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These are notes for the minicourse Division algebras and patching at the 2012 Arizona
Winter School. The aim of the course was to familiarize the students with the method of
patching, with a focus on applications to division algebras.

Patching permits the construction and study of global objects through more local ones.
The approach taken in the course was that of patching over fields, which was developed in
[HH10]. Patching is the subject of the first part of these notes.

The main problem about division algebras studied in the course was that of admissibility,
originally due to Schacher (see Section 4 of these notes). A finite group G is said to be
admissible over a field F if there is an F -central division algebra which contains a G-Galois
extension as a maximal subfield. In the course, we used patching methods to show that if F
is a one-variable function field over a complete discretely valued field of residue characteristic
not dividing |G|, then G is admissible over F if and only if all its Sylow subgroups are abelian
of rank at most two (see [HHK11]). This is done in the second part of these notes.

For an overview of the minicourse, also see the Course and Project Outline that is posted
on the AWS website.

Part I

1 Patching Algebraic Structures

Patching is a principle that enables the study of algebraic objects over a field F by studying
corresponding objects over extension fields of F . It is motivated by geometry, where F is the
function field of some space, and the extension fields are the fields of functions on subsets.
(From an algebraic perspective, patching can be regarded as a form of descent, though it
is different from étale and flat descent.) Our focus will be on the case in which F is the
function field of a curve over a complete discretely valued field. For example, if the curve is
the projective line over k((t)), then F = k((t))(x).

Before turning to this situation, we will consider patching for more general fields F . To
keep the situation simple, we concentrate on the case of two extension fields F1, F2 of F ,
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together with a common overfield F0, such that F is the intersection of F1 and F2 inside F0.
Given structures over F1 and F2 together with an isomorphism between the structures that
they induce over F0, we would like to assert that there exists a unique structure over F that
induces them compatibly. We begin with the case of vector spaces.

First recall that if V is a finite dimensional vector space over a field F , and if E is an
extension field of F , then VE := V ⊗F E is a finite dimensional vector space over E, and
there is a natural inclusion V →֒ VE . Viewing V as a subset of VE , any F -basis of V is also
an E-basis of VE. (Here and elsewhere, we view V as a two-sided vector space over F .)

With respect to extension fields Fi as above, an F -vector space patching problem V
consists of finite dimensional Fi-vector spaces Vi for i = 1, 2 together with an F0-vector
space isomorphism µ : V1 ⊗F1

F0 → V2 ⊗F2
F0. A solution to the patching problem V

consists of a finite dimensional F -vector space V together with Fi-vector space isomorphisms
ιi : V ⊗F Fi → Vi for i = 1, 2 such that the following diagram commutes.

(V ⊗F F1)⊗F1
F0

ι1⊗1

��

∼ // V ⊗F F0
∼ // (V ⊗F F2)⊗F2

F0

ι2⊗1

��
V1 ⊗F1

F0
µ // V2 ⊗F2

F0

Here the top horizontal arrows are the natural identifications of V ⊗F F0 with (V ⊗F Fi)⊗Fi
F0

for i = 1, 2. Thus with respect to these identifications, the condition is that µ◦(ι1⊗1) = ι2⊗1.
Note that for any vector space patching problem as above, dimF1

(V1) = dimF2
(V2). Hence

for any F -vector space V of that same dimension, V ⊗F Fi will be Fi-isomorphic to Vi for
i = 1, 2. But the point of the above definition is that the maps must also be compatible;
and so the existence of a solution is not automatic.

Given a patching problem V as above, let V0 = V2 ⊗F2
F0. As above, V2 naturally

includes into V0. By composing µ with the analogous inclusion for V1, we may also regard
V1 as contained in V0. Given a solution V to V, we may also regard V as contained in Vi via
ιi, by identifying V with V ⊗F F ⊆ V ⊗F Fi. Here the two compositions V →֒ V1 →֒ V0 and
V →֒ V2 →֒ V0 agree because µ ◦ (ι1 ⊗ 1) = ι2 ⊗ 1.

Proposition 1.1. Let F1, F2 be subfields of a field F0, with F = F1 ∩ F2. Consider an
F -vector space patching problem V given by n-dimensional Fi-vector spaces Vi and an iso-
morphism µ. For i = 1, 2 choose an Fi-basis Bi for Vi, and let A0 ∈ GLn(F0) be the
transition matrix between B1 and B2. Then V has a solution if and only if A0 = A−1

1 A2 for
some matrices Ai ∈ GLn(Fi), i = 1, 2.

By regarding Vi as contained in V0 as above, the basis vectors can all be viewed as
elements of V0. By the transition matrix we mean the matrix A0 such that B1A0 = B2,
where Bi ∈ V n

i is viewed as a row vector whose entries are the chosen basis elements of Vi.

Proof. First suppose that V has a solution given by an F -vector space V and isomorphisms
ιi : V ⊗F Fi → Vi for i = 1, 2. Choose an F -basis B for V ; and for i = 1, 2 let Ai ∈ GLn(Fi)
be the transition matrix between B and Bi. Thus BAi = Bi for i = 1, 2. Hence BA1A0 =
B1A0 = B2 = BA2. Since B is a basis, it follows that A1A0 = A2; i.e. A0 = A−1

1 A2.
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Conversely, suppose that A0 = A−1
1 A2 for some Ai ∈ GLn(Fi). Let B = B1A

−1
1 ∈ V n

0 .
Then B2A

−1
2 = B1A0A

−1
2 = B1A

−1
1 = B in (V1 ∩ V2)

n. Let V ⊆ V1 ∩ V2 be the F -vector
space spanned by the vectors in B. Since Ai is invertible, the set of vectors in B is linearly
independent over Fi and hence over F ; and so it is an F -basis of V . The inclusion V →֒ Vi

taking B to itself then induces an Fi-isomorphism ιi : V ⊗F Fi → Vi, for i = 1, 2. Thus
µ ◦ (ι1 ⊗ 1)(B) = µ(B1)A

−1
1 = µ(B1)A0A

−1
2 = B2A

−1
2 = (ι2⊗ 1)(B), where the third equality

uses that A0 is the transition matrix between B1 and B2, with respect to the above inclusions
of V1, V2 into V0. Hence µ◦ (ι1⊗1) = ι2⊗1; so V and the maps ιi define a solution to V.

In fact, in the above situation, the solution V to a patching problem V is unique as a
subset of V0, and can be explicitly described:

Proposition 1.2. In the situation of Proposition 1.1, suppose that the patching problem V
has a solution V , which we regard as contained in each Vi via the inclusions defined by ιi.
Then V = V1 ∩ V2 ⊆ V0.

