
ARIZONA WINTER SCHOOL 2013

EXERCISES: WEAK MAASS FORMS, MOCK MODULAR FORMS,
AND q-HYPERGEOMETRIC SERIES

AMANDA FOLSOM

The following 54 exercises are grouped by category, divided into the following 5 sections:

1. Weak Maass forms
2. Mock Jacobi forms
3. q-hypergeometric series
4. Partition theory
5. Quantum modular forms

Each problem is labeled to indicate difficulty level:

? = less difficult,
?? = medium difficulty,

? ? ? = more difficult.

Problems are not necessarily meant to be completed in the order presented, although it will be
clear by context that some problems are sequential.

1. Weak Maass forms

Let Hκ(Γ, χ) (resp. Sκ(Γ, χ),Mκ(Γ, χ),M !
κ(Γ, χ)) denote the space of harmonic weak Maass

forms (resp. cusp forms, holomorphic modular forms, weakly holomorphic modular forms) of
weight κ on Γ ⊆ SL2(Z) with character χ, and q := e2πiτ , τ ∈ H. Note we will typically write
Hκ(Γ) := Hκ(Γ, 1) (resp. Sκ(Γ),Mκ(Γ),M !

κ(Γ)), and (Γ0(N), χ) = (N,χ).

Problem 1. (??) Suppose N ∈ N and f ∈ H2−k(Γ1(N)), 1 < k ∈ 1
2
Z. Prove that f has Fourier

expansion of the form

f(τ) =
∑

n�−∞

c+
f (n)qn +

∑
n<0

c−f (n)Γ(k − 1, 4π|n|y)qn,

where τ = x+ iy ∈ H, x, y ∈ R, and Γ(a, x) is the incomplete Γ-function.

Problem 2. (??) Let 0 < a < c be integers. Consider the weak Maass form

D(a, c; τ) := q4f2c
a
c (1−a

c )H(a, c; 4f 2
c τ) + V (a, c; 2f 2

c τ),
1
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where fc := 2c/ gcd(2c, 4), and

V (a, c; τ) := −1

2

∫ i∞

−τ

(−iz)−3/2T (a, c;−1/2z)√
−i(z + τ)

dz,

T (a, c; τ) := i
∑
n∈Z

(n+ 1/4) cosh(2πi(n+ 1/4)(2a/c− 1))e2πiτ(n+ 1
4)

2

,

H(a; c; τ) :=
∑
n≥0

qn(n+1)/2(−q; q)n
(qa/c; q)n+1(q1−a/c; q)n+1

,

where for n ∈ N0, (α; q)n := (1− α)(1− αq) · · · (1− αqn−1).

(a) Prove that D(a, c; τ) has a Fourier expansion as in Problem 1.

(b) Prove that D(a, c; τ) is annihilated by the weight 1/2 Laplacian operator

∆ 1
2

:= −y2

(
∂2

∂x2
+

∂2

∂y2

)
+
iy

2

(
∂

∂x
+ i

∂

∂y

)
.

Problem 3. (??) Recall that the ξk-operator is defined by

ξk := 2iyk
∂

∂τ
.

Let 1 < k ∈ 1
2
Z, and prove that for f ∈ H2−k(N,χ) (with Fourier expansion as in

Problem 1),
ξ2−k : H2−k(N,χ)→ Sk(N,χ),

and
ξ2−k(f) = −(4π)k−1

∑
n≥1

c−f (−n)nk−1qn.

Problem 4. (?) Let Rk = −4πD +
k

y
, where D :=

1

2πi

d

dτ
. Prove Bol’s identity, that

Dk−1 =
1

(−4π)k−1
Rk−1

2−k.

Problem 5. (??) Let 2 ≤ k ∈ Z. Prove that if f ∈ H2−k(N) (with Fourier expansion as in Problem
1), then

Dk−1(f) ∈M !
k(N),

and
Dk−1f =

∑
n�−∞

c+
f (n)nk−1qn.
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Let k ∈ 1
2
Z. For primes p, and F (τ) =

∑
n�−∞

aF (n)qn ∈ M !
k(N,χ), the Tk(p) Hecke operator

is defined by

F |Tk(p) :=
∑

n�−∞

(
aF (pn) + χ(p)pk−1aF (n/p))

)
qn, if k ∈ Z,

:=
∑

n�−∞

(
aF (p

2n)+χ(p)

(
(−1)λn

p

)
pλ−1aF (n)+χ(p

2)p2λ−1aF (n/p
2)

)
qn, if k=λ+

1

2
, λ ∈ Z.

