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JORDAN S. ELLENBERG

1. What is geometric analytic number theory?

First of all:

1.1. What is analytic number theory? Already this means different things to dif-
ferent people. The sort of questions I mostly have in mind are typically questions about
asymptotic behavior of arithmetic objects, for instance:

• How many pairs of coprime integers are there in [1, N ]× [1, N ]?
• If X is a projective variety, how many points are there in X(Q) with height at

most N? This question may use some unfamiliar words, but to emphasize that
it’s down to earth, I’ll comment that when X = P1 this is precisely the question
above about coprime integers! (Note that most people would not call this a
question of analytic number theory, except for rather special choices of X, but
it fits into the framework we’re discussing here.)
• How many prime numbers are there less than N?
• How many totally real cubic fields are there with discriminant less than N?
• You can combine the above two questions: how many totally real cubic fields

are there with prime discriminant less than N?
• If h is a fixed integer, and F (n) is the number of primes between n and n+ h,

what is the variance of F (n) when n is chosen randomly in [N, 2N ]? (A question
of Goldston and Montgomery, recently considered in the geometric setting by
Jon Keating and Zeev Rudnick.)
• Is the sign of µ(n) asymptotically uncorrelated with that of µ(n + 1), i.e. is it

the case that
∑

n<N µ(n)µ(n+ 1) = o(N)?
• What is the probability that a quadratic imaginary field K = Q(

√
−d), where d

is random in [N, 2N ], has class number prime to 7? More generally, what does
the 7-primary part of the class group of K look like “on average”? (This is the
subject of the Cohen-Lenstra heuristics and their many variants, some of which
will be discussed in this conference.)
• How are the zeroes of the zeta function of a “typical” number field distributed

along the line <s = 1/2?
• If n is a random squarefree integer in [N, 2N ], what is the probability that there

exists a totally real quintic extension with discriminant N? (I think the limit as
N gets large should be 1− e−1/120, and I may or may not have time to explain
why in these lectures.)
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Remark: characteristic of the kinds of questions we’re asking here is that the desired
answer is typically not an exact formula, but rather an asymptotic. For instance, you
probably already know that the probability that two “random” integers are coprime is
ζ(2)−1 = π2/6. But this does not, of course, mean that

|{(x, y) ∈ [1, N ]× [1, N ]}| = (π2/6)N2

but rather that
lim
N→∞

N−2|{(x, y) ∈ [1, N ]× [1, N ]}| = π2/6.

More ambitiously still, we might ask for a power-saving error term; that is, an asymp-
totic of the form

|{(x, y) ∈ [1, N ]× [1, N ]}| = (π2/6)N2 +O(N2−δ)

for some δ > 0. (In fact, the best known error term is O(N11/54) – see Pappalardi’s
“Survey on k-Freeness.”)

1.2. What is geometric? This question is, if anything, even more hard to answer
precisely than the first one. The word “geometric” does the same work here that it
does in the phrase “geometric Langlands program.” In order to explain what we mean,
it’s probably best to work through an example. We’ll do one which, from the point
of view of classical analytic number theory, is very easy. But that won’t stop us from
recasting it as a computation in étale cohomology!

1.3. Number fields and function fields. The central idea of this course is the anal-
ogy between number fields and function fields. To be more precise:

Definition 1. A global field is either
• A number field, i.e. a finite extension of Q; or
• The function field of a curve over a finite field Fq, i.e. a field isomorphic to a

finite extension of Fq(t).

These two classes of fields seem pretty different on the face of it; one is characteristic
0, one is characteristic p, one has to do with number theory, the other with algebraic
geometry. But under the skin they’re quite similar. The beautiful table in section 2.6
of Bjorn Poonen’s lecture notes on curves provides a long list of similarities between
number fields and function fields; the point of this section is to explicate just a few
entries in that table.

For the moment, we will hold off on global fields in general and consider the analogy
applied to just two global fields; the rational numbers Q and the rational function field
Fq(t). (To be honest, the latter is really not just one global field but a family of such,
parametrized by q – hold that thought!)

The rational numbers Q have a natural subring Z, which we can think of as the set
of rational numbers x such that |x|p 6 1 for all nonarchimedean absolute values | · |p.
The function field Fq(t) also has a subring that jumps right out at us – the ring of
polynomials Fq[t]. Is this cut out by valuation bounds in the same way? Sort of, as we
now explain.

A function f ∈ Fq(t) can (and should!) be thought of as a meromorphic function
on P1/Fq. For any extension Fqm of Fq and any point x ∈ P1(Fqm), we can define a
valuation ordx on Fq(t) by setting ordx(f) to be the order of vanishing of f at x. In
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particular, ordx(f) > 0 precisely when f vanishes at x and ordx(f) < 0 precisely when
f has a pole at x. We can turn this valuation into a nonarchimedean absolute value
| · |x by defining

|f |x = q−mordx(f)

So the condition |f |x 6 1 says precisely that f doesn’t have a pole at x.
As m and x vary, these are actually all the absolute values on Fq(t). So a function f

with |f |x 6 1 for all non-archimedean absolute values x is a function with no poles. You
probably know (or have heard, or can look up) that such a function must be constant.
The constant functions do indeed give a subring Fq ⊂ Fq(t), but not a very interesting
one.

What went wrong with our analogy is that integers aren’t small in all absolute values,
only the nonarchimedean ones; in the archimedean absolute value, they tend to be kind
of large. In the same way, in order to get an analogue for Z, we might want to look at
functions which are small in all but one absolute value on Fq(t). Which one should we
single out? There’s no canonical choice, but it is notationally convenient to choose the
valuation given by ord∞. One can check that, for a rational function f = P/Q with
P,Q polynomials, we have

ord∞f = degQ− degP.

Note also that every root of Q is a pole of f at some point other than∞; so the condition
that |f |x 6 1 for all x 6=∞ says that Q is constant. In other words

{f ∈ Fq(t) : |f |x 6 1 for all x 6=∞} = Fq[t].

Exercise 2. According to our definition of ord∞, “P (t)/Q(t) has a pole at ∞” should
mean degP > degQ. On the other hand, it should also mean that P (1/t)/Q(1/t) has
a pole at 0. Check that these two definitions agree.

Remark 1. Our choice of∞ as the “special point” of P1 was, of course, arbitrary; there is
no reason but notational convenience to prefer Fq[t] to, say, Fq[1/(1− t)] as an analogue
of Z in Fq(t).

With this analogy in place, it’s easy to see that much of the apparatus of number
theory carries over from Z to Fq[t]. The positive integers can be thought of as a way
of choosing a representative in Z for each orbit of Z× = ±1; similarly, monic polyno-
mials contain one representative of each orbit of multiplication by Fq[t]× = F×q . Prime
numbers correspond to irreducible monic polynomials.

Of all the absolute values on Q, there’s only one left unbounded on Z, namely the
archimedean valuation, which we usually denote simply by |·|. Similarly, of the absolute
values on Fq(t), the only one left unbounded is | · |∞, and we denote this also by | · | to
emphasize the analogy. For each polynomial f ∈ Fq(t)

|f | = q−ord∞(f) = qdeg f .

In many of the questions above, we talk about intervals in Z. At first, there seems
to be an obstacle to talking about intervals in Fq[t], since the polynomials Fq[t] do not
come in any natural order. But an interval in Z can be written as

{n : |n− n0| < d}
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and in this language it is quite natural to define an interval in Fq(t) using the ∞-adic
absolute value: an ∞-adic interval is a set of polynomials of the form

{f : |f − f0| < d}.
For example, the set of polynomials of the form t9 + a2q

2 + a1q+ a0 should be thought
of as a small interval containing t9.

1.4. Squarefree integers and squarefree polynomials. Let’s test out this analogy
on a simple example:

How many squarefree integers are there between N and 2N?
One natural approach: to say N is squarefree is to say it is not divisible by 4,

not divisible by 9, not divisible by 25, and so on. (Of course it is redundant to specify
indivisibility by 16 when we’ve already locked in indivisibility by 4; to sayN is squarefree
is just to say it is not divisible by the square of any prime.) It seems reasonable to think
of the conditions of indivisibility by p2 and indivisibility by q2 as independent events,
when p and q are distinct primes, and this leads one to expect that the probability that
a random n is squarefree is

(1− 1/4)(1− 1/9)(1− 1/25) . . . =
∏
p

(1− p−2) = ζ(2)−1.

In other words, if sf(N) is the number of squarefrees in [N, 2N ], we expect

(1) lim
N→∞

N−1sf(N) = ζ(2)−1

This is a heuristic, not a proof: it is easy to check that for any fixed P one has

lim
N→∞

N−1#{n in [N, 2N ] divisible by no prime less than P} =
∏
p<P

(1− p−2)

but there is some delicacy in letting P and N go to infinity at the same time, as one
must in order to count squarefrees. But never fear, this is easy before-breakfast stuff
for classical analytic number theorists. Which we are not. So we turn our attention
away from the issue for now, and merely report that (1) is correct. What’s more, it’s
true with a power-saving error term:

(2) sf(N) = ζ(2)−1N +O(N1/2).

