &, so that X(Q) = &, too.

(a) Prove that X is a smooth, projective, geometrically connected surface over Q.

Hint. To prove that X is smooth and of dimension 2 at every point, use the Jacobi
criterion from [BLRI0, 2.2/7| to reduce to checking that the differentials of the two defin-

ing equations are pointwise linearly independent in QI%M 10" The geometric connectedness
Q

then follows because any two proper surfaces in IP% intersect, cf. [Har77, Thm. 1.7.2].

Side remark. Another way to argue geometric connectedness is to appeal to the general
fact that positive dimensional complete intersections in projective space are always
geometrically connected, see |[Liu02, Exercise 5.3.3 (c)].
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(b)

A smooth, projective, geometrically connected surface Y over a field k is a del Pezzo
surface if the line bundle w;}k is ample, where wy /, = /\2 Q%/ Ik Prove that X is a del
Pezzo surface over Q.

Hint. Prove that wy,g = Ox(—1) by using the formula for the canonical sheaf of a
complete intersection, cf. |Liu02, Exercise 6.4.11 (b)|. Conclude that w;(}Q is ample.

The degree of a del Pezzo surface Y — Speck is the self-intersection number of the
canonical line bundle wy ;. Prove that the degree of X is 4.

Hint. Using that the self-intersection number of wx g equals that of w)_(}(@ ~ O0x(1),

prove that it also equals the degree of X as a surface in IP?Q, cf. |[Har77, Exercise V.1.2]. To
compute this degree, recall some intersection theory in the form of [Har77, Thm. I.7.7] and
note that X is a smooth geometrically connected intersection in Pfé of two hypersurfaces
of degree 2.

Verify that the points
(0:0:4/5:1:1), (1:1:1:0:4/-1),

(1:0:0:0: (=5:1:0:1:4/=32)

L)
V=577
lie on X. Use these points to prove that X (Q,) # & for every p < o0

Hint. Prove that every p # 2 splits in at least one of the quadratic number fields

Q(v/~1), Q(+/5), Q(+/=5). Use the hint of@ to prove that 2 splits Q(y/—15).
Let F be the function field of X. Use the cup product

(,): H\(F,2,/2Z) x H\(F, ) — H*(F, 1) = (Br F)[2]
to make sense of the following 2-torsion classes in Br F:

(5, 54), (5, 5%, (5, 422, (5, “L22).

u v u v
Hint. Interpret the first entry 5 as the element of H!(F,Z/2Z) corresponding to the
quadratic extension F'(+/5)/F. Interpret the second entry as the image in F*/F*2? =
HY(F, u2) of the indicated nonzero rational function on X.

For a suitable finite extension F’/F, use the projection formula
(-, Normp/p(—)) = Normpr/p((Respr/p(+), —))
to prove that (5, %t2) = (5, utv) = (5, 4E2v) — (5 ut2v) iy By F.

) =
Hint. Use the bilinearity of ( , ), take F’ = F((1/5), and note that

o = Nomup 5 (:ﬁfvy) W2 — Normp 5y (‘Huﬁ )

u+v)(u+2v u+v)(u+2v T z

e = NOTmF(ﬁ)/F (7x+£y>’ R = Notmy 5 (L?/g ) ’
(u+2v)?

= _ut2v
2 = Normp gy (52)
Admit the existence and exactness of the residue sequences

0—-BrU —BrF - @,y H'(k(u),Q/Z),

in which U < X is a nonempty open, the direct sum is indexed by height 1 points u € U,
the residue field of u is denoted by k(u), and the maps Br F — H!(k(u),Q/Z) do not
14



depend on the choice of an open U containing u. Use these sequences to prove that the
element b € Br F' exhibited in extends to a B € Br X.

Hint. Combine the residue sequences with the different presentations of b given in
to prove that b extends to a b € Br(X\Z), where Z c X is the locus where u(u + v),
v(u+v), u(u + 2v), and v(u + 2v) all vanish. Conclude by proving that X\Z covers the
height 1 points of X, i.e., that Z is a finite set of points.