A Hecke action on weak Maass forms is defined analogously.

Problem 6. (??) Let f ∈ H2−k(N,χ) and p - N a prime for which ξ2−k(f) ∈ Sk(N,χ) is an eigenform
of Tk(p) with eigenvalue λ(p). Prove that

f |T2−k(p)− ph(k)λ(p)f ∈M !
2−k(N,χ),

where h(k) := 2− 2k if k ∈ 1
2

+ Z, and h(k) := 1− k if k ∈ Z.

Problem 7. (??) Fill in the details of the proof of Theorem 4.5 of the notes, which pertains to periods
and weak Maass forms.

Let ρL denote the Weil representation associated to L′/L, where L ⊆ V is an even lattice and
L′ its dual, and let M !

k,ρL
denote the space of C[L′/L]-valued, weight k, weakly holomorphic

functions of type ρL for Γ̃ := Mp2(Z). (Other spaces Mk,ρ, Hk,ρ etc. are defined analogously.)
For g ∈M2−k,ρL and f ∈ Hk,ρL , define the bilinear pairing

{g, f} = (g, ξk(f))2−k :=

∫
Γ\H
〈g, ξk(f)〉y2−k dxdy

y2
,

where 〈·, ·〉 denotes the Petersson scalar product.

Problem 8. (???) Prove that {g, f} depends only on the principal part of f .

Problem 9. (??) Prove that the Hecke operator Tk(`) is up to scalar self adjoint with respect to the
pairing {·, ·}. That is, show that

{g, f |Tk(`)} = `2k−2{g|T2−k(`), f}
for any g ∈ S2−k,ρ and f ∈ Hk,ρ.

Problem 10. (??) Let g ∈ S2−k,ρ, f ∈ Hk,ρ, and suppose {g, f} = 1 and {g′, f} = 0 for all g′ ∈ S2−k,ρ
orthogonal to g. Show that ξk(f) = ‖g‖−2g, where ‖ · ‖ denotes the Petersson norm.
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Problem 11. (??) Let F ⊂ C be a subfield, and g ∈ S2−k,ρ(F ) a newform. (Here, Sk,ρ(F ) denotes
those forms with Fourier coefficients in the field F .) Show that there is some f ∈ Hk,ρ(F )
such that

ξk(f) = ‖g‖−2g.

Problem 12. (??)
(a) Let f(τ) :=

∑∞
n=h af (n)qn be meromorphic in a neighborhood of q = 0, and suppose

af (h) = 1. Prove there exist unique numbers c(n) such that

f(τ) = qh
∞∏
n=1

(1− qn)c(n),

where the product converges in a small neighborhood of q = 0.

(b) Prove that
Θ(f)

f
= h−

∞∑
n=1

∑
d|n

c(d)dqn,

where the Ramanujan Θ-operator is defined by

Θ

(
∞∑
n=m

b(n)qn

)
=

∞∑
n=m

nb(n)qn.

(Equivalently, Θ = q d
dq

= 1
2πi

d
dτ
.)

Problem 13. (???) The Eisenstein series E4(τ) is defined by

E4(τ) := 1 + 240
∞∑
n=1

σ3(n)qn,

where σm(n) :=
∑

d|n d
m. Without using the previous exercise, prove that E4(τ) satisfies

E4(τ) =
∞∏
n=1

(1− qn)c(n
2),

where

g(τ) =
∑
n≥−3

c(n)qn = q−3 + 4− 240q + 26760q4 − 85995q5 + 1707264q8 . . . .

Investigate this property with respect to E6(τ) and E12(τ) as well.