How does this problem look over Fq[t]? The interval [N, 2N ] can be thought of as
the set of positive integers whose absolute value is within a constant multiple of N ;
its analogue is thus the set of monic polynomials f such that |f | = qdeg f is within a
constant multiple of N . The absolute value on Fq[t] is “lumpy,” being supported on
the highly sparse set qZ. In particular, to require |f | to lie inside the range [N, 2N ] is
actually to fix the value of deg f at some constant n. (If you’re worried about the case
q = 2, feel free to change 2N to 1.999N , I don’t care.)

What’s the relationship between n and N? The number of integers in [N, 2N ] is about
N , while the number of monic polynomials of degree exactly n is qn, so we should think
of N as qn.

We have now produced analogous entities to everything on the left-hand side of (1):
we want to understand

lim
n→∞

q−nsfq(n)
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where sfq(n) is the number of monic squarefree polynomials in Fq[t] of degree n. It
turns out that the limit exists, and

(3) lim
n→∞

q−nsfq(n) = (1− 1/q).

The analogy holds perfectly – because this is the same answer!
It doesn’t look like the same answer, but the difference is purely cosmetic, as we now

explain. The same heuristic we used to guess the asymptotic for sf(n) makes sense for
sfq(n), and can be proved in the same way:

lim
N→∞

q−nsfq(n) =
∏
p

(1− |p|−2)

where now the product is over all monic irreducible polynomials p, with |p| = qdeg p. In
other words,

lim
N→∞

q−nsfq(n) = ζFq [t](2)−1.

The miracle here, of course, is that the infinite Euler product of rational functions
defining the special value ζFq [t](2)−1 actually simplifies to a rational function in q! This
is part of a much bigger story, which some of you know, and which is orthogonal to the
points we’re trying to make here.

At this point, it would be reasonable to complain that I haven’t proved anything –
I’ve just asserted things! So let me give two proofs of (3): an easy one and a hard one.
In fact, we will prove more:

Proposition 3. sfq(n) = (1− 1/q)qn for all n > 1.

Proof. (Easy) I learned this proof from Mike Zieve. Let Σn,e be the set of monic
polynomials of degree n of the form a(t)b(t)2 with a monic squarefree of degree n −
2e, and b monic of degree e. Each of the qn monic polynomials of degree n can be
decomposed uniquely in this form, so we have

(4) qn =
bn/2c∑
e=1

|Σn,e|

But it is clear that |Σn,e| = qesfq(n − 2e). In particular, the quantity we are trying
to compute is |Σn,0|. The assertion now follows by induction from (4), given the base
cases sfq(1) = q and sfq(0) = 1. �

Error terms and the case of general function fields. Something striking about
Proposition 3 is that it provides an exact fomula for the number of squarefree polynomi-
als of degree n. The fact that there’s no error term, by contrast with the number field
case, seems to put some pressure on our governing analogy. But the apparent difference
is slightly misleading.

What if we tried to do the same problem for a different function field K/Fq, the
function field of some smooth projective curve C? First one faces the question of what,
exactly, the corresponding question really is. One could, as before, cut out some nice
subring of K and try to count squarefree elements of that ring. But any such choice
will force us to choose a point or points of C to play the role of ∞. Maybe it’s better
to avoid making this choice, and working directly with C. In this case it is much less
natural to talk about elements of K, and much more natural to talk about divisors.
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Definition 4. A divisor on C is a finite formal sum of points in C(Fq):

D =
∑

P∈C(Fq)

mP [P ]

where mP = 0 for all but finitely many points of C. The degree of D is
∑

P mP . We
say a divisor is squarefree if mP ∈ {−1, 0, 1} for all P . We say a divisor is effective if
mP > 0 for all P .

If f is a function in K, its divisor div(f) is defined to be
∑

P ordP (f)[P ].

Note that not every divisor on C is the divisor of a function! And it turns out that
problems about divisors are often more natural than problems about functions. (We
will return to this theme in a later lecture, when we talk about the analogy between
the class group of a number field and the Jacobian of a curve over a finite field.) Write
Effn(C) for the set of effective divisors of C of degree n. There is an asymptotic
(5)
|{squarefree effective divisors on C of degree n}| = ζC(2)−1|Effn(C)|+ o(|Divn(C)|)

but in this case the error term is typically not zero.

Exercise 5. (For people who know something, or want to learn something, about the
zeta function of a curve over a finite field) Show that∑

D squarefree

q−s deg(D) =
ζC(s)
ζC(2s)

.

Use this to give an upper bound for the error term in (5), and show that your bound is
sharp in some cases.

There is a lesson here about the analogy between number fields and function fields.
It is tempting to think of Fq(t) as analogous to Q. This is not quite right. Better to
take the view that all global fields are in certain respects alike. If something is true for
Q but not for other number fields, it is perhaps not so safe to expect it to be true for
Fq(t); but if it is true for all number fields you are on firmer ground.

1.5. Squarefree polynomials and configuration spaces. Let us now return to the
question of counting squarefree polynomials, and focus on a difference between Z and
Fq[t]. How can you tell whether an integer is squarefree? As far as I know, the only
way is to trial-divide by squares! In particular, it is unknown, as far as I know, whether
there is an algorithm that tests an n-digit integer for squarefreeness in time polynomial
in n. (Update: a recent paper of Booker, Hiary, and Keating gives a faster algorithm,
which is not polynomial in n, but which under some heuristics is expected to run in
time exp(n2/3), so at least it beats trial divison!)

For a polynomial over Fq the story is quite different. For instance, the cubic polyno-
mial

P (t) = t3 + a1t
2 + a2t+ a3

is squarefree if and only if

a2
2a

2
1 − 4a3a

3
1 − 4a3

2 + 18a3a2a1 − 27a2
3 6= 0
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The expression on the left-hand side above is called the discriminant of P . Where does
it come from? Simple: if θ1, . . . , θn are the roots of P , we can define

∆(P ) =
∏
i 6=j

(θi − θj).

This quantity is a polynomial in the θi which is fixed by the natural Sn-action; thus it
is a polynomial in the elementary symmetric functions of the θi, which is to say it is a
polynomial in the coefficients of P . Plainly, ∆(P ) 6= 0 precisely when the roots of P
are distinct; equivalently, the squarefree polynomials P are precisely those which have
∆(P ) 6= 0.

This allows us to talk about the moduli space of squarefree polynomials. The space
of all monic polynomials of degree n

xn + a1x
n−1 + . . .+ an

over a field k is naturally identified with the k-points of the affine space An with co-
ordinates a1, . . . , an. The squarefree polynomials are parametrized by those points on
An where ∆(P ), which is a polynomial function in a1, . . . , an, doesn’t vanish. In other
words, the squarefree polynomials are parametrized by an open subvariety of An, which
we denote Confn.

Why do we call it Confn? Well, imagine that k is algebraically closed. Then the
squarefree polynomials are naturally in bijection with the set of unordered n-tuples of
distinct elements of k; the bijection sends a polynomial P to its set of roots, and an
n-tuple z1, . . . , zn to the polynomial

∏
i(t − zi). Unordered n-tuples of distinct points

are often called configurations out of some sense of loyalty to physics, where (e.g.) an
unordered set of n distinct points in 3-space might be thought of as a configuration of
particles (the distinctness hypothesis being there to match the physical constraint that
two particles can’t simultaneously occupy the same space.)

We can now say
sfq(n) = |Confn(Fq)|

In other words, we have found that one kind of counting problem (counting squarefree
polynomials) can be re-expressed as a different kind of counting problem (counting Fq-
points on a certain variety.) The benefit is that the problem of counting points on
varieties over finite fields is one of the most studied problems in arithmetic geometry,
and there are many techniques we can bring to bear. We turn to them now.

1.6. The cohomology of configuration space (complex manifold story). For
the moment, let’s turn our attention to Confn(C). We could think of this as a mere set,
like Confn(Fq), but that would be perverse; as the set of complex points of a smooth
variety, it forms a complex manifold, and if Confn(C) comes to us endowed with that
structure, we should use it.

Conf1 is a simple space indeed – it is the space of 1-tuples of complex numbers, i.e.
it is simply C itself.

Conf2 is a little more interesting. You can think of it as the space of monic polyno-
mials t2 + at+ b where the discriminant a2 − 4b doesn’t vanish, but that’s not terribly
enlightening. It’s better to think about the space of unordered pairs {z1, z2} of complex
numbers with z1 6= z2. There is a natural map

φ : Conf2(C)→ C∗
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defined by
φ({z1, z2}) = (z1 − z2)2.

What do the fibers φ−1(a) look like? The set of ordered pairs (z1, z2) with (z1−z2)2 = a

is the union of two disjoint lines: z1 − z2 =
√
a and z1 − z2 = −

√
a, where

√
(a) is a

square root of a. Switching the coordinates switches these two lines; so φ−1(a) is just
a single line. From the point of view of homotopy theory, lines are points and C∗ is a
circle; so what we’ve shown here is that Conf2(C) is homotopic to the circle, S1. In
particular, its cohomology agrees with that of the circle:

• H0(Conf2(C); Q) = Q
• H1(Conf2(C); Q) = Q
• H i(Conf2(C); Q) = 0, i > 1

Now as n gets large, Confn(C) gets more complicated. One way to see this is by
considering its fundamental group π1(Confn(C)). What is a loop in Confn(C)? We can
think of it as a moving configuration of n points in the complex plane, such that no two
points are ever allowed to collide. Such a path determines a braid. To make this more
physical, we can think of a loop as a map γ : [0, 1]→ Confn(C). Then the map

γ × id : [0, 1]→ Confn(C)× [0, 1]

has as its image n strands, which wind around each other but are never allowed to cross.
Composition of loops corresponds to stacking one braid diagram atop another. To sum
up, π1(Confn(C)) is nothing more than the n-strand braid group Bn.