Proof. See Problem 1.5.

The power of patching comes from its applicability to various other structures besides
vector spaces. The reason that patching applies in such situations is that for many types
of algebraic structures over a field F , such as F -algebras, an object consists of an F -vector
space together with a finite collection of F -vector space homomorphisms that satisfy certain
commutative diagrams. The key to using this observation is to be able to assert that giving an
F -vector space homomorphism f : V → W is equivalent to giving a collection of compatible
Fi-vector space homomorphisms fi : Vi → Wi for i = 1, 2, where Vi = V ⊗F Fi and Wi =
W ⊗F Fi. Here compatibility asserts that the restrictions of f1 and f2 to V agree, as maps
to W0.

In the situation of Proposition 1.1, if V is a solution to the patching problem V, the above
equivalence between giving f and giving a compatible pair (f1, f2) does in fact hold. This can
be seen by identifying HomF (V,W )⊗F Fi with HomFi

(Vi,Wi), and using Proposition 1.2 to
conclude that HomF (V,W ) is the intersection of HomF1

(V1,W1) and HomF2
(V2,W2) inside

HomF0
(V0,W0). (Alternatively, one can define f as the common restriction of f1 and f2 to

V = V1 ∩ V2, using that W = W1 ∩W2.)
A more precise phrasing is possible using categorical language. Given categories Ci for

i = 0, 1, 2, and functors αi : Ci → C0 for i = 0, 1, we may consider their 2-fiber product
category C := C1 ×C0 C2 defined as follows. Its objects are triples (V1, V2, µ) where Vi is
an object in Ci for i = 1, 2 and where µ : α1(V1) → α2(V2) is an isomorphism; and its
morphisms (V1, V2, µ) → (V ′

1 , V
′
2 , µ

′) are pairs of maps Vi → V ′
i such that the induced square

is commutative.
In our situation, for any field E let Vect(E) be the category of finite dimensional E-vector

spaces. Given a field F0 and subfields F1, F2, consider the functor αj : Vect(Fj) → Vect(F0)
that takes an Fj-vector space Vj to Vj ⊗Fj

F0. The objects in the 2-fiber product category
Vect(F1)×Vect(F0) Vect(F2) thus consist of triples (V1, V2, µ) where Vj is a finite dimensional
Fj-vector space and µ : V1⊗F1

F0 → V2⊗F2
F0 is an isomorphism. Hence giving an object in
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Vect(F1)×Vect(F0) Vect(F2) is equivalent to giving an F -vector space patching problem with
respect to the fields Fi, where F = F1 ∩ F2.

Given fields F ⊆ F1, F2 ⊆ F0 with F = F1 ∩ F2 ⊆ F0, there is a functor β : Vect(F ) →
Vect(F1)×Vect(F0) Vect(F2) that is defined by base change (i.e. extension of constants), and
which assigns to each vector space an induced patching problem of which it is the solution.
(See Problem 1.7.)

Theorem 1.3. The functor β : Vect(F ) → Vect(F1) ×Vect(F0) Vect(F2) is an equivalence of
categories if and only if for every positive integer n and every matrix A0 ∈ GLn(F0) there
exist matrices Ai ∈ GLn(Fi) such that A0 = A−1

1 A2.

Proof. See Problem 1.8.

Using the above results, we can apply patching to associative F -algebras. For any field E,
let Alg(E) denote the category of finite dimensional associative E-algebras (not necessarily
with multiplicative identity). If E ′ is an extension of E, then there is a base change functor
Alg(E) → Alg(E ′) that takes an E-algebra A to the E ′-algebra A⊗E E ′.

Proposition 1.4. In the situation of Theorem 1.3, suppose that β is an equivalence of
categories. Then so is the base change functor

Alg(F ) → Alg(F1)×Alg(F0) Alg(F2).

Proof. A finite dimensional associative F -algebra consists of a finite dimensional F -vector
space A together with a vector space homomorphism p : A ⊗F A → A that satisfies an
identity corresponding to the associative law of multiplication. More precisely, the following
diagram commutes:

A⊗ A⊗ A

1⊗p

��

p⊗1 // A⊗ A

p

��
A⊗A

p // A

A given object in Alg(F1)×Alg(F0)Alg(F2) induces an object in Vect(F1)×Vect(F0)Vect(F2)
by the forgetful functor. Since β is an equivalence of tensor categories (see Problem 1.9(b)),
having compatible maps pi over the vector spaces Ai := A⊗F Fi satisfying the above property
implies that there is such a map p over A that induces them. Thus the object in Vect(F )
that yields the given object in Vect(F1)×Vect(F0) Vect(F2) has the structure of an associative
F -algebra, compatibly with the given structures on the Ai. The result then follows.

Analogs of Proposition 1.4 can also be proven for other algebraic structures. See Prob-
lem 1.11.

Problems for Section 1

4



Problem 1.5. Prove Proposition 1.2. (One approach is to consider the exact sequence

0 → F → F1 × F2 → F0 → 0

of F -vector spaces, where the first map takes a to (a, a) and the second map takes (a1, a2)
to a1 − a2, and then to tensor this sequence over F with V .)

Problem 1.6. In the situation of Proposition 1.1, show that V := V1 ∩ V2 is a solution to
an F -vector space patching problem V if and only if dimF (V ) = dimFi

(Vi).

Problem 1.7. Given fields F ⊆ F1, F2 ⊆ F0 with F = F1 ∩ F2 ⊆ F0, define an obvious
functor β : Vect(F ) → Vect(F1) ×Vect(F0) Vect(F2) that assigns to each vector space an
induced patching problem of which it is the solution.

Problem 1.8. Prove Theorem 1.3. The converse asserts that under the factorization condi-
tion, β defines a surjection on isomorphism classes of objects, and that for every pair of finite
dimensional F -vector spaces V, V ′, the set of F -vector space homomorphisms V → V ′ is sent
bijectively to the set of morphisms β(V ) → β(V ′). (Note that these conditions automatically
imply injectivity on isomorphism classes of objects.)

Problem 1.9. Suppose that the above functor β is an equivalence of categories.

(a) Show that up to isomorphism, the inverse of β is given by intersection. More precisely,
show that if β(V ) = (V1, V2, µ), then V is naturally isomorphic to the intersection of
V1 and V2 inside V0 := V2 ⊗F2

F0, where we regard V1 as a contained in V0 via µ.

(b) Show that β is an equivalence of tensor categories, i.e. that it preserves tensor product.