The next two problems concern Borcherds products and mock theta functions. Consider one
of Ramanujan’s mock theta functions,

ω(q) =
∞∑
n=0

aω(n)qn :=
∞∑
n=0

q2n(n+1)

(q; q2)2
n+1

=
∞∑
n=0

qn

(q; q2)n+1

,
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where the last equality follows from a q-hypergeometric identity of Fine. Note that by Problem
48, we have a combinatorial interpretation of the coefficients aω(n) of the mock theta function
ω(q). Consider the functions

Lω(q) :=
∑
n≥1

σ̂ω(n)qn, L̃ω(q) :=
∑
n≥1

gcd(n,6)=1

σ̂ω(n)qn,

where the divisor-like function σ̂ω is defined on N by

σ̂ω(n) :=
∑

1≤d|n

(
d

3

)
χ
(n
d

)
d · aω

(
2d2 − 2

3

)
,

and χ(m) :=
(−8
m

)
is defined by the Jacobi symbol.

Problem 14. (??) Define the “Borcherds product”

Bω(τ) :=
∞∏
m=1

(
1 +
√
−2qm − q2m

1−
√
−2qm − q2m

)−4(m
3 )aω

(
2m2−2

3

)

from the coefficients aω(n) of the mock theta function ω(q). Using results in [4], argue
that Bω(τ) is a modular form of level 6 and weight 0.

The next exercises will establish that Lω(q) and L̃ω(q) are in fact weight 2 modular forms.

Problem 15. (??)
(a) Prove that

Θ(Bω(τ))

Bω(τ)
= −8

√
−2Lω(q),

where Θ is the operator defined previously within §1.

(b) Deduce that Lω(q) is modular of weight 2.

(c) Using the operators U` and V` defined by∑
b(n)qn|U` :=

∑
b(`n)qn,

∑
b(n)qn|V` :=

∑
b(n)q`n,

deduce that L̃ω(q) is a modular form of weight 2.
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2. Mock Jacobi forms

Problem 16. (?) Let e(z) := e2πiz. For z ∈ C, τ ∈ H, define the Mordell integral

h(z; τ) :=

∫
R

e(τx2/2)e−2πzx

cosh(πx)
dx.

Prove that
h(z; τ) + e(−z)q−1/2h(z + τ ; τ) = 2e(−z/2)q−1/8.

Problem 17. (??) Prove that

h(z; τ) + h(z + 1; τ) =
2√
−iτ

eπi(z+1/2)2/τ .

Problem 18. (??) Prove that h(z; τ) is the unique holomorphic function (in z) satisfying the properties
from the previous two problems.

For τ ∈ H, and u, v ∈ C \ (Zτ + Z), define

µ(u, v; τ) :=
e(u/2)

ϑ(v; τ)

∑
n∈Z

(−1)nqn(n+1)/2e(nv)

1− qne(u)
,

where the Jacobi ϑ-function is defined by

ϑ(z; τ) :=
∑
n∈Z

q
1
2(n+ 1

2)
2

e ((n+ 1/2) (z + 1/2)) .

Problem 19. (?) Prove that µ(u, v; τ) + e(v − u)q−1/2µ(u+ τ, v) = −ie((v − u)/2)q−1/8.

Problem 20. (?) Prove that µ(u, v; τ) is a meromorphic function in the variable u, with simple poles
for u ∈ Zτ + Z, and residue −1/(2πiϑ(v; τ)) at u = 0.

Problem 21. (??) Prove that

1√
−iτ

eπi(u−v)2/τµ

(
u

τ
,
v

τ
;−1

τ

)
+ µ(u, v; τ) =

1

2i
h(u− v; τ).

Let

R(u; τ) :=
∑
n∈Z

{
sgn

(
n+

1

2

)
− E

((
n+

Im(u)

Im(τ)
+

1

2

)√
2y

)}
(−1)nq−

1
2(n+ 1

2)
2

e

(
−
(
n+

1

2

)
u

)
,
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where

E(z) := 2

∫ z

0

e−πt
2

dt, z ∈ C.

Problem 22. (?) Prove that

R(u; τ) + e(−u)q−
1
2R(u+ τ ; τ) = 2e (−u/2) q−

1
8 .

Problem 23. (??) Prove that

1√
−iτ

eπiu
2/τR

(
u

τ
;−1

τ

)
+R(u, τ) = h(u; τ).