Note that the braid must begin and end at whatever basepoint in Confn(C) we’ve
silently chosen, but because that basepoint is an unordered configuration space, the
braid may permute the n points in some way; this gives us a homomorphism Bn → Sn,
whose kernel Pn is called the pure braid group on n strands.

It turns out, though we won’t really need this here, that from the homotopy theorist’s
point of view, Confn(C) basically is the braid group. By this we mean that there is a
contractible space K with a free action of Bn such that Confn(C) is homotopy equivalent
to K/Bn. (We say that Confn(C) is a K(π, 1) for the group π = Bn.) It follows for
example, that the cohomology of Confn(C) is the same thing as the group cohomology
of the discrete group Bn.

The braid group Bn gets more and more complicated as n gets larger; for instance, it
cannot be generated by fewer than n− 1 elements. So in some sense the spaces Confn

must be getting more and more complicated as topological spaces.
Which makes the following theorem of Arnol’d extremely surprising:

Theorem 6. For all n > 1,
• H0(Confn(C); Q) = Q
• H1(Confn(C); Q) = Q
• H i(Confn(C); Q) = 0, i > 1

In other words, while the space is getting more and more complicated, its cohomol-
ogy with rational coefficients is not! Through the lens of cohomology with rational
coefficients, Confn(C) looks just like a circle for all n > 2.

This is an example of the phenomenon of homological stabilization, a major theme
in contemporary topology. (Another long story there’s no room for here – but read
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anything about Harer’s theorem and the Madsen-Weiss theorem settling the Mumford
conjecture...)

Exercise 7. We know that H1(Confn(C),Q) = H1(Bn,Q). Using the standard pre-
sentation of the braid group by n − 1 generators, show that H1(Bn,Q) = Q for all
n > 1.

1.7. The cohomology of configuration space (étale cohomology story). What
we will explain in this section is how Theorem 6, though it looks rather different from
what we’ve proved so far, is yet another manifestation of the formula for the number of
squarefree polynomials! It is, in a sense we shall make explicit, a geometric version of
that formula.

Let X be a variety over Fq. The Grothendieck-Lefschetz trace formula provides us
with a means of counting points on X(Fq). It looks like this:

(6) |X(Fq)| =
∑
i

(−1)iTr Frob |H i
et;c(X/Fq; Q`)

Now comes a pedagogically difficult moment. If you are already familiar with the
machinery of étale cohomology, this is familiar, and if not, it probably looks totally
meaningless. In order to really prove theorems in the mode I’m about to describe, it’s
of course critical to be conversant with etale cohomology and its properties. But one of
my goals in these notes is to make the case that you can get a good sense of what’s going
on by “pretending etale cohomology is topological cohomology” – and I will attempt to
provide the properties of étale cohomology that are needed in black-box form.

Let us just say for now that etale cohomology is a cohomology theory that makes sense
for arbitrary schemes, in particular varieties over finite fields, functorially associating
vector spaces to schemes. What’s more, when X is a scheme over a finite field Fq, the
cohomology group

H i
et(X/Fq; Q`)

carries a natural invertible operator called Frob; this is the operator whose trace we
refer to in the Grothendieck-Lefschetz trace formula above.

This cohomology theory enjoys many of the same properties as does singular co-
homology of manifolds – for instance, when X is a smooth variety over a finite field,
there is a Poincare duality between étale cohomology with compact support and étale
cohomology, which alllows us in this case to write

(7) |X(Fq)| = qdimX
∑
i

(−1)iTr Frob |H i
et(X/Fq; Q`)∨

What’s more, under favorable circumstances, étale cohomology not only behaves like
singular cohomology of manifolds, it agrees with singular cohomology of a manifold.
For this to make sense, we need X to be defined over a ring of mixed characteristic,
like Z, so that we can consider the basechange of X to Fq, which is a variety over a
finite field, and also the basechange of X to C, which is a complex algebraic variety,
and contemplate the relationship between these two a priori very different objects. This
a much longer story than I can reasonably tell in this space. But the idea is that we
would like to be able to say

dimH i
et(X/Fq; Q`) = dimH i(X(C); Q`)



10 JORDAN S. ELLENBERG

where the right-hand side is good old singular cohomology. If I’m going to say two Q`

vector spaces have the same dimension, why aren’t I just saying they’re isomorphic?
It’s because I don’t want to give you the wrong impression that there’s a canonical
isomorphism between them. There is not. Indeed, this point is brought home very
clearly from the fact that the left hand side admits a Frobenius action and the right
hand side does not.

What does “favorable circumstances” mean? It turns out to be enough for X to be
projective and smooth. But in practice, these conditions are often not satisfied, and
indeed, the comparison tends to be valid somewhat more generally. For instance, the
étale cohomology of configuration space in characteristic p is just what we might have
expected, given Arnol’d’s computation of the cohomology of Confn(C).

Proposition 8. For all n > 2,
• H0

et(Confn /Fq; Q`) = Q`

• H1
et(Confn /Fq; Q`) = Q`

• H i
et(Confn /Fq; Q`) = 0, i > 1

Moreover, Frob acts as 1 on H0
et(Confn /Fq; Q`) and as q on H1

et(Confn /Fq; Q`).

Proof. It turns out to be very useful to consider another space, the pure configuration
space PConfn which parametrizes ordered n-tuples of distinct points. This space is
nothing other than the complement in An of the union of hyperplanes (zi = zj)i 6=j .
It carries a natural fixed-point free action of Sn by permutation of coordinates, and
Confn = PConfn /Sn.

The topology of the complement of a hyperplane arrangement in affine space is a very
rich topic, pioneered by the work of Orlik and Solomon, who show (among many other
things) that the Betti numbers of such a complement has a very agreeable combinatorial
description in terms of the intersection lattice1 of the hyperplanes being removed. Re-
sults of Lehrer and Kim show that the same holds for étale cohomology, which extends
the reach of the theorem from complex hyperplane arrangements to arrangements over
more general bases. (Their results also tell you that the action of Frobenius on H i

et of
the complement of a hyperplane arrangement is always multiplication by qi.) In the case
of PConfn, the intersection lattice is clearly the same whether we work in characteristic
0 or characteristic p; we thus have that

dimH i
et(PConfn /Fq; Q`) = dimH i(PConfn(C); Q`)

In fact, the Orlik-Solomon construction is sufficiently functorial that the two cohomology
groups are isomorphic not only as Q`-vector spaces but as Q`[Sn]-modules, the Sn-action
on the cohomology groups being inherited from that on PConfn. It follows that

dimH i
et(Confn /Fq; Q`) = dimH i

et(PConfn /Fq; Q`)Sn

= dimH i(PConfn(C); Q`)Sn = dimH i(Conf(C),Q`)

and the Proposition follows. �

Remark 2. The combinatorial description of Orlik and Solomon is certainly enough to
recover Proposition 8 without invoking Arnol’d’s result on the braid group.

1That is, the poset of all finite intersections of hyperplanes, ordered by inclusion.
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When we put the information from Proposition 8 into (7) something very appealing
happens; all the terms but the first two vanish, and we are left with

|Confn(Fq)| = qn(Tr Frob |H0
et(X/Fq; Q`)∨ − Tr Frob |H1

et(X/Fq; Q`)∨) = qn(1− 1/q)

So we recover the fact that the probability that a random polynomial is squarefree is
1− 1/q as a fact about topology.

Remark 3. The absence of an error term in Proposition 3, in this context, follows from
the fact that we have control of the contribution of H i

et for all i. Typically, this is too
much to ask for; there will be a stable range of degree i in which we can say something
about the dimension of the étale cohomology and the Frobenius eigenvalues on it, and
the size of this stable range will govern the size of the error term in our asymptotic.

1.8. The three columns. We have studied three problems;
• Computing the number of squarefree integers in a range;
• Computing the number of squarefree polynomials in Fq[t] of a given degree;
• Computing geometric facts about the space of squarefree polynomials in C[t] of

a given degree.
And we have seen that all these problems are related to one another. There is a

very tight analogy between the counting problems of the first and second kind. In some
cases, counting squarefrees being one such, there are even arguments that work over an
arbitrary global field, solving both cases at once. But usually the relation is “merely”
analogistic; one expects or at least hopes to encounter analogous answers to analogous
problems.

The passage between the third and second problems is more robust; by proving
topological theorems about a certain moduli space over C, one can deduce theorems
about numbers of Fq-points on “the same” moduli space over Fq. This is the plan: use
topology to prove theorems about arithmetic questions in the function field case, which
in turn gives us ideas about the analogous arithmetic questions in the number field case.

This strategy is in no way new. Here’s Andre Weil, writing to his sister Simone in
1948 (Max Krieger, trans.)