Problem 1.10. We have been assuming that F is the intersection F1 ∩ F2 ⊆ F0. If we
weaken this assumption by supposing merely that F is contained in F1 and F2 as subfields of
F0, which of the above assertions remain true? Where has the intersection hypothesis been
used?

Problem 1.11. Prove the analog of Proposition 1.4 for each of the following structures:

(i) Finite dimensional associative F -algebras with identity.

(ii) Finite dimensional commutative F -algebras (with identity).

(iii) Finite dimensional separable commutative F -algebras. (These are the finite direct
products of finite separable field extensions of F .)

(iv) G-Galois F -algebras, where G is a given finite group. (Such an object is a finite
dimensional separable commutative F -algebra A such that dimF (A) = |G|, together
with a faithful action of G on A as an F -algebra such that F is the subset of A
consisting of elements fixed by G. One example is a G-Galois field extension of F ;
another is a direct product of copies of F indexed by the elements of G, which each
act by permuting the copies via left multiplying the indices.)
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Problem 1.12. Does the analog of Proposition 1.4 hold for the category of finite field
extensions of F ?

Problem 1.13. Let F be a field, let V be an F -variety, and let GLn denote the subvariety
of An2

F corresponding to invertible n × n matrices. Suppose that σ : GLn ×V → V is an
F -morphism that defines a group action of GLn on V . Assume moreover that σ is transitive
in the strong sense that for every field extension E of F the action of GLn(E) is transitive
on the set of E-points of V .

(a) Suppose that F ⊆ F1, F2 ⊆ F0 are as in Problem 1.7 and the functor β is an equivalence
of categories. Show that if V has an F1-point and an F2-point, then it has an F -point.

(b) Let G be a linear algebraic group over F ; i.e. a subvariety of GLn that is also a
group under the same operation. Suppose that σ is instead an action of G on V
with the analogous transitivity condition. Does the same conclusion on F -points still
automatically hold? Or is some additional condition needed in order for the argument
to work?

2 Patching on Curves

In this section we apply the previous results to the situation of function fields of curves over
complete discretely valued fields, especially the case of the projective line over a Laurent
series field. Given a field k, the power series ring T := k[[t]] is a complete discrete valuation
ring with uniformizer t and residue field k. Its fraction field K := k((t)) is the same as
T [t−1], and it is a complete discretely valued field.

We may consider the projective x-line P1
K . This K-curve can be covered by two affine

open subsets, each of them a copy of the affine K-line: one with parameter x, and the other
with parameter x̄, where xx̄ = 1. These affine lines are Spec(K[x]) and Spec(K[x̄]), with
the overlap being Spec(K[x, x−1]). The point where x̄ = 0 can be regarded as the point at
infinity, with respect to the parameter x.

We may also consider the projective x-line X̂ := P1
T . (This scheme is of relative dimension

one over T .) It can also be covered by two Zariski open sets, the affine lines over T with
respect to the parameters x and x̄, viz. Spec(T [x]) and Spec(T [x̄]). See also Problem 2.10.

Recall that a commutative ring has Krull dimension d if there is a chain of (possibly zero)
prime ideals I0 ⊂ I1 ⊂ · · · ⊂ Id but there is no such chain of greater length. (Here and below,
the notation ⊂ indicates strict inclusion, whereas ⊆ is used to indicate the possibility that
the inclusion is actually an equality.) Similarly, the dimension of a scheme is the maximal
d such that there are distinct (not necessarily closed!) points P0, P1, · · · , Pd in the scheme
such that Pi+1 is contained in the closure of Pi. See Problem 2.11 for a consideration of these
quantities in the case of the rings T and T [x] and their spectra, as well as of the projective
line P1

T .
For the remainder of this section, we preserve the above notation: k is a field, T = k[[t]],

K = k((t)), and X̂ = P1
T , which has function field F = k((t))(x) and closed fiber X = P1

k
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(see Problems 2.12 and 2.13). Given a non-empty subset U ⊆ X, we will write RU for the

subring of F consisting of the rational functions on X̂ that are regular at the points of U . Its
t-adic completion will be denoted by R̂U . We also write R∅ for the subring of F consisting
of the rational functions on X̂ that are regular at the generic point of X, and we write R̂∅

for its t-adic completion.
The rings R̂U can be described explicitly in terms of U ; see Problem 2.14. See also

Problems 2.15, 2.16, and 2.17 for more about the behavior of these rings. See Problem 2.18
for another interpretation of these rings.

Lemma 2.1. Suppose U1, U2 ⊆ X and let U0 = U1 ∩U2. Then for every a ∈ R̂U0
there exist

b ∈ R̂U1
and c ∈ R̂U2

such that a ≡ b+ c (mod t) in R̂U0
.

Proof. By Problem 2.14(a), a is a power series in t with coefficients in a subring A ⊆ k(x),
and its constant term a0 ∈ A is a rational function on P1

k having poles disjoint from U0. By
partial fraction decomposition, we may write a0 = b + c, where b, c ∈ k(x) ⊂ F such that
the poles of b on X are disjoint from U1 and the poles of c on X are disjoint from U2. Hence
b ∈ RU1

⊆ R̂U1
and c ∈ RU2

⊆ R̂U2
. The conclusion follows since a ≡ a0 (mod t) in R̂∅.

See Problem 2.19 for explicit examples of this additive decomposition.

Proposition 2.2. Let U1, U2 ⊆ X and set U0 = U1 ∩ U2. Let n ≥ 1 and let A0 ∈ GLn(R̂0)

such that A0 ≡ I (mod t) in Matn(R̂0). Then there exist A1 ∈ GLn(R̂1) and A2 ∈ GLn(R̂2)

such that A0 = A−1
1 A2 in GLn(R̂0).

Proof. Write R̂i for R̂Ui
. We will inductively construct matrices Bj ∈ GLn(R̂1) and Cj ∈

GLn(R̂2), for j ≥ 0, such that

B0 = C0 = I,

Bj ≡ Bj−1 (mod tj) in Matn(R̂1),

Cj ≡ Cj−1 (mod tj) in Matn(R̂2),

A0 ≡ B−1
j Cj (mod tj+1) in Matn(R̂0).

Doing this will prove the assertion, by taking A1 ∈ Matn(R̂1), A2 ∈ Matn(R̂2) to be the

t-adic limits of the sequences {Bj}, {Cj} respectively. Note that Ai actually lies in GLn(R̂i)
because its determinant, being congruent to 1 modulo t, is a unit by Problem 2.14(a).