Problem 24. (?) Problem 21 establishes a key property of the function µ(u, v; τ), namely, it shows
precisely how µ(u, v; τ) falls short of transforming like a Jacobi form (see [5]). Use
the function R(w; τ) to construct a new function µ̃(u, v; τ) from µ(u, v; τ) that corrects
the “error to modularity” exhibited by µ(u, v; τ) in Problem 21. Discuss the analytic
properties of the new function µ̃(u, v; τ).

Problem 25. (??) Prove that under suitable specializations of parameters, the Mordell integral can
be expressed in a different manner, i.e. show that for u = 0,

−h(0; τ) =

∫ i∞

0

θ(u)√
−i(u+ τ)

du,

where the modular theta function

θ(τ) :=
∑
v∈ 1

2
+Z

vqv
2/2e(v/2).

Problem 26. (??) Similarly, prove that

R
(τ

4
; τ
)

= −ζ4q
1
32

∫ i∞

−τ

∑
n∈Z

(−1)n
(
n+ 3

4

)
e
(

1
2

(
n+ 3

4

)2
z
)

√
−i(z + τ)

dz,

where ζm := e2πi/m.

Let f(q) denote one of Ramanujan’s mock theta functions, defined by

f(q) :=
∑
n≥0

qn
2

(−q; q)2
n

.

(For the next 5 problems, see also §3.)
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Problem 27. (??)
(a) Prove that

f(q) =
2

(q; q)∞

∑
n∈Z

(−1)nq
3n2+n

2

1 + qn
.

(b) Prove that

iq−1/24

2
f(q) =

η3(3τ)

η(τ)ϑ(3/2; 3τ)
− µ(3/2;−τ ; 3τ)− µ(3/2, τ ; 3τ),

where η(τ) is Dedekind’s η-function, and ϑ(z; τ) is defined previously within §2.

Problem 28. (??) Prove that q−1/24f(q) is a weight 1/2 mock modular form with shadow proportional
to ∑

n∈Z

(
12

n

)
n · e(n/4) · qn2/24.

Consider the “universal” mock theta functions of Gordon and McIntosh

g2(w; q) :=
∑
n≥0

(−q; q)nqn(n+1)/2

(w; q)n+1(q/w; q)n+1

,

g3(w; q) :=
∑
n≥0

qn(n+1)

(w; q)n+1(q/w; q)n+1

.

Problem 29. (???)
(a) For α ∈ C, α 6∈ Zτ + 1

2
Z, prove that

e(α)g2(w; q) =
η4(2τ)

iη2(τ)ϑ(2α; 2τ)
+ e(α)q−1/4µ(2α, τ ; 2τ).

(b) Prove that for ζ 6= 1 a root of unity, ζg2(ζ; q) + 1/2 is a mock modular form of
weight 1/2 with shadow proportional to∑

n∈Z

(−1)nnζ−2nqn
2

.
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Consider another of Ramanujan’s mock theta functions

ψ(q) :=
∑
n≥1

qn
2

(q; q2)n
.

Problem 30. (??) Prove that

f(−q) + 4ψ(q) =
(q2; q2)7

∞
(q; q)3

∞(q4; q4)3
∞

=: c(q),

and deduce that q−1/24(f(−q)+4ψ(q)) is a modular form of weight 1/2 on a congruence
subgroup.

Problem 31. (??)
(a) Find 3 different mock modular forms of weight 1/2 with the same shadow as f(q).

(b) Use these mock modular forms to create non-trivial, and different, modular forms.

3. q-hypergeometric series

Let (a1, a2, . . . , ar; q)n :=
∏r

j=1(aj; q)n. The q-hypergeometric series are defined by

rφs

(
a1, a1, . . . ar
b1, b2, . . . bs

q; z

)
:=
∑
n≥0

(a1, a2, . . . , ar; q)n
(b1, b2, . . . , bs, q; q)n

((−1)nq
n(n−1)

2 )1+s−rzn

where r, s ∈ N0, |z| < 1, |q| < 1, bj 6= q−m for any m ∈ N0. The celebrated Watson-Whipple
transformation is given by

8φ7

(
a, q

√
a, −q

√
a, b, c, d, e, q−N√

a, −
√
a, aq/b, aq/c, aq/d, aq/e, aqN+1 ; q;

a2qN+2

bcde

)
=

(aq; q)N(aq/de; q)N
(aq/d; q)N(aq/e; q)N

4φ3

(
aq/bc, d, e, q−N

deq−N/a, aq/b, aq/c
; q; q

)
The Watson-Whipple q-hypergeometric transformation formula leads to the following identity

∑
n≥0

(α, β, γ, δ, ε; q)n(1− αq2n)qn(n+3)/2

(αq/β, αq/γ, αq/δ, αq/ε, q; q)n(1− α)

(
− α2

βγδε

)n
.