The classical theory (that is, Riemannian) of algebraic functions over the
field of constants of the complex numbers is infunitely richer; but on the
one hand it is too much so, and in the mass of facts some real analogies
become lost; and above all, it is too far from the theory of numbers. One
would be totally obstructed if there were not a bridge between the two.
And just as God defeats the devil: this bridge exists; it is the theory of
the field of algebraic functions over a finite eld of constants.

Or:
The mathematician who studies these problems has the impression of
deciphering a trilingual inscription. In the first column one finds the
classical Riemannian theory of algebraic functions. The third column is
the arithmetic theory of algebraic numbers. The column in the middle
is the most recently discovered one; it consists of the theory of algebraic
functions over finite fields. These texts are the only source of knowl-
edge about the languages in which they are written; in each column, we
understand only fragments.
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1.9. What is geometric? (reprise). We can now say what we mean by geometric
analytic number theory.

• We are faced with a problem in analytic number theory or arithmetic statistics.
We consider an analogous problem in which the number field is replaced by a
function field, often a rational function field Fq(t).
• We interpret this problem as the problem of estimating |Xn(Fq)|, for some se-

quence of varieties X1, X2, . . . which admit nice models over Spec Z.
• We formulate an assertion about the topology or geometry of Xn(C) which

would imply the desired estimate of the point-count over Fq.
In the example we’ve seen, Xn = Confn and Xn(Fq) is the set of monic squarefree

degree-n polynomials over Fq. We briefly recount a few more examples, some of which
we will return to in more depth later in these notes.

Linear factors of squarefree polynomials. Suppose we want to count pairs (f, `) where
f is a monic squarefree polynomial and ` is a linear factor of f . These are parametrized
by the variety PConfn /Sn−1, and

|PConfn /Sn−1(Fq)|
|Confn(Fq)|

= average number of linear factors of a squarefree polynomial.

It is not hard to check (see e.g. Prop 4.4 and §4.3 of Church-Ellenberg-Farb, “Repre-
sentation stability...”) that this average is (1 + q−1)−1.

Distribution of the Möbius function. Suppose we want to study the distribution of the
Möbius function on monic polynomials. One can check that (−1)deg fµ(f) is 1 if the
discriminant ∆(f) is a quadratic residue in F∗q , −1 if ∆(f) is a non-residue, and 0 if
∆(f) = 0. In other words, (−1)deg fµ(f) + 1 is the number of square roots of ∆(f).
Thus, it is natrual to define Xn to be the variety parametrizing pairs (f, x) where f is
a monic polynomial and x is a square root of ∆(f). The variety Xn is a double cover of
An, ramified at the locus where the discriminant vanishes, and q−n|Xn(Fq)| − 1 (up to
a sign) is the average value of the Möbius function over monic polynomials of degree n.

Autocorrelation of the Möbius function. The Chowla conjecture concerns autocorre-
lation between shifts of the Möbius function. For instance: what is the average of
µ(n)µ(n + 1)? When we ask this question in the function field case, we find we are
counting points on the variety Xn parametrizing pairs (f, x) where x is a square root
of the product ∆(f)∆(f + 1). The study of this variety is the topic of the 2012 paper
of Carmon and Rudnick, “The autocorrelation of the Mobius function and Chowla’s
conjecture” – more about this later.

Cohen-Lenstra heuristics. The Cohen-Lenstra heuristics address questions about the
`-primary parts of class groups of number fields. For example: what is the average
number of `-torsion elements in the class group of a quadratic imaginary field K? By
class field theory, it’s the same to ask: what is the average number of everywhere
unramified Z/`Z-extensions of K? Over Fq(t), the analogue of a quadratic imaginary
number field K is a hyperelliptic curve C, and the everywhere unramified Z/`Z covers
of C are parametrized by the Fq-rational `-torsion points of the Jacobian Jac(C). (I
am being a little fast and loose here – I will pin this down more carefully in the section
on the Cohen-Lenstra conjecture.) So the variety that computes the average size of
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the `-torsion in the class group is the variety parametrizing pairs (C,P ) where C is a
hyperelliptic curve of some genus g and P is an `-torsion point on Jac(C). In other
words, Xg is a moduli space of hyperelliptic genus-g curves with `-level structure.

Linnik/Malle/Bhargava conjectures. How many degree-d number fields are there with
discriminant in [N, 2N ]? An old conjecture of Linnik – now a theorem of Davenport
and Heilbronn when d = 3 and of Bhargava when d = 4, 5 – holds that this quantity
is cdN + o(N) (and Bhargava has a prediction for the constant for any n.) The cor-
responding function field question is: how many degree-d extensions K/Fq(t) are there
whose discriminant is a divisor of degree n? Any such extension of function fields can
be “spread out” uniquely to a branched covering of smooth curves Y → P1 of degree d
with n branch points. Branched covers of this kind are parametrized by moduli spaces
called Hurwitz spaces, and the function-field analogue of Linnik’s conjecture asks for an
asymptotic formula for the number of Fq-rational points on a Hurwitz space.

1.10. Homological stability and asymptotic point-count. Typically, the sort of
assertion one seeks is a statement of homological stabilization. The governing idea is
the following. We keep in mind that, for any variety X over Q, the étale Betti number
dimH i

et(Xn/Q̄,Q`) agrees with the topological Betti number dimH i(X(C),Q).

Proposition 9. Let X1, X2, . . . be a sequence of smooth algebraic varieties over Spec Z[1/N ].
Suppose that

• (Homological stabilization) There is a constant α > 0 such that, for all i 6 αn,
there is an isomorphism

H i
et(Xn/Q̄,Q`) ∼= H i

et(Xn+1/Q̄,Q`)

which commutes with the action of Galois on either side.
• (Subexponential Betti numbers) There is a constant C such that dimH i

et(Xn/Q̄,Q`)
is at most Cn for all i.
• (Comparison) For all p not dividing N and all i,

dimH i
et(Xn/Q̄,Q`) = dimH i

et(Xn/F̄p,Q`)

For each i, write H i
et(X∞/F̄p,Q`) for the direct limit in n of H i

et(Xn/F̄p,Q`).
Then, for all q > C2/α,

(8) lim q− dimXn |Xn(Fq)| =
∞∑
i=0

(−1)iTr Frob |H i
et(X∞/Fq; Q`)∨

Proof. From the homological stability, we know that

H i
et(Xn/Fq,Q`) ∼= H i

et(X∞/Fq,Q`)

whenever i 6 αn. Thus

q− dimXn |Xn(Fq)| −
∞∑
i=0

(−1)iTr Frob |H i
et(X∞/Fq,Q`)∨ =(9)

∞∑
i=αn

(−1)i(Tr Frob |H i
et(Xn/Fq,Q`)∨ − Tr Frob |H i

et(X∞/Fq,Q`)∨)(10)
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By the subexponential Betti numbers and comparison, we have

dimH i
et(X∞/Fq,Q`) = dimH i

et(Xi/α/Fq,Q`) < Ci/α

Moreover,
dimH i

et(Xn/Fq,Q`) < Cn < Ci/α.

On the other hand, it follows from Deligne’s proof of the Weil conjectures (you knew
this had to be coming at some point, right?) that the eigenvalues of Frobenius acting
on dimH i

et(Xi/α/Fq,Q`) are at least qi/2. So the contribution of the ith term in (10) is
at most

2q−i/2Ci/α = 2(q−1/2C1/α)i

The exponentiand is less than 1 by our hypothesis on q; thus, the error term goes to 0
as i grows and we are done. �

Exercise 10. Show that the sequence Xn = Pn satisfies the hypotheses (and thus the
conclusion) of Proposition 9.

1.11. Aside: motivic analytic number theory. Suppose we have a sequence of
varieties Xn such that q− dimXn |Xn(Fq)| approaches a limit. How confident should we
be that this regularity is explained geometrically by homological stabilization? Certainly
this doesn’t have to happen. For example, we could have Xn be the union of An with
n2 points; then H0(Xn) is badly nonstable, while the point-count |X(Fq)| = qn + n2

behaves itself as nicely as you please.
But homological stabilization is not the only reason a variety could have a number

of points that asymptotes to a constant multiple of qn. We observed in exercise 10 that

q−n|Pn(Fq)| → 1 + 1/q + 1/q2 + . . .

But another way to see this is that we can decompose Pn as a disjoint union of affine
spaces; namely, the locus x0 6= 0 is a copy of An, the locus x0 = 0, x1 6= 0 is a copy of
An−1, and so on, and this decomposiiton yields a different argument for the formula

|Pn(Fq)| = |An(Fq)|+ |An−1(Fq)|+ . . .+ |A0(Fq)| = qn + qn−1 + . . .+ 1.

What we’re doing here is establishing an identity in the ring of motives.

Definition 11. The ring of motives K0(VarR) is the quotient of the free abelian group
on varieties defined over R by the relations

X = [Y] if there’s an isomorphism between X and Y ;
• [X]−[Y ] = [X\Y ] whenever Y is a closed subvariety ofX. The product structure

on K0(VarQ) is given by direct product of varieties.

The ring of motives admits a point-counting homomorphism eq : K0(VarZ[1/N ])→ Fq
for all q prime to N , defined by

eq([X]) = |X(Fq)|

This is evidently compatible with the relations in the ring of motives and with the
product structure. Our argument above on Pn is really asserting a motivic identity

[Pn] = [An] + [An−1] + . . .+ [A0]

which implies the formula for |Pn(Fq)| for all q at once, by application of the various eq.
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What’s more, our “easy” proof of Proposition 3 is also actually a motivic argument,
since it rests on the operation of “scissoring” An into pieces, the biggest one of which
is Confn.