To construct these sequences, suppose that j > 0 and that Bℓ, Cℓ have already been
constructed, satisfying the above conditions, for ℓ < j. Thus

A0 −B−1
j−1Cj−1 = tjÃj

for some Ãj with entries in R̂0. Applying Lemma 2.1 to the entries of Ãj , there exist matrices

B′
j ∈ Matn(R̂1) and C ′

j ∈ Matn(R̂2) such that

Ãj ≡ B′
j + C ′

j (mod t) in Matn(R̂0).
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The matrices

Bj := Bj−1 − tjB′
j ∈ Matn(R̂1) and Cj := Cj−1 + tjC ′

j ∈ Matn(R̂2)

have determinant congruent to 1 modulo (t) and so are invertible. It is straightforward to
check that they have the desired properties, using the corresponding properties for Bj−1 and
Cj−1 together with the congruence A0 ≡ I (mod t).

The proof of the above result can be carried out explicitly when given a specific matrix.
See Problem 2.20 for an example.

We now introduce fields for which the ideas of the previous section apply. Suppose
U ⊆ X. If U does not contain all the closed points of X, we write FU for the fraction field of
R̂U . Otherwise, if U does contain all the closed points of X, we let FU = F . (In this latter

case, FU is not the fraction field of R̂U .)

Theorem 2.3 (Weierstrass Preparation). If U ⊆ X then every element f ∈ FU may be

written as a product f = au with a ∈ F and u ∈ R̂×
U .

Proof. The result is trivial if U contains all the closed points of X, so we may assume
otherwise. By Problems 2.14(c) and 2.15, the result is immediate if U contains no closed
points, since we may take a = tr where r is the t-adic valuation of f in the complete discretely
valued field F∅. So now assume that U contains some but not all of the closed points of X.

It suffices to prove the result in the case that f ∈ R̂U = A[[t]], since every element of
FU is a quotient of two such elements. We may also assume that f is non-zero; and after
factoring out a power of t we may assume that f has a non-zero constant term f0 ∈ A. Let
U1 be the complement of U in X; and write U2 = U and R̂i = R̂Ui

. Since f̃ := f/f0 ∈ R̂∅

has constant term 1, it is a unit. Proposition 2.2 (with n = 1) then implies that f̃ = f1f2
with fi ∈ R̂×

i for i = 1, 2. Now f0 ∈ A and f ∈ R̂U = R̂2; so f0f1 = ff−1
2 ∈ R̂1[f0] ∩ R̂2 ⊆ F

by Problem 2.17(c). Hence we may take a = f0f1 and u = f2.

Remark 2.4. In the case that U consists just of the point x = 0 on X, Theorem 2.3 is closely
related to the standard algebraic form of the Weierstrass Preparation Theorem. Compare
Proposition 6 in Section VII.3.8 of [Bou72].

Theorem 2.5. Let U1, U2 ⊆ X, and write U0 = U1∩U2 and U = U1∪U2. Then FU1
∩FU2

=
FU inside FU0

.

Proof. By Problem 2.15, we may assume that U1, U2 each contain the generic point η of X.
Hence so does U .

The assertion is trivial if U1 or U2 is equal to X; so we may assume that the Ui are
proper subsets of X, each missing at least one closed point. Write R̂i = R̂Ui

and Fi = FUi
,

for i = 0, 1, 2. Problem 2.16 implies that R̂U ⊆ R̂i and hence FU ⊆ Fi, for i = 1, 2. Let
f ∈ F1 ∩ F2. It remains to show that f ∈ FU . By Theorem 2.3, f = f1u1 = f2u2 for some
f1, f2 ∈ F ⊆ FU and some ui ∈ R̂×

i .
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If U is strictly contained in X, then FU is the fraction field of R̂U . So fi = ai/bi for some

ai, bi ∈ R̂U , and thus f = a1u1/b1 = a2u2/b2. Hence a1b2u1 = a2b1u2 ∈ R̂1 ∩ R̂2 = R̂U by

Problem 2.17(a). Since also b1b2 ∈ R̂U , it follows that f = a1b2u1/b1b2 lies in FU .

Now suppose instead that U = X. By Problem 2.14(a), R̂i = Ai[[t]] for some Ai ⊆ k(x).
Since U2 is strictly contained in X = U1∪U2, it follows that U1 is not contained in U2. Hence
R̂2 is not contained in R̂1 by Problem 2.16, and A2 is not contained in A1. Take f0 ∈ A2

that does not lie in A1. By Problem 2.17(c), R′ := R̂1[f0] ∩ R̂2 is a subring of F whose
fraction field is F . Thus fi = ai/bi for some ai, bi ∈ R′; so f = a1u1/b1 = a2u2/b2. Hence

a1b2u1 = a2b1u2 ∈ R̂1[f0] ∩ R̂2 = R′. Since b1b2 ∈ R′, it follows that f = a1b2u1/b1b2 lies in
F = FU , the fraction field of R′.

Using this, we can generalize Proposition 2.2.

Theorem 2.6. Let U1, U2 ⊆ X, set U0 = U1 ∩ U2, and write Fi for FUi
(i = 0, 1, 2). Then

for every n ≥ 1 and A0 ∈ GLn(F0) there exist A1 ∈ GLn(F1) and A2 ∈ GLn(F2) such that
A0 = A−1

1 A2 in GLn(F0).

Proof. First consider the case that U0 is empty. After multiplying A0 by a power of t, we may
assume that A0 lies in Matn(R̂∅), with non-zero determinant. Thus A−1

0 ∈ t−r Matn(R̂∅) ⊂

Matn(F0) for some r ≥ 0, by Problem 2.14(c). Since R∅ ⊂ F is t-adically dense in R̂∅,

there exists C0 ∈ Matn(R∅) that is congruent to trA−1
0 modulo tr+1 in Mat(R̂∅). Write

C = t−rC0 ∈ t−r Matn(R∅) ⊂ Matn(F ) ⊆ Matn(F1). Then C − A−1
0 ∈ tMatn(R̂∅) and so

CA0 − I ∈ tMatn(R̂∅). This implies that CA0 ∈ GLn(R̂∅) and hence that the determinant

of C is non-zero. Thus C ∈ GLn(F1). Now CA0 ≡ I (mod t) in Matn(R̂∅), hence CA0 ∈

GLn(R̂∅) by Problem 2.14(c). It follows from Proposition 2.2 that there exist A′
1 ∈ GLn(F1)

and A2 ∈ GLn(F2) satisfying CA0 = A′−1
1 A2 in GLn(F0). Let A1 = A′

1C ∈ GLn(F1). Then
A0 = A−1

1 A2.
Now consider the general case. Let U ′

2 be the complement of U0 in U2, and write F ′
2 = FU ′

2
.