(h) If p < o0 is a prime different from 5 and z, € X(Q,), prove that inv,(z;B) = 0.

Hint. Start by proving that X(Q,) endowed with its p-adic topology has no isolated
points: combine the local structure of smooth morphisms with the fact that étale
morphisms of finite type Q,-schemes induce open maps on Q,-points. Then use @
to reduce to considering those x;,, which, in the notation of the hint of factor through
X\Z. To then settle the cases when 5 € Q;Q, locally on X\ Z represent B by one of the
cup products of @ To treat the remaining p, write 2, = (@ : ¥ : 2 : § : Z) with all entries
in Z, but not all in pZ,. Then exploit the unramifiedness of Q,(+/5)/Q, to reduce to
proving that the valuation of % is even if u(u + ¥) # 0, or that the valuation of @ is
even if U(U + 20) # 0, etc. Proceed to prove that 2 = 5§* mod p would force 7, § € pZ,,
and conclude that either p{ @ or p{ v, and that also either p{ % + ¥ or p{u + 27.

(i) If 25 € X(Qs), prove that invs(zfB) = 3.

Hint. As in the hint of reduce to considering those x5 that factor through X\Z and

write x5 = (U : 0 : 2 : §: Z) with the same normalization of the entries. Observe that if

5 @, or5|0,0or5|u+v,0rb|u+20, then 5 | T, so that 5 | uv and 5 | (4 + ?)(u + 20),

to the effect that 5 | @ and 5 | ¥, which contradicts the normalization. Deduce that

% =1 or 2 mod 5, and hence that 1 + % # a® — 5b% with a,b € Zs. Conclude that %
1

is not a norm of an element of Q5(+/5), and hence that invs(z:B) = 3.

(j) Prove that X (Ag)P" = &.

Hint. Combine and to prove that the element B € Br X constructed in
satisfies > _ . invy(xyB) = 5 for every (z,), € X(Ag) and hence forces X (Ag)Pr = .

p<o

6. THE ETALE BRAUER—MANIN OBSTRUCTION

As in §f] we assume that K is a number field and X is a separated K-scheme of finite type.

e For an X-group scheme G and G-torsors Y — X and Y’ — X, the isomorphism functor
Isomg (Y, Y”) is the fppf sheaf

S+ {Gg-torsor isomorphisms Yg — Y{}, where S is a variable X-scheme.
If G — X is affine, then Isomg(Y,Y”) is representablﬁ by an X-scheme that is X-affine.

e The étale Brauer—Manin set of X is

X(ag)®P = U 1o ((somey (v, T) (AK)™ = X(Ax)) .
Gand Y-X  [T]eHL(K,G)

2If G — X is not assumed to be affine, then Isomg(Y,Y”) is only representable by an algebraic space. This is “good
enough” for most practical purposes.
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where the intersection is taken over the isomorphism classes of finite étale K-group schemes
G and over the isomorphism classes of G x-torsors Y — X, and the union is taken over the
isomorphism classes of G-torsors 7. The étale Brauer—-Manin set fits into inclusions

X(K) < X(Ag)®Br < X(Ag)P < X(Ak) =[], X(Ky).

o If [[, X(K,) # & but X(Ag)®PB" = &, so that necessarily X (K) = ¢J, then X has an étale

Brauer—Manin obstruction to the local-global principle.

The questions below are intended to help internalize the above notions.

6.1. Let G be an X-group scheme, and let Y — X and Y/ — X be G-torsors.

6.2.

(a)

Consider the automorphism functor Autg(Y):
S — {Gg-torsor isomorphisms Yg — Yg}, where S is a variable X-scheme.
Prove that Autg(Y) is a sheaf on the fppf site of X.
Hint. Recall (say, from |[SP, 02W0|) that for an fppf S’ — S the base change functor
{S-schemes} — {S’-schemes equipped with a descent datum with respect to S’/S}

is fully faithful. Use this to descend a Gg-torsor isomorphism Yg¢ — Yg with equal
(S” xg S")-pullbacks to a unique S-isomorphism Ys — Ys. Conclude by noting that
the latter is automatically Gg-equivariant.