Exercise 12. (for people who like the ring of motives) Rewrite the proof of Proposi-
tion 3 to prove the identity

[Confn] = [An]− [An−1]

in K0(VarZ).

Much, much more about this point of view can be found in the joint work of Melanie
Matchett Wood and Ravi Vakil.

2. The Chowla conjecture, the large q regime, components

For the second part of the course, we will try to talk about some of the themes
that frequently arise when you work on the geometric analogues of problems in analytic
number theory. Our method will be to consider a series of examples, from each of which
we can derive a lesson.

For this section, the lesson is
Facts about arithmetic statistics in the “large q regime” correspond to
geometric facts about irreducible components of moduli spaces.

To be more precise: suppose there is some arithmetic counting function whose as-
ymptotic behavior we would like to understand. In the function field setting, this may
be some kind of count or average over the monic polynomials of degree n in Fq[t]; we
denote this average by F (q, n). For example, in the previous section, we might take
F (q, n) to be the number of squarefree polynomials among the monic ones; in that case,
we derived an exact formula for F (q, n), but more generally we might want to show the
existence of, or better yet compute, the limit

lim
n→∞

q−nF (q, n)

The “large q limit” version of this problem asks us to compute the value of

lim
n→∞

lim
q→∞

q−nF (q, n)

This is of special interest in cases where we expect the value of limn→∞ q
−nF (q, n) to

be independent of q; if this is the case, than one may well expect its limiting value to
be equal to the large q limit above. (Of course, this is not a formal statement about
limits; consider the function q/(n+ q), which goes to 1 in the large q limit (identically
in n) but to 0 in the large n limit (identically in q.)

We will illustrate this point with a discussion of the geometric analogue of the Chowla
conjecture.

(Good references for this section: Terry Tao’s 2012 blog post “The Chowla conjecture
and the Sarnak conjecture” and Carmon and Rudnick’s 2012 paper “The autocorrelation
of the Mobius function and Chowla’s conjecture for the rational function field.”)

The Möbius function µ : Z→ {−1, 0, 1} is defined by

µ(n) = (−1)k
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When n is the product of k distinct primes, and 0 otherwise. Note that (µ(n))2 is the
characteristic function of the set of squarefree integers.

It is customary to think of µ as a random sign attached to a squarefree integer.
Of course, it is not really random at all – µ(n) reflects the multiplicative structure
of n. But from the point of view of the additive structure of integers, it should look
essentially random. For instance, one might expect µ(n) and µ(n + 1) to be in some
sense probabilistically independent. This would mean, at the very least, that one should
expect ∑

n6N

µ(n)µ(n+ 1)

to be small, because there should be a lot of cancellation in the sum. If it were truly a
sum of random signs, it would be expected to be about

√
N .

But that is too much to ask for – note that even in the case of the average of Möbius
itself, that ∑

n6N

µ(n) = O(N)

is already about as hard as the prime number theorem, and the conjectural assertion
that

(11)
∑
n6N

µ(n) = O(N1/2 + ε)

is equivalent to the Riemann hypothesis!
What happens when we ask about this question over function fields? As always, the

analogue of summing over the interval [1, N ] – or, more precisely, of summing over an
interval [N, cN ] – is summing over all divisors on a curve C of a given degree n. In
this setting, the summatory function of Möbius has a very clean analytic intepretation,
which we leave it as an exercise to check:∑

µ(D)|D|−s = ζC(s)−1

Here, |D| denotes qdegD, the natural notion of the “size” of a divisor. We can then
recover ∑

degD=n

µ(D)

as the q−ns term in the power series expansion of ζC(s)−1. In particular, when C =
A1/Fq, i.e. when we replace Z with Fq[T ], we have

ζA1(s)−1 = (1− q1−s)

which tells us that ∑
deg f=n

µ(D) = 0

where the sum ranges over monic polynomials in Fq[t] of degree n. For a general
projective curve C, we have∑

D

µ(D)|D|−s = ζC(s)−1 = (1− qs)(1− q1−s)P (q−s)−1
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where P is the characteristic polynomial of Frobenius acting on H1(C/Fq,Q`); the Weil
bounds on the eigenvalues of Frobenius then show that∑

deg f=n

µ(D) = O(qn/2+ε).

Indeed, when the eigenvalues of Frobenius are distinct, the ε can be removed; all this
and more is discussed in Byungchul Cha’s 2011 preprint “The summatory function of
the Möbius function in function fields.”

What about combinations of shifts of Möbius? The governing conjecture is due to
Chowla:

Conjecture 13. (Chowla) Fix a positive integer m and fix integers a1, . . . , am and
integers e1, . . . em, not all even. Then∑

n6N

µ(n+ a1)e1 . . . µ(n+ am)em = O(N).

Note that we might as well take the ei to be 1 or 2 since µ3 = µ.

Exercise 14. Why did we impose the condition that not all the ei are even?

This conjecture plays a central role in contemporary questions in number theory
and dynamics. An argument of Sarnak (explained in Tao’s blog post) shows that the
Chowla conjecture would imply that a wide variety of interesting arithmetic sequences
are “uncorrelated with Möbius” – see Sarnak’s lecture notes “Three lectures on the
Möbius function.” So Chowla can be seen as a sort of “master conjecture” asserting
that it is roughly safe to think of the Möbius function as a random sign.

2.1. Function field Chowla and geometric Chowla. Almost nothing is known
about the Chowla conjecture. It would be a major advance if one could show∑

n6N

µ(n)µ(n+ 1) = o(N)

With this in mind, let us try to understand how to translate this special case of Chowla
from Z to Fq[T ], and from there to geometry. For the present discussion, q is an odd
prime power.

Problem 15. How does all this play out if Fq is a finite field of characteristic 2?

Consider the sum ∑
deg(f)=n

µ(f)µ(f + 1)

where f ranges over monic polynomials of degree n in Fq[t].
As mentioned above, µ(f) has a very nice interpretation in terms of the discriminant

∆(f); namely, (−1)nµ(f) is 1 if ∆(f) is a square in F×q , and −1 if ∆(f) is a non-square
in F×q . (By definition, µ(f) = 0 if and only if ∆(f) = 0.) It follows that

µ(f)µ(f + 1) + 1 = number of square roots of ∆(f)∆(f + 1) in Fq
Now define Xn to be the variety cut out of the afffine (n+ 1)-space with coordinates

y, a1, . . . , an by the equation

y2 = ∆(xn + a1x
n−1 + . . .+ an)∆(xn + a1x

n−1 + . . .+ an + 1).
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The map sending (y, a1, . . . , an) to (a1, . . . , an) expresses Yn as a double cover of An; it
is branched precisely at the locus where ∆(f)∆(f + 1) = 0, i.e. the locus where either
f or f + 1 has a double root. From the above discussion it’s clear that

|Yn(Fq)| − qn =
∑

deg(f)=n

µ(f)µ(f + 1)

So the statement to be proved becomes

|Yn(Fq)| = qn + o(qn).

or
lim
n→∞

q−nYn(Fq) = 1.

This is very promising – this seems the same sort of thing that we worked out for Confn

in the previous section! And I’ve even given you a tool – show that the cohomology of
Yn stabilizes as n grows. (We would also need to obtain subexponential Betti numbers
in order to control the contribution of the low-degree cohomology.) If all that worked,
you would find that

lim
n→∞

q−n|Yn(Fq)| =
∞∑
i=0

(−1)iTr Frob |H i
et;c(Y∞/Fq; Q`)

and you would want the infinite sum on the right-hand side to be equal to 1. What
would make this so? The most natural guess is that the top cohomology contributes the
1, and all the other cohomology vanishes. So one might formulate a geometric Chowla
conjecture as follows:

Conjecture 16 (Geometric Chowla). Let k be an algebraically closed field. For all
sufficiently large n, the variety Yn/k is irreducible, and there is a constant α > 0 such
that

H2n−i
et,c (Yn,Q`) = 0

for all i < αn.

Remark 4. This should not really be called a “conjecture,” since we have no good reason
to believe it.

Remark 5. The condition that Yn is irreducible, when k = qn, implies that H2i
et,c is a

1-dimensional space on which Frobenius acts as qn; thus the stable H0 contributes 1 to
the limit, while all the other cohomology groups contribute 0, yielding the desired value
of 1.

Remark 6. Conjecture 16 as written would not imply the Chowla conjecture over Fq[t];
a subexponential Betti bound in the sense of Proposition 9 would also be required.

Back in the real world, we don’t know that the cohomology groups Hi(Yn) stabilize
as n→∞, let alone what they stabilize to.

However, there is still something that can be done! Remember, to talk about the
rational function field version of Chowla’s conjecture is misleading; there are infiniitely
many different rational function fields, one for each finite field Fq. So q is another knob
we can turn. Instead of asking about

lim
n→∞

q−n|Yn(Fq)|
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we can ask about
lim
q→∞

q−n|Yn(Fq)|

and only then let n get large. In other words, we can make a weaker, but still very
relevant conjecture of Chowla type:

Question 17 (Large q Chowla). Is limn→∞ limq→∞ q
−n|Yn(Fq)| = 1?