Thus F ′
2 ∩ F0 = F2 by Theorem 2.5, since U ′

2 ∪ U0 = U2. Also U1 ∩ U ′
2 is empty. Any

A0 ∈ GLn(F0) lies in GLn(F∅), and so by the above special case we may write A0 = A−1
1 A2

with A1 ∈ GLn(F1) ⊆ GLn(F0) and A2 ∈ GLn(F
′
2). But A2 = A1A0 ∈ GLn(F0). Hence

A2 ∈ GLn(F
′
2) ∩GLn(F0) = GLn(F2).

We can now apply the results of Section 1 to this situation. For any subset U ⊆ X we will
write V(U) for Vect(FU), the category of finite dimensional vector spaces over FU . (Recall
that if U contains all the closed points of X then FU is just F .) If U ⊆ U ′ ⊆ X then there
is a functor V(U ′) → V(U) given by base change; i.e. which sends an FU ′-vector space V to
V ⊗FU′ FU .

Theorem 2.7. Let U1, U2 ⊆ X, and write U = U1 ∪U2 and U0 = U1 ∩U2. Then the functor

V(U) → V(U1)×V(U0) V(U2)

induced by base change is an equivalence of categories.
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Proof. By Theorem 2.5, FU1
∩ FU2

= FU ⊆ FU0
. And by Theorem 2.6, every element

A0 ∈ GLn(F0) can be factored as A0 = A−1
1 A2 with A1 ∈ GLn(F1) and A2 ∈ GLn(F2). So

Theorem 1.3 yields the assertion.

The above result can be generalized to the case of more subsets of X:

Theorem 2.8. Let U1, . . . , Ur ⊆ X, and assume that the pairwise intersections Ui ∩Uj (for
i 6= j) are each equal to a common subset U0 ⊆ X. Let U =

⋃r
i=1 Ui. Then the base change

functor
V(U) → V(U1)×V(U0) · · · ×V(U0) V(Ur)

is an equivalence of categories.

Proof. See Problem 2.21.

Example 2.9. (a) Let r ≥ 2 and let P1, . . . , Pr−1 be distinct closed points of X. Then
Theorem 2.8 applies with Ui = {Pi} for 1 ≤ i < r and with Ur equal to the complement
of {P1, . . . , Pr−1} in X. Here U = X and U0 = ∅.

(b) Let r ≥ 2 and let P1, . . . , Pr be distinct closed points of X. Let U0 be the complement
of {P1, . . . , Pr} in X. Then Theorem 2.8 applies with U = X and with Ui = U0 ∪ {Pi}
for 1 ≤ i ≤ r.

Applying Proposition 1.4 and Problem 1.11 in the context of Theorem 2.7 yields analogs
of Theorem 2.7 for various types of algebras. Similarly, using induction, one obtains such
analogs of Theorem 2.8, e.g. in the context of the situations in Example 2.9.

In particular, the analog of Problem 1.11(iv) can be used to show that every finite group
G is the Galois group of some field extension of F = k((t))(x). This is done by considering
G-Galois algebras over the fields FUi

, where the subsets Ui are as in Example 2.9. If these
are chosen appropriately, and if the isomorphisms over FU0

are also chosen appropriately,
then it can be shown that the resulting G-Galois F -algebra is in fact a field. See Section 7.2
of [HH10] for details. A similar strategy will be used later in the context of admissibility.

Above we have worked only over the complete discrete valuation ring T = k[[t]] and its
fraction field K = k((t)). In fact, the above results can be carried over to arbitrary complete

discrete valuation rings and their fraction fields, though the descriptions of the rings R̂U

and fields FU become less explicit, and some of the arguments also become somewhat more
involved. (See Section 4 of [HH10] for more details.) For example, one can work over the ring
Zp of p-adic integers, and its fraction field Qp of p-adic numbers. As a result, it is possible
to carry over applications to such situations. In particular, it can be shown that every
finite group is the Galois group of a field extension of Qp(x). The inverse Galois assertion
in Section 7.2 of [HH10] is in fact stated for general complete discretely valued fields. See
Problem 2.23 for the case of the line over the ring Zp.

As another generalization, one can consider T -curves other than the projective T -line.
In particular, consider a smooth projective T -curve, i.e. a scheme X̂ together with a smooth
projective morphism X̂ → Spec(T ) whose fibers have dimension one. In this situation, the
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main results above can be carried over, though the arguments become more complicated
(e.g. due to phenomena related to the Riemann-Roch theorem). This is carried out in
Section 4 of [HH10]. Using a more complicated set of overfields, and a more involved version
of Theorem 2.8, it is even possible to handle the case of singular curves whose closed fibers
are reducible. This is carried out in Section 6 of [HH10]. But we do not need this for our
purposes here.

On the other hand, for a number of purposes, one can study curves other than the
projective line just by using the results above. One way to do this is to map the given curve
Ŷ to the projective line X̂. The function field E of Ŷ is a finite field extension of F , and
for each i we may consider the FUi

-algebra Ei := FUi
⊗F E, where the subsets Ui ⊆ X are

as before. A vector space over E can be viewed as a vector space over F with additional
structure; and one can then proceed along the lines of Proposition 1.4 and Problem 1.11.

Another approach to handling other curves is to construct objects over the field F =
k((t))(x) and then to base change from F to E, the function field of the given curve (where
again we view E as a finite extension of F by mapping the curve to the line). For example,
once G-Galois field extensions A of F are constructed, one obtains G-Galois E-algebras
AE := A⊗F E. If A is chosen suitably (viz. linearly disjoint from E over F ; e.g. if they have
disjoint branch loci), then AE is a G-Galois field extension of E.

Problems for Section 2

Problem 2.10. Describe the prime ideals and the maximal ideals in T and in T [x]. Describe
the (prime) spectra of these rings geometrically, in particular discussing the closed subsets
of each.

Problem 2.11. (a) Find the Krull dimension of T and of T [x]. For each of these two
rings, do all maximal chains of prime ideals in that ring have the same length?

(b) Find the dimensions of the schemes Spec(T ), Spec(T [x]), and P1
T . In each case, are all

maximal chains of the same length?

Problem 2.12. Show that every closed point in P1
T lies in the zero locus of the ideal (t);

i.e., in the closed set defined by this ideal. Show also that this locus is the fiber X of the
morphism P1

T → Spec(T ) over the closed point of Spec(T ). (Here X is called the closed fiber

of X̂.) Show that X is isomorphic to P1
k and that the complement of X in X̂ is isomorphic

to P1
K .