=
(αq, αq/(δε); q)∞
(αq/δ, αq/ε; q)∞

∑
n≥0

(δ, ε, αq/(βγ); q)n
(αq/β, αq/γ, q; q)n

(αq
δε

)n
.
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Problem 32. (??) Prove that ∑
n∈Z

(−1)nqn(n+1)/2

1− wqn
=

(q; q)2
∞

(w; q)∞(q/w; q)∞
.

For the next two problems, see also §2.

Problem 33. (??) Prove that the q-hypergeometric “universal” mock theta functions defined in §2
satisfy

g2(w; q) =
(−q; q)∞
(q; q)∞

∑
n∈Z

(−1)nqn(n+1)

1− wqn
,

g3(w; q) =
1

(q; q)∞

∑
n∈Z

(−1)nq3n(n+1)/2

1− wqn
.

Problem 34. (??) Let α ∈ C \ (Zτ + 1
2
Z). Prove that

e(α)(g2(e(α); q) + g2(−e(α); q)) = 2
η4(2τ)

iη2(τ)ϑ(2α; 2τ)
,

where ϑ(z; τ) is the Jacobi ϑ-function defined in §2, and e(z) := e2πiz.

Problem 35. (???) Prove Ramanujan’s 1ψ1 summation formula

1ψ1(α, β; q; z) :=
∑
n∈Z

(α; q)n
(β; q)n

zn =
(β/α, αz, q/(αz), q; q)∞
(q/α, β/(αz), β, z; q)∞

for |β/α| < |z| < 1.

Problem 36. (??) Define

2ψ2

(
a1 a2

b1 b2
q, z

)
:=
∑
n∈Z

(a1; q)n(a2; q)n
(b1; q)n(b2; q)n

zn.

Prove Bailey’s 2ψ2 summation formula

2ψ2

(
a1 a2

b1 b2
q, z

)
=

( b2q
a1a2z

; q)∞( b1
a2

; q)∞(a1z; q)∞( b2
a1

; q)∞

( q
a2

; q)∞( b1b2
a1a2z

; q)∞(b2; q)∞(z; q)∞
· 2ψ2

(
a1a2z
b2

a1

a1z b1
q, b2

a1

)
.
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4. Partition theory

Problem 37. (?) Let S be a set of positive integers.
(a) Show that

PS(q) :=
∑
n≥0

pS(n)qn =
∏
n∈S

1

1− qn

for |q| < 1, where pS(n) := number of partitions of n with parts in S.

(b) Find sets S for which PS(q) is modular (when q = e(τ)).

Problem 38. (?) Prove for |z| < 1, that

1 +
∑
n≥1

zn

(1− q)(1− q2) · · · (1− qn)
=
∏
m≥0

(1− zqm)−1.

Problem 39. (??) Show that ∑
n≥0

p(n)qn =
∑
n≥0

qn
2

(q; q)2
n

=
∑
n≥0

qn

(q; q)n
,

where p(n) := #{number of partitions of n}.

Problem 40. (??)
(a) If pm(n) := number of partitions of n with at most m parts, show that

pm(n) ≤ (n+ 1)m for each m > 0.

(b) Show that lim
n→∞

p(n)1/n = 1.

(c) Deduce that
∏
k≥1

1

1− qk
converges for |q| < 1.

(d) Prove that
∑
n≥0

p(n)qn =
∏
k≥1

1

1− qk
.

Problem 41. (?) Let S be a subset of N. Prove that∑
n≥0

p(n | distinct parts in S)qn =
∏
m∈S

(1 + qm).
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Problem 42. (?) Prove that

p(n | distinct parts congruent to 1,2,4 mod 7)

= p(n | parts congruent to 1,9,11 mod 14).