Why is the case of large q interesting? Because letting q get large while everything
else stays fixed puts a very large hammer in our hands. It follows from the Weil
bounds, proven by Deligne (see e.g. Theorem 1 of “La conjecture de Weil: II”) that
the eigenvalues of Frobenius acting on H i

et;c(Y∞/Fq; Q`) are algebraic numbers with
complex absolute value at most qi/2. So the contribution of the trace of Frobenius on
all the cohomology groups other than H2i

et;c is bounded above by

Bqn−1/2

where B, a constant, is the sum of the ith Betti number as i ranges from 0 to 2n− 1.
On the other hand, the top cohomology group H2n

et;c(Y∞/Fq; Q`) is the Q`-vector
space spanned by the irreducible components of Yn/Fq, with the Frobenius action being
the permutation representation induced by the action of Frobenius on the irreducible
components, composed with multiplication by qn. It follows that

lim
q→∞

q−n|Yn(Fq)| = number of irreducible components of Yn/Fq.

Remark 7. There is a slight subtlety here. The trace of Frobq on H2n
et;c(Y∞/Fq; Q`)

isn’t the number of irreducible geometric components, but rather the number of those
components which are rational over Fq. So when we say q →∞ above, we have in mind
that q is getting large and at the same time q − 1 is getting sufficiently divisible that
all geometric components of Yn are Fq-rational for all sufficiently large q.

This instantiates the slogan at the beginning of this section: if we want to prove the
function field version of the Chowla conjecture, we need to know something about all
the cohomology groups of the relevant moduli spaces Yn. But if we aim at the more
modest goal of verifying that the Chowla conjecture is true “in the large q limit”, it
suffices to compute the irreducible components of Yn.

In particular, in order to answer Question 17 in the affirmative, it suffices to show
that Yn is geometrically irreducible. Equivalently, we need to know that the function
∆(f)∆(f+1), considered as a function in the ring Fq[a1, . . . , an], is not a perfect square.

This is precisely what Carmon and Rudnick prove. In fact, by being a little more care-
ful, they are able to prove the analogous statement for the general Chowla conjecture,
and they obtain explicit bounds for the Chowla sum. They prove:

Proposition 18 (Carmon-Rudnick). Let Fq be a finite field of odd characteristc and
let a1, . . . , am be distinct polynomials in Fq[t]. Then∑

deg f=n

µ(f + a1)e1 . . . µ(f + am)em 6 2mnqn−1/2 + 3rn2qn−1.

This gives the desired asymptotic for the product of shifted Möbius functions as long
as q is large relative to n.
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Problem 19. Compute the value of the Chowla sum
∑

deg(f)=n µ(f)µ(f + 1) for n = 3
and various values of q (this is not hard in Sage.) From this, can we make good guesses
about the cohomology groups of Yn – the Betti numbers of this variety over Q̄, and even
the Galois representations appearing in its etale cohomology? This would be a good
problem for the working groups to think about.

2.2. Geometric twin primes. There is a very similar story one could tell about the
twin prime conjecture. One version of the conjecture holds that if T (q, n) is the number
of monic polynomials f in Fq(t) such that f and f + 1 are both irreducible, then we
should have an asymptotic

lim
n→∞

n2q−nT (q, n)→ 1.

Just as in the case of Chowla, one can interpret this as a question about the etale
cohomology groups of a certain variety; but now the variety changes. Let Zn be the
variety parametrizing n-tuples (x1, . . . , xn, y1, . . . , yn) subject to the relation∏

i

(t− xi)−
∏
i

(t− yj) = 1

Then Zn carries an action of Sn × Sn by permutation of the xi and the yi, and the
quotient Zn/(Sn × Sn) is naturally identified with An (use as coordinates the elemen-
tary symmetric functions in the xi.) In this case, the Grothendieck-Lefschetz formula
expresses T (q, n) in terms of the étale cohomology of Zn, considered as Q`[Sn × Sn]-
module, along the lines described in Church-Ellenberg-Farb, “Representation stability
in cohomology and asymptotics for families of varieties over finite fields.”

In particular, the large q limit case of the twin prime conjecture, which follows from a
more refined 2008 theorem by Paul Pollock (“A polynomial analogue of the twin prime
conjecture”) amounts to the assertion that Zn is geometrically irreducible.

Problem 20. Write down an assertion about the cohomology of Zn that deserves to
be called “the geometric twin primes conjecture.”

In fact, one can go further: Lior Barry-Soroker, in a 2012 paper, “Hardy-Littlewood
tuple conjecture over large finite fields,” proves the much more general statement that
for any set of polynomials a1, . . . , ar of degree less than n, the set of f ∈ Fq[t] of degree
n such that f+a1, . . . , f+ar are all irreducible has approximately the expected density,
n−r – as long as q is allowed to go to ∞ with n fixed. Note that in Barry-Soroker’s
result, the error term has implicit constants depending only on n, r; in particular, the
bound is uniform in the ai and indeed the ai can be chosen separately for each q!

2.3. Some problems are boring when q is large. How many monic degree-n poly-
nomials f are there such that f and f + 1 are both squarefree? To answer this question
is to count the number of points on the complement of the vanishing locus Z ⊂ An of
∆(f)∆(f + 1). But |Z(Fq)| is bounded above by a constant multiple of qn−1, so

lim
q→∞

q−n(An\Z)(Fq) = 1.

All this tells us is that “over Fq, both f and f + 1 are squarefree 100% of the time,”
which is more or less obvious given that each one of them is squarefree 100% of the time.
This is a case where limn→∞ q

−n(An\Z)(Fq) is not independent of q, but rather carries
some interesting information in the terms which are lower-order in q – this information,
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of course, is lost in the large q limit. There are standard analytic number theory proofs
which show that, over Z, the proportion of integers n such that both n and n + 1 are
squarefree is ∏

p

(1− 2/p2)

and I presume, though I have not checked, that these proofs work just as well over
Fq(t), giving an asymptotic of the same form but with the product over irreducible
monic polynomials instead of prime numbers.

3. Cohen-Lenstra heuristics, big monodromy, random matrices

The lesson of this section:
In many problems of interest, the computation of irreducible components
necessary to answer an “arithmetic statistics in the large q limit” prob-
lem is naturally cast as a problem of computing a monodromy group.
What’s more, computing these monodromy groups is not just a way of
ratifying existing conjectures, but provides a machine for producing new
conjectures which are to some extent backed by geometry.

In our discussion of the Chowla conjecture, we constructed a variety Yn which was
a double cover of An branched along a closed subvariety: namely, the vanishing locus
of ∆(f)∆(f + 1). Denote the complement of this closed subvariety by Un, and the
restriction Yn ×An Un by Vn. Then Vn → Un is an etale double cover, which is to say it
is described by a homomorphism

φ : π1(Un)→ Z/2Z
The question raised in the previous section is

• whether Yn is irreducible, or equivalently;
• whether Vn is connected, or equivalenty;
• whether the image of φ – the monodromy group of the cover – is the whole group

Z/2Z.
In other words, what we are proving when we prove that ∆(f)∆(f + 1) is not a

perfect square can be thought of as a big monodromy result. It might be better to say
an as-big-as-possible monodromy result, since Z/2Z is not a very big group.

We now turn our attention to the Cohen-Lenstra heuristics.

Conjecture 21 (Cohen-Lenstra). Let p an odd prime and Er,`,N be the expected value,
as d ranges over squarefree integers in [N, 2N ], of

Surj(Cl(Q(
√
−d)), (Z/`Z)r).

Then Er,`,N approaches a limit as N →∞, and this limit is 1. For instance, this means

E(Cl(Q(
√
−d))[`]) = 2.

Remark 8. These conjectures are part of a rather general family of heuristics, some due
to Cohen and Lenstra, some due to Cohen-Lenstra-Martinet. There are Cohen-Lenstra
heuristics about real quadratic fields, too, and about the class groups of fields of any
degree, not just quadratic fields, and about the whole p-primary part of the class group,
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not just the p-torsion, and so on. As with Chowla, we will restrict our attention to the
subcase of the problem above, which is already rich enough to support the geometric
point I’m trying to make

Almost nothing is known about Conjecture 21, apart from a theorem of Davenport
and Heilbronn which says the conjecture holds in case r = 1, p = 3.

We note in passing that the conjecture of Poonen and Rains, which will also be
discussed in this workshop, has a similar fom:

Heuristic: (Poonen-Rains) Let E/Q be an elliptic curve, let p be an odd prime, and
let Er,p,X be the expected value, as d ranges over squarefree integers in [−X,−2X] of

Surj(Selp(Ed), (Z/pZ)r).

Then Er,p,X approaches a limit as X →∞, and this limit is p(1/2)k(k+1).
In particular, this means that the average size of Selp is p+ 1.