Problem 2.13. Show that the field of rational functions on P1
T is k((t))(x).

Problem 2.14. Let U ⊆ X.

(a) Show that R̂U is a domain, and that R̂U = A[[t]] for some k-algebra A which is a
domain having fraction field k(x). Describe the ring A explicitly in terms of U .

(b) Prove that every element of R̂U that is congruent to 1 modulo t is a unit in this ring.

More generally, show that f ∈ R̂U = A[[t]] is a unit if and only if its constant term is
a unit in A.

11



(c) Find A explicitly in each of these cases: U is a Zariski affine open subset of X; U = {P}

for some closed point P of X; U = ∅; U = X. In the last two cases show that R̂U is
a discrete valuation ring with uniformizer t and find its residue field. In each of the
cases find the Krull dimension of R̂U .

(d) In the case that U is the affine x-line over k, compare the rings R̂U , RU , and T [x].
In particular, what natural containments are there, as T -algebras? For each such
containment, can a non-unit in the smaller ring become a unit in the larger ring?

Problem 2.15. Let η be the generic point of X; this is the unique point of X that is not
a closed point. Suppose that U ⊆ X, and let U ′ = U ∪ {η}. Show that RU = RU ′ and

R̂U = R̂U ′. (Note that the definition of R∅ ensures that this equality holds even if U is
empty.)

Problem 2.16. Suppose that U1, U2 are sets of closed points of X.

(a) Show that the following are equivalent:

(i) U1 ⊂ U2;

(ii) RU2
⊂ RU1

;

(iii) R̂U2
⊂ R̂U1

.

(b) Show that the three analogous conditions, with containment replaced by equality, are
also equivalent.

(c) What if instead U1, U2 are subsets of X that each contain the generic point η of X?

Problem 2.17. Suppose that U1, U2 ⊆ X and let U = U1 ∪ U2. Write R̂i for R̂Ui
.

(a) Show that R̂1 ∩ R̂2 = R̂U .

(b) Find R̂1[x] ∩ R̂2 explicitly if U1 is the complement in X of the point x = 0, and U2 is
the complement of the point at infinity. In particular, observe that this intersection is
contained in F and that its fraction field is equal to F .

(c) More generally, suppose that U = X and that f ∈ A2 where R̂i = Ai[[t]]. Show that

R̂1[f ] ∩ R̂2 ⊆ F . Show moreover that the fraction field of this intersection is equal to
F provided that f 6∈ k.

Problem 2.18. Let R be a ring that is complete with respect to a non-archimedean absolute
value | · |. That is, | · | : R → R satisfies |a| ≥ 0 for all a ∈ R, with |a| = 0 precisely for a = 0;
|ab| = |a| |b|; and |a+ b| ≤ max(|a|, |b|). Let R{x} be the subset of R[[x]] consisting of power
series whose coefficients approach 0 in the metric defined by the absolute value. Similarly
define R{x1, . . . , xn}.

(a) Show that R{x} is a subring of R[[x]].

12



(b) Show that f(x) ∈ R[[x]] lies in R{x} if and only if the infinite sum f(a) converges in
R for all a ∈ R of absolute value at most 1.

(c) Let T = k[[t]] and K = k((t)) as before, and let U be the affine line over k, with

parameter x. Show that T{x} = R̂U and that K{x} = R̂U [t
−1]. Can you interpret

the rings T{x−1}, K{x−1}, T{x, x−1}, and K{x, x−1} in an analogous way? (Here
T{x, x−1} is shorthand for T{x, y}/(xy − 1) and similarly for K{x, x−1}.)

Problem 2.19. (a) Find an explicit additive decomposition as in Lemma 2.1 if U1 is the
complement of the point x = 0 in X; U2 is the complement of the point x = 1; and the
constant term of a, as a power series in t, is (x2 + 1)/(x2 − x).

(b) Do the same if U1 is as before but U2 is the complement of the point at infinity and
the constant term of a is (x2 + x− 1)/x.

Problem 2.20. Assume that k has characteristic zero. Let U1 be the complement of the
point x = 0 in X, and let U2 be the complement of the point at infinity. Take n = 1 and let

A0 be the 1× 1 matrix whose entry is
∞∑

n=0

(x4 + 1)n

n! x2n
tn. Explicitly find the first several terms

in the entries of A1 and A2 as in Proposition 2.2, as power series in t. Can you express A1

and A2 fully?

Problem 2.21. Using Theorem 2.7 and induction, prove Theorem 2.8. Before doing so,
write down a precise definition of the category and the functor that appear in the statement
of the theorem.

Problem 2.22. Let k = C, let U1 ⊂ X = P1
C consist of the point x = 0, let U2 be the

complement of U1 in X, and let U0 = ∅. Let F be the function field of X̂ = P1
C[[t]], and write

Fi = FUi
for i = 0, 1, 2.

(a) Consider the Galois field extension E1 of F1 given by y2 = x− t, and the Galois field
extension E2 of F2 given by z2 = x−1−t. Give an isomorphism µ : E1⊗F1

F0 → E2⊗F2
F0

of field extensions of F0, and then find a field extension E of F such that E ⊗F Fi is
isomorphic to Ei for i = 1, 2, compatibly with µ. Is E Galois over F ?

(b) What changes if instead we replace E1, E2 by the extensions given by y2 = x2 − t2 and
z2 = x−2 − t2? What stays the same?

(c) Now replace E1, E2 by the extensions given by y4 = x4 − t4 and z4 = x−4 − t4. What
can go wrong depending on the choice of µ? (Cf. Problems 1.11 and 1.12.)

Problem 2.23. (a) State and carry out the analog of Problems 2.10 and 2.11, with T
replaced by Zp.

(b) Do the same for Examples 2.12 and 2.13.

(c) Try to find an analog of Problem 2.14.

13



Problem 2.24. Do the results of this section hold if T is replaced by k[[s, t]]?

Problem 2.25. Let S be a smooth projective surface over a field k, and write F for the
function field of S. Let X denote an isomorphic copy of P1

k in S. For U ⊆ X non-empty,

let RU denote the subring of F consisting of the rational functions on X̂ that are regular
at the points of U . Let I be the ideal sheaf defining X in S, and let R̂U denote the I-adic
completion of the ring RU . Also write R∅ for the subring of F consisting of the rational
functions that are regular at the generic point of X, and write R̂∅ for its I-adic completion.
To what extent to the results of this section remain true in each of the cases below?

(i) S = P1
k × P1

k, and X = P1
k ×O where O is the point 0 on P1

k.