If G — X is affine, prove that Autg(Y") is representable by an X-scheme that is X-affine.

Hint. If X’ — X is an fppf cover trivializing Y, prove that (Autg(Y))xr = Gx .
To then prove the representability of Autg(Y'), use the effectivity of fppf descent for
relatively affine schemes (which essentially is just fppf descent for quasi-coherent sheaves,
cf. IBLRY0, p. 135, paragraph after the proof of 6.1/4]). This descent result simultaneously
proves the X-affineness of Autg(Y), which also follows from [SP} 02L5| or from checking
the isomorphism property of Autg(Y") — Spec(f«Oautg(v)) fopf locally on X (where f
denotes the structure map Autg(Y) — X).

Prove that Isomg(Y,Y”) is an Autg(Y)-torsor fppf sheaf.

Hint. Use the methods of the hint of @ to prove that Isomg(Y,Y”) is an fppf sheaf.

Define the Autg(Y')-action by precomposition. Then prove the torsor property
Autg(Y) x x Isomg(Y,Y") — Isomg(Y,Y") x x Isomg(Y,Y"), (a,i) — (ia,i)

by working fppf locally on X.

If G — X is affine, prove that Isomg(Y,Y”) is representable by an X-scheme that is
X-affine.

Hint. The argument is very similar to the one sketched in the hint of @

If G is a finite étale K-group scheme, 7 — Spec K is a G-torsor, and ¥ — X is a
G x-torsor, prove that Isomg, (Y, Tx) — X is finite étale. Conclude that Isomg, (Y, Tx)
is a separated K-scheme of finite type, so that (Isomg (Y, Tx)(Ax))B" makes sense.

Hint. In checking that Isomg, (Y, Tx) — X is finite étale, work étale locally on X to
reduce to the case when the G x-torsors Y and Tx are trivial. In this case, prove that
ISOHlGX (Y, TX) = Gx.
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(b) Prove that X (Ag )P c X (Ag)P".
Hint. Combine [(a)| with [5.4.][(a)]
6.3. Prove that X (K) c X (Ag)®Pr,

Hint. For a finite étale K-group scheme G, a Gx-torsor Y — X, and a p € X(K), let
Y, := Y x x p be the p-fiber of Y — X. Prove that p € Im (Isom(Y, (Y,)x)(K) — X (K)) and
use to conclude that p € Im ((Isom(Y, (Y,) x)(AK))BT — X(Ag)).

6.4. Suppose that f: X — X’ is a morphism of separated K-schemes of finite type.
(a) Prove that f(Ax): X(Ax) — X'(Ax) maps X (Ag )P into X'(Ag )BT,

Hint. If (z,), € X(Ag)®*P" and Y’ — X’ is a Gx/-torsor for some finite étale K-group
scheme G, then Y — X with Y := Y’ x x» X is a G x-torsor and

Isomg, (Y, Tx) = (Isomg, (Y', Tx/)) xx X for every G-torsor T.

Thus, if 7 is such that (z,), € Im ((IsomGX(Y, Tx)(Ag))P" — X(AK)>, then the com-
mutativity of

Isomg, (Y, Tx) —— Isomg, (Y, Tx/)

| |

X d X’
and [5.4.||(a)| force (f o zy), € Im ((IsomGX, (Y’,’TX/)(AK))Br — X’(AK)>.

(b) Assume that [[, X (K,) # &, so that necessarily [ [, X'(K,) # . If X’ has an étale
Brauer—-Manin obstruction to the local-global principle, prove that so does X.

Hint. If X/(Ag)®P" = &, then the conclusion of@ forces X (Ag )BT = .
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