3.1. Function-field Cohen-Lenstra. Let Fq be a finite field of characteristic prime
to `. When we pass from Q to Fq(t), the analogue of a quadratic field is a hyperelliptic
curve. To be imaginary is to be ramified at ∞; so it is natural to declare the quadratic
imaginary function fields to be those which are ramified over ∞ ∈ P1, which is to say,
those with affine model y2 = f(x) with f(x) of odd degree. Call this curve Cf . We
write ∞f for the unique point of Cf over ∞. Then we have analogies

O, the ring of integers of Q(
√
−d) the affine curve U = Cf −∞f

ideal of O divisor on U
principal ideal of O principal divisor on U

class group of O Jac(Cf )(Fq)

The last line requires a little explanation. The group of divisors mod principal divisors
is the Picard group Pic(Cf )(Fq), which sits in an exact sequence

0→ Jac(Cf )(Fq)→ Pic(Cf )(Fq)→ Z→ 0

where the last map is the degree map. So the map D 7→ D − (degD)[∞f ] induces a
bijection from Div(U) to Div0(C), the group of degree-0 divisors on C, which descends
to an isomorphism from the class group of U to Jac(Cf ).

Remark 9. In the case of a hyperelliptic curve which was split at ∞, which is to say,
y2 = f(x) with f of even degree, there are two points ∞f and ∞′f of Cf over ∞. In
this case

Pic(U) = Pic(Cf )/〈∞f ,∞′f 〉 = Jac(Cf )/〈∞f −∞′f 〉
So our model for the class group of a real quadratic field is not quite described by an
abelian group A, but rather by an abelian group A with a specified element a, the class
group being the quotient A/a . The Cohen-Lenstra heuristics say that the p-part in
the class group of a real quadratic field should be modelled by A/a where A and a are
chosen uniformly at random in a suitable sense.

Given the above, it is natural to define a space Confn(`) to be the moduli space
of configurations with `-level structure, i.e. pairs (f, P ) where f is a monic squarefree
polynomial of degree n and P is a nonzero `-torsion point on the Jacobian of Cf , the
curve with equation y2 = f(x)
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Now define Eq,`,r,n to be the expected value

Ef | Surj(Jac(Cf )(Fq), (Z/`Z)r)|

as f ranges over monic squarefree polynomials of degree n.
Then Eq,`,1,n is the expected number of nonzero Fq-rational `-torsion points on the

Jacobian of Cf , where f is chosen randomly in Confn(Fq); in other words,

Eq,`,1,n =
|Confn(`)(Fq)|
|Confn(Fq)|

.

And the function field Cohen-Lenstra conjecture then demands that

lim
n→∞

|Confn(`)(Fq)|
|Confn(Fq)|

= 1.

3.2. Function-field Cohen-Lenstra in the large q limit and monodromy. The
natural map Confn(`) → Confn which sends (f, P ) to f is an etale cover; the fiber
over f is Jac(f)[`], and the cover is described by specifying an action of π1(Confn) on
Jac(f)[`]. But note that by π1 here I mean the étale fundamental group; this fits into
an exact sequence

1→ π1(ConfnFq
)→ π1(Confn)→ Gal(Fq/Fq)→ 1.

(You should complain at this point that I have not specified a basepoint for my
fundamental groups; I just ask you to trust me that this is one of those times when we
can get away with suppressing that choice.)

The action of π1(Confn) on Jac(f)[`] is linear, so its image in the permutation group
of the fiber actually lies in GL(Jac(f)[`]); what’s more, it preserves the (symplectic)
Weil pairing on Jac(f)[`] up to scaling, so the action of π1(Confn) actually takes image
in the generalized symplectic group GSp(Jac(f)[`]). What’s more, the geometric fun-
damental group π1(ConfnFq

) preserves the Weil pairing on the nose, so its image lies in
Sp(Jac(f)[`]).

Write Γ ⊂ GSp(Jac(f)[`]) for the image of π1(Confn), and Γ0 ⊂ Sp(Jac(f)[`]) for the
image of π1(Confn /Fq). The former group is called the monodromy group of the cover,
and the latter the geometric monodromy group.

At this point, there is no harm in choosing a basis for Jac(Cf )[`] and thinking of Γ
as a subgroup of the standard generalized symplectic grouip GSp2g(Z/`Z). (Here g is
the genus of Cf , so g = (1/2)(n− 1).) Note that GSp2g(Z/`Z)/Sp2g(Z/`Z) ∼= (Z/`Z)×;
we denote by [q] the class in GSp2g(Z/`Z)/ Sp2g(Z/`Z) corresponding to q ∈ (Z/`Z)×.
The fact that Frob ∈ Gal(Fq/Fq) scales the Weil pairing by q implies that the image of
Γ in GSp2g(Z/`Z)/ Sp2g(Z/`Z) is [q]Z. So we have an exact sequence

1→ Γ0 → Γ→ [q]Z → 1

where the third term is a finite cyclic group whose order is the order of q in (Z/`Z)×.
Now standard facts about étale covers and the étale fundamental group tell us:
• The geometric components of Confn(`) are in bijection with the orbits of Γ0 on

(Z/`Z)2g.
• The action of Frob on the geometric components is given by the action of [q] on

the orbits of Γ.
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Write Γq for the coset of Γ0 in Γ which maps to [q] in [q]Z.

Proposition 22. The following six numbers are the same:
(1) The average size | coker(g − 1)| − 1, where g is a random element of Γq;
(2) The average number of nonzero fixed points of a random element of Γq acting

on (Z/`Z)2g;
(3) The number of Γ0-orbits on nonzero elements of (Z/`Z)2g which are fixed by [q];
(4) The number of geometrically irreducible components of Confn(`) which are de-

fined over Fq;
(5) limq→∞

|Confn(`)(Fq)|
|Confn(Fq)| ;

(6) limq→∞Eq,`,1,n.

Proof. Most of the implications are straightforward from definitions. The passage from
the second number to the third is a slightly tricked-out version of Burnside’s Lemma.
The passage from the fourth number to the fifth follows from the Weil bounds, as in
our discussion of large q Chowla. �

Proposition 23. When ` is an odd prime all six numbers above are equal to 1.

Proof. It suffices to prove this for the number of Γ0-orbits on (Z/`Z)2g which are fixed
by [q]. In order to compute this number, we must of course know what Γ0 is. In other
words, we need to know the monodromy group of the cover. Fortunately for us, this is
known! It is a theorem of Jiu-Kang Yu – proved by him expressly with this application
to “large q Cohen-Lenstra” in mind – that Γ0 is the whole of Sp2g(Z/`Z). (Yu never
published his paper, and proofs later appeared in papers of Hall and of Achter-Pries.)

Given this big monodromy theorem, we know that Γ0 acts transitively on the nonzero
elements of (Z/`Z)2g. This proves the desired statement. �

We conclude that
lim
q→∞

Eq,`,1,n

which is to say that the Cohen-Lenstra conjecture holds in the large q limit when r = 1.

Exercise 24. When ` = 2, show that the geometric monodromy group Γ0 of Confn(2)→
Confn is much smaller than Sp2g(Z/2Z). What is it? What is Γ? What does this com-

putation tell us about limq→∞
|Confn(`)(Fq)|
|Confn(Fq)| ? Does this match what you know about the

2-part of the class group of imaginary quadratic fields?

3.3. Monodromy tells us when Cohen-Lenstra needs modification. In fact,
the same argument easily handles general r. We can define Confn(`, r) to be the space
parametrizing pairs (f, φ) where φ : (Z/`Z) ↪→ Jac(Cf )[`] is an injection. This, too,
is an etale cover of Confn, corresponding to the action of π1(Confn) on the injections
from (Z/`Z)r to (Z/`Z)2g. Since the action of π1(Confn) on Jac(Cf )[`] factors through
Γ, one has by the same argument as above that

lim
q→∞

Eq,`,r,n = the number of [q]-fixed orbits of Γ0 on Inj((Z/`Z)r, (Z/`Z)2g).

Now the symplectic group does not act transitively on the injections from (Z/`Z)r to
(Z/`Z)2g once r > 1. Suppose φ : (Z/`Z)r → (Z/`Z)2g is an injection and ω the
symplectic form on (Z/`Z)r obtained by pulling back the Weil pairing along φ. Then
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ω is an invariant of the Γ0-orbit of φ; in fact, by the symplectic Witt theorem, it is the
only invariant. Moreover, the action of [q] on these orbits multiplies ω by [q].

Suppose q is not congruent to 1 mod `. Then if the orbit of φ is fixed by [q], we
must have ω = 0; now Γ0 acts transitively on the isotropic subspaces. In other words,
there are `(

r
2) components of Confn(`, r), one for each antisymmetric quadratic form,

but only one of them is defined over Fq, and this is the only one that can contribute
Fq-rational points.

If q is congruent to 1 mod `, the situation is totally different. Then [q] is the identity,
and all `(

r
2) components are defined over Fq.

So we must be very careful about the way we let q go to infinity, as discussed in
Remark 7. If we let q get large in a sequence of prime powers which are never 1 mod `,
we have

(12) lim
q→∞

Eq,`,r,n = 1

which agrees with the Cohen-Lenstra heuristic.
But if we let q get large in a sequence of prime powers which are 1 mod `, we get

instead

(13) lim
q→∞

Eq,`,r,n = `(
r
2).