(ii) S = P2
k, and X is the line at infinity.

(iii) S is the result of blowing up the point x = y = 0 in P2
k, and X is the exceptional

divisor.

Can you make any conjectures about how the behavior depends on the choice of the pair
(S,X)?

Problem 2.26. (a) Let p be a prime number and consider P1
Fp

, with function field Fp(x).
Can one define fields F1, F2, F0 in this context, such that analogs of the results of this
section hold?

(b) What if instead F is replaced by Q?

Part II

A prominent question considered in Galois theory is the so called inverse problem: Given a
field F , determine all finite groups that occur as Galois groups over F . Of course, the answer
depends on F . For example, it is known that all finite groups occur when F is a rational
function field C(t) with C algebraically closed or complete, or more generally an algebraic
function field over such a field C. It is an open question when F = Q, the field of rational
numbers.

There are various types of methods used to prove results like the ones mentioned above
or to realize certain groups as Galois groups. One of them, which works in the case of C(t)
for a complete field C, is patching, which is the subject of Part I of these notes. In this
second part, we are going to apply the patching method to study a variant of the inverse
Galois problem.

3 Basics on central simple algbras, division algebras, and

the Brauer group

Throughout this section, F denotes a field.
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Definition 3.1. A central simple F -algebra is a finite dimensional F -algebra with center
F and without nontrivial two-sided ideals. It is called a division algebra if every nonzero
element is a unit.

Here are some basic but important examples:

(1) Let F be a field of characteristic unequal to two, and let a, b ∈ F \ F 2. Then there is
a quaternion algebra defined as

H(a, b) = F · 1⊕ F · i⊕ F · j ⊕ F · ij

with multiplication given by

i2 = a, j2 = b, ij = −ji.

When F = R, a = b = −1, this construction gives the usual Hamilton quaternions H.

(2) Let G be a finite group and let ρ : G → GLn(F ) be an irreducible representation. Then
Schur’s Lemma asserts that EndG(ρ) is a division algebra (and so it is central simple).

(3) The algebra Matn(F ) is a central simple F -algebra (see Problem 3.15). It is not a
division algebra if n > 1.

(4) Suppose that n is a positive integer and F is a field that contains a primitive nth
root of unity ζ . For any a, b ∈ F×, we define the symbol algebra Aζ(a, b, F ) to be the
F -algebra with generators i, j and relations in = a, jn = b, and ij = ζji. It is well
known that this is a central simple F -algebra of dimension n2. (This generalizes the
first example.)

We will not be able to provide proofs for all of the material covered in this section. These
proofs are however not very difficult, and we encourage the reader to look them up. The
reference [BO] seems particularly accessible (though long).

In order to check whether a given algebra is a central simple algebra, it is often useful to
consider a base change:

Lemma 3.2. Let A be an associative algebra over F and let L/F be a finite field extension.
Then A is central simple over F if and only if A⊗F L is central simple over L.

The famous structure theorem of Wedderburn classifies central simple algebras.

Theorem 3.3 (Wedderburn). (1) Let n,m be positive integers and let D,D′ be division
algebras over F . If Matn(D) →∼ Matm(D

′) then D and D′ are isomorphic, and n = m.

(2) Every F -central simple algebra is isomorphic to Matn(D) for some n and some F -
division algebra D. This division algebra is uniquely determined (up to isomorphism).
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Another important theorem concerns automorphisms of central simple algebras. Recall
that an inner automorphism of an F -algebra A is an automorphism given by conjugation
with an invertible element from A.

Theorem 3.4 (Skolem-Noether). Let A be a central simple F -algebra, and let B be a simple
F -algebra (i.e., B is a central simple algebra over a field L which may be a proper overfield
of F ). Let ϕ1, ϕ2 : B → A be two F -algebra homomorphisms. Then there exists an inner
automorphism ρ of A such that ϕ2 = ρ◦ϕ1. In particular, every automorphism of A is inner.

We have already seen that an easy example of a central simple algebra is given by a matrix
algebra. In fact, after a base change, every central simple algebra becomes isomorphic to
such an algebra.

Definition 3.5. Let A be a central simple F -algebra. A field L is called a splitting field of
A if it contains F and A⊗F L →∼ Matn(L) for some n. In this situation, we also say that A
splits over L, or that L splits A.

It is clear that splitting fields always exist. For example, one can show that every F -
central simple algebra splits over an algebraic closure of F (see Problem 3.17).

It is not hard to conclude that there is always a splitting field which is a finite extension
of F . But much more is true:

Theorem 3.6. Every central simple F -algebra has a Galois splitting field of finite degree
over F .

It follows from the above that the dimension of a central simple F -algebra A is always
a square. Hence the square root of the dimension is a natural number, which allows us to
make the following definition.

Definition 3.7. Let A be a central simple F -algebra, and let D the division algebra asso-
ciated to A by Wedderburn’s theorem. The square root of the dimension of A is called the
degree of A, deg(A). The index of A is the degree of D, denoted ind(A).

As an example, the symbol algebra defined in the previous section has dimension n2 and
hence it has degree n. Note that by definition, ind(A)| deg(A), and deg(A) = ind(A) if and
only if A is division algebra over F . It can also be shown that the index divides the degree
of any splitting field. In fact, the index is equal to the degree of a splitting field of minimal
degree.

Again, it is useful to know what happens under base change:

Proposition 3.8. Let A be a central simple algebra over F and let L/F be a field extension.
Then ind(A⊗F L) | ind(A).

We are now going to study the set of all central simple algebras over F up to isomorphism.
To this end, we note that one may define a tensor product.

Proposition 3.9. If A and B are central simple algebras over F , then so is A⊗F B.
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Definition 3.10. Let A and B be central simple algebra over F . We say A is Brauer
equivalent to B if A⊗F Matn(F ) →∼ B⊗F Matm(F ) for suitable n,m ∈ N. The Brauer group
of F , Br(F ), is the set of equivalence classes of central simple algebras over F . It is an
abelian group with the multiplication

[A][B] := [A⊗F B],

where [A] denotes the class of A etc.

It is not hard to see that this multiplication is indeed well defined (see Problem 3.18).
The following lemma records some basic properties of Brauer equivalence.

Lemma 3.11. Let A and B be central simple F -algebras, and let L/F be a field extension.
Then the following holds:

(1) Brauer equivalent central simple F -algebras have the same index and isomorphic divi-
sion algebras (as associated by Wedderburn’s theorem).

(2) Two central simple F -algebras are Brauer equivalent if and only if their underlying
division algebras are isomorphic.