Problem 43. (??) Prove that

1 +
∑
n≥1

(pe(n)− po(n))qn =
∏
m≥1

(1− qm),

where
pe(n) := p(n | even number of distinct parts),
po(n) := p(n | odd number of distinct parts).

Problem 44. (?) Prove that
p(n | all parts are odd) ≡ 0 mod 2

except when n = j(3j ± 1)/2, j ∈ Z.

Problem 45. (?) A partition is self conjugate if it is equal to its conjugate. For example, the two
self-conjugate partitions of 8 (4+2+1+1, and 3+3+2) are represented as:

• • • • • • •
• • • • •
• • •
•

By connecting dots lying on successive right angles, we obtain two new partitions of 8
(7 + 1, and 5 + 3) as follows:

Prove that the number of self-conjugate partitions of n equals the number of partitions
of n into distinct odd parts.

Problem 46. (?) This problem is concerned with finding exact expressions for restricted partition
numbers. Suppose T = {1, 2, 3}, and ρ := e2πi/3.

(a) Verify the following generating function for pT (n) := p(n | parts in T):∑
n≥1

pT (n)qn =
1

6(1− q)3
+

1

4(1− q)2
+

17

72(1− q)
+

1

8(1 + q)
+

1

9(1− ρq)
+

1

9(1− ρ2q)
.
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(b) Show that this implies

pT (n) =
(n+ 2)(n+ 1)

12
+
n+ 1

4
+

17

72
+

(−1)n

8
+

1

9
(ρn + ρ2n)

=
(n+ 3)2

12
+ r(n),

where |r(n)| < 1
2
.

(c) Deduce that pT (n) is the nearest integer to
(n+ 3)2

12
.

Problem 47. (??) The rank of a partition is defined to be its largest part of the partition minus the
number of its parts. Let N(n,m) := #{partitions of n with rank m}.

(a) Show that ∑
n≥0

∑
m∈Z

N(n,m)zmqn =
∑
n≥0

qn
2

(zq; q)n(q/z; q)n
.

(b) Determine a combinatorial interpretation for the coefficients of the mock theta
function f(q) defined in §2.

Problem 48. (?) Determine a combinatorial interpretation for the coefficients aω(n) of the mock
theta function ω(q) as defined in §1. (Check your interpretation by explicitly looking at
partitions of a few small integers.)

5. Quantum modular forms

Consider another of Ramanujan’s mock theta functions

φ(q) :=
∑
n≥0

qn
2

(−q2; q2)n
.

The functions c(q) and ψ(q) are defined in §2. Take note of the singularites of the functions φ
and ψ. The exercises in this section establish the following proposition, studied by Robert C.
Rhoades.

Proposition. As q → ζ radially from within the unit disk, where ζ is a primitive 4kth root of
unity, we have that

lim
q→ζ

(φ(q)− c(q)) = −2
∑
n≥0

ζn+1(−ζ2; ζ2)n = −ψ(ζ).
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Moreover, as q → ρ radially from within the unit disk, where ρ is a primitive odd order root of
unity, we have that and

lim
q→ρ

(ψ(q)− c(q)/2) = −1

2

(
1 +

∑
n≥0

(−1)nρ2n+1
(
ρ; ρ2

)
n

)
.

Problem 49. (??) Prove that

ψ(q) =
∞∑
n=0

qn+1(−q2; q2)n.

Problem 50. (??) Prove that
φ(q) + 2ψ(q) = c(q).

Problem 51. (??) Prove for any primitive 4kth root of unity ζ, we have

lim
q→ζ

(φ(q)− c(q)) = −2
∑
n≥0

ζn+1(−ζ2; ζ2)n.

Problem 52. (??) Prove that
φ(q) = 1 +

∑
n≥0

(−1)nq2n+1(q; q2)n.

Problem 53. (??) Prove for any primitive odd order root of unity ρ, we have

lim
q→ρ

(ψ(q)− c(q)/2) = −1

2

(
1 +

∑
n≥0

(−1)nρ2n+1(ρ; ρ2)n

)
.

Problem 54. (??) What can you say about the series∑
n∈Z

(−q2)n(q; q2)n?
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