The two answers agree for r = 1 but are very different for large r.
One way to think of this is that, when q = 1 (mod `), the monodromy group Γ is

smaller; namely, it is equal to Γ0.
So what’s going on? One answer agrees with Cohen-Lenstra, the other is quite

different. Is this evidence for Cohen-Lenstra, or against it? In a sense, it is both. We
are somehow thinking of the large q limit of Fq(t) as “modeling” a number field. What
does it mean for q to be 1 mod `? It means precisely that Fq(t) contains an `-th root of
unity. And q not congruent to 1 mod ` means Fq(t) does not have an `th root of unity.
Since Q doesn’t have an `-th root of unity (remember, ` is odd!) the first model is a
more appropriate one for Q; so with a sigh of relief we can say that the monodromy
computation supports Cohen-Lenstra.

But what about the `-torsion in class groups of K(
√
−d), where K is another number

field? This computation suggests that the behavior may be quite different depending on
whether K contains ζ`. And this indeed appears to be the case! More than twenty years
after the initial publication of the heuristics (in their general form due to Cohen, Lenstra,
and Martinet) Günter Malle noticed computationally that the conjectures seemed to
be way off in some cases: for example, with respect to the 3-torsion in the class group
of quadratic extensions of Q(ζ3). Malle recognized that the presence of extra roots of
unity was the deciding factor, and proposed a modified conjecture that fit the data
much better.

Another way to make predictions about the behavior of the `-part of the class group
would be to declare that the average number of injections from (Z/`Z)r to Cl(K(

√
d))

should be `(
r
2) when K is a field containing ζ`. Derek Garton, in his 2012 thesis, shows

that this reproduces Malle’s modified Cohen-Lenstra heuristic exactly! What’s more,
he explains in many cases how the full suite of Cohen-Lenstra predictions (which involve
the full `-primary part of the class group, not just the `-torsion) ought to be modified
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in the presence of `-power roots of unity, at least if we expect the arithmetic to obey
the laws suggested by the geometry.

3.4. Geometric Cohen-Lenstra. The connectedness of Confn(`) told us that, in the
large q limit, the average size of the `-part of the class group is 2. (As we put it above,
the average number of nonzero elements is 1.)

But in the end, we don’t want to take the large q limit; in order to prove what should
rightfully be called the Cohen-Lenstra conjecture over Fq(t), we need to prove (among
other things!) that

(14) lim
n→∞

|Confn(`)(Fq)|
|Confn(Fq)|

= 1.

What would we mean by “geometric Cohen-Lenstra”? It’s not enough to compute
H0(Confn(`)), which, as we’ve seen, amounts to computing a monodromy group. We
need to go deeper into the cohomology of Confn(`). In order to show the existence of
the limit above, it suffices, by Proposition 9 to prove:

Theorem 25. It is the case that:
• (Homological stabilization) There is a constant α > 0 (depending on `) such

that, for all i 6 αn, there is an isomorphism

H i
et(Confn(`)/Q̄,Q`) ∼= H i

et(Confn+1(`)/Q̄,Q`)

which commutes with the action of Galois on either side.
• (Subexponential Betti numbers) There is a constant C such that dimH i

et(Confn(`)/Q̄,Q`)
is at most Cn for all i.
• (Comparison) For all p not dividing N and all i,

dim dimH i
et(Confn(`)/Q̄,Q`) = dimH i

et(Confn(`)/F̄p,Q`)

But we believe that the limit is 1! And we’ve already shown in the previous section,
when we computed the large q limit, that the contribution of the stable H0 is 1. It is
thus natural to hope that all the other terms contribute 0.

Conjecture 26 (Geometric Cohen-Lenstra). There is a constant α > 0 (depending on
`) such that, for all 1 < i 6 αn,

H i
et(Confn(`)/Q̄,Q`) = 0

Theorem 25 is proved in the paper “Homological stability for Hurwitz spaces and the
Cohen-Lenstra conjecture over function fields,” by Ellenberg, Venkatesh, and Wester-
land. (To be more precise: all of this theorem is proved there except for the Galois
equivariance in the homological stabilization; that we figured out how to do later and
is not written down yet.)

We presented a proof of the geometric Cohen-Lenstra conjecture – which implies the
function field Cohen-Lenstra conjecture (14) in a sequel, but the argument turned out
to have a fatal flaw. As I write this , we are still trying to work around it!

The geometric Cohen-Lenstra conjecture asserts that stable cohomology of a certain
family of moduli spaces vanishes in degree greater than 0. Another way to say this
is that the fixed-q limit limn→∞

|Confn(`)(Fq)|
|Confn(Fq)| agrees with the large q limit, which in

turn, as we saw in the previous section, could be computed from statistics of random
matrices. Here we find another lesson.
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In many problems, stable cohomology in positive degree can be thought
of as measuring a deviation from agreement with a random matrix
model. As q grows, this deviation approaches 0 and the statistics be-
ing studied approach those of random matrices. If we conjecture that
the statistics being studied agree with those of random matrices with-
out letting q grow, then one might well predict a vanishing of stable
cohomology on the geometric side.

An easier example of the lesson above can be found in the observation made earlier
in the notes, that

lim
n→∞

|PConfn /Sn−1(Fq)|
|Confn(Fq)|

which is to say, the average number of linear factors of a squarefree polynomial is
(1 + q−1)−1. The random matrix model for the action of Frobenius on the roots of f is
to take this action to be a random permutation of the roots. The number of linear factors
is the number of fixed points of Frobenius in this action, so the random matrix model
would predict that a random squarefree polynomial would have 1 linear factor. This is
true in the large q limit, but not true for fixed q; and the “reason” for the deviation is
that the higher cohomology of PConfn /Sn−1, while it does stabilize, does not stabilize
to 0. (What it does stabilize to is described very explicitly in Church-Ellenberg-Farb,
“Representation stability in cohomology...”)

4. More material

The above represents more than enough material to cover in my lectures at the
Arizona Winter School, but there is much more geometric analytic number theory one
could talk about. Here are some brief ideas about further topics, some of which I may
expand into new sections for a later version of these notes; and of course I would be
happy to talk about any of these topics at the AWS!

Geometric Malle-Bhargava. Let G ⊂ Sd be a group and let NG(N) be the number
of degree-d extensions of Q with Galois group G and discriminant at most N . Malle
predicts an asymptotic

NG(N) ∼ c(G)Na(G)(logN)b(G)

for specified values of a(G), b(G) and an unspecified constant c(G). Bhargava conjec-
tures a value of c(G) for G = Sd (we remark that a(Sd) = 1 and b(Sd) = 0.)

The geometric version of this conjecture involves the moduli space of branched G-
covers of P1, which is called a Hurwitz space – then the geometric Malle-Bhargava
conjecture says that these spaces have the same stable cohomology as Confn. Loosely
speaking, there is a map from Hurwitz space to configuration space (forget the G-cover,
remember only the branch points) which we expect stably to induce an isomorphism on
cohomology with rational coefficients; thus, the number of rational points on Hurwitz
space is approximately the same as the number of points on configuration space, which
in turn say that there is on average 1 G-extension per discriminant. It turns out that for
some choices of G this should not be expected to hold; there is an extra factor, coming
from the Schur multiplier of G. This story is described in Venkatesh-Ellenberg’s 2010
paper “Statistics of Number Fields and Function Fields.”
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Geometric Poonen-Rains. The geometric version of their conjecture on the mod `
Selmer group would have to do with the cohomology of a moduli space parametriz-
ing classes (S, α), where S is an elliptic surface and α is a class in H2(S,Z/`Z). The
pairing on H2(S,Z/`Z) is symmetric, not antisymmetric like the Weil pairing, so the
verification of Poonen-Rains in the large q limit case should be obtainable via a suitable
big monodromy theorem in the H2 of a family of elliptic surfaces. A group of us at
AIM figured out how to do this in principle and are writing it up.

Geometric Linnik-Duke. Vivek Shende and Jacob Tsimerman have a beautiful 2013
paper, “Equidistribution on the spae of rank two vector bundles,” where they study
function field analogues of conjectures about equidistribution of Heegner points. The
geometric analogues of these conjectures turn out to be conjectures about the cohomol-
ogy of generalized theta divisors on Jacobians! One interesting feature of their work is
that they can prove the homological stabilization and subexponential Betti bounds they
need, but for some of the most general theorems they’d like to prove, the comparison
step – moving from cohomology in characteristic 0 to cohomology in characteristic p –
has not yet been established.

Geometric Batyrev-Manin. The Batyrev-Manin conjectures give asymptotics for the
number of rational points on a variety X of height at most B. The geometric analogue
concerns the moduli space of maps from P1 to X, i.e. the space of rational curves on
X; more generally, it considers the moduli space of sections of a fibration X/P1. It
turns out that the geometric conjectures which naturally correspond to the Batyrev-
Manin heuristics are quite reasonable from the algebro-geometric point of view; they
are conjectures of the form “the space of holomorphic rational curves on X of very large
degree is topologically very similar to the space of smooth maps from S2 to X(C).” In
many cases where the Batyrev-Manin conjecture is known to hold (e.g. when X is a
homogenous variety, or a toric variety) the corresponding geometric statement about
the space of rational curves on X is also known to hold. A very interesting exception
is the case of very low degree hypersurfaces in very high dimension, in which case the
number of rational points of bounded height can be computed by the Hardy-Littlewood
circle method. Is there a geometric circle method? Is there a motivic circle method?
(In connection with the last question, see the work of David Bourqui.)