(3) Brauer equivalent central simple algebras are isomorphic if and only if they have the
same degree.

(4) If A is Brauer equivalent to B, then A⊗F L is Brauer equivalent to B ⊗F L.

Thus elements of Br(F ) correspond bijectively to isomorphism classes of F -division alge-
bras.

Theorem 3.12. For any field F , the Brauer group Br(F ) is a torsion group.

That is, every element in Br(F ) is of finite order.

Definition 3.13. Let α be an element of Br(F ). The period of α is defined as the order of
α in the Brauer group, denoted per(A).

The prime factorization of the period of a Brauer class gives information about the class
itself, by the following decomposition property:

Proposition 3.14. Let e1 and e2 be coprime integers, and let A be a central simple F -algebra
of period e1e2. There exist two central simple F -algebras A1 and A2, uniquely determined up
to isomorphism, such that:

(1) per(Ai) = ei, i = 1, 2,

(2) A1 ⊗F A2 →
∼ A.

Moreover, A is a division algebra if and only if A1 and A2 are.
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This statement can be deduced from the Primary Decomposition Theorem (which is a
similar result concerning factorizations of the degree) and its proof, see [BO], Theorem 20.7
and following.

Problems for Section 3

Problem 3.15. Show that the center of Matn(F ) is (isomorphic to) F . Determine the
structure of left and right ideals in Matn(F ). Conclude that Matn(F ) is an F -central simple
algebra.

Problem 3.16. Give an example of two non-isomorphic central simple algebras (resp. divi-
sion algebras) over Q of the same degree.

Problem 3.17. Let F be a field and A a central simple algebra over F .

(1) Show that A is split over any algebraic closure of F .

(2) Conclude that the dimension of A (as a vector space over F ) must be a square.

(3) Show that an extension L/F is a splitting field for A if and only if it splits the division
algebra D associated to A by Wedderburn’s theorem.

Problem 3.18. (1) Show that the multiplication in the Brauer group is well defined,
associative, and commutative.

(2) Let A be a central simple F -algebra. Show that there is a central simple F -algebra B
such that A⊗F B →∼ Matn(F ).

(3) Determine Br(F ) in the cases when F is algebraically closed or finite.

(4) Can you determine Br(R)?

4 Crossed Product Algebras and the admissibility prob-

lem

Definition 4.1. A finite group G is called admissible over a field F if there is a G-Galois
extension E/F contained in an F -division algebra D such that

[E : F ] = degF (D).

Note that if E is any subfield of an F -division algebra D, then [E : F ] ≤ degF (D). Hence
if G is admissible, the field E in the above definition is a maximal subfield of D. Conversely,
any maximal subfield E of an F -division algebra D satisfies [E : F ] = degF (D) (however,
this does not remain true for central simple algebras which are not division).

There is another way of expressing the same property in different terms.
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Definition 4.2. Let E/F be a finite Galois extension with Galois group G. A G-crossed
product algebra A is defined by the following data:

• A vector space A :=
⊕
σ∈G

Euσ for some generators uσ (where we set u1 = 1 for simplicity)

• a (normalized) 2-cocycle c of G in E×, i.e., a map c : G×G → E× satisfying c(1, σ) =
c(τ, 1) = 1 and σ(c(τ, ρ)) · c(σ, τρ) = c(στ, ρ) · c(σ, τ) for all σ, τ, ρ ∈ G.

• a multiplication defined by uσ · b = σ(b)uσ for b ∈ E, and by uσuτ = c(σ, τ)uστ .

In Problem 4.13 below, you are going to show the following

Lemma 4.3. Let E/F be a finite Galois extension with group G, and let A be a G-crossed
product algebra. Then A is an F -central simple algebra.

If the cocycle condition looks confusing to you, the proof of the lemma will also show
you that it is exactly ensuring the associativity of A (which will hopefully make it look more
natural). Whereas the definition may seem pretty technical, crossed product algebras are by
no means rare:

Proposition 4.4. Any central simple algebra is Brauer equivalent to a crossed product al-
gebra (for some group G).

You will prove this statement in Problem 4.15.
We can now give another characterization of admissibility:

Proposition 4.5. A finite group G is admissible over a field F if and only if there is a
G-crossed product division algebra over F .

It is not true that crossed product algebras are always division algebras (see Prob-
lem 4.14), so the word division in the above proposition cannot be omitted.

If one looks at crossed products from the viewpoint of maximal subfields, there is also a
relationship to splitting fields:

Proposition 4.6. Let A be central simple F -algebra, and let L be a field extension satisfying
[L : F ] = deg(A). Then L is a splitting field of A if and only if it isomorphic to a maximal
commutative subfield of A.

Let us exhibit an important class of examples of crossed product algebras.

Lemma 4.7. Let G be a cyclic group of order n, and let L/F be a G-Galois extension. Let
σ be a generator of G, and let a ∈ F×.

For all 0 ≤ i, j ≤ n− 1, set

ζσ,a(σ
i, σj) =

{
1 if i+ j < n

a if i+ j ≥ n.

Then the map ζσ,a : G×G → L× is a normalized 2-cocycle.
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The proof is a simple case by case analysis which we leave to the reader.

Definition 4.8. Define the F -algebra (a, L/F, σ) to be the crossed product algebra given by
ζσ,a. This is called a cyclic algebra. It is the F -algebra generated by one element e satisfying

(1) (a, L/F, σ) =
n−1⊕
i=0

Lei,

(2) e · b = σ(b)e for all b ∈ L and

(3) en = a.

The reader is advised to check the claims implicitly made in the above definition. Con-
versely, it can be checked that any central simple F -algebra of degree n satisfying the three
conditions given above is indeed a crossed product with respect to a cyclic group.

The nice thing about this specific type of crossed product is that there is an easy criterion
that can be used to ensure that a cyclic algebra is a division algebra.

Proposition 4.9. Suppose that F is a discretely valued field which contains an nth root of
unity, and let L/K be a cyclic Galois extension of degree n. Suppose that v is a valuation
on L that commutes with the action of Gal(L/F ), i.e., that it is the unique extension of the
given valuation to L. Assume moreover that a ∈ F× is an element such that the order of v(a)
in v(L)/nv(L) is n. Then for any generator σ of Gal(L/F ), the cyclic algebra (a, L/F, σ) is
a division algebra over F .

Proof. Let A := (a, L/F, σ). With notation as in Definition 4.8, show that the formula

v

(
n−1∑

i=0

aie
i

)
= min{v(ai) +

i

n
v(a)| i = 0, . . . , n− 1, ai 6= 0}

defines a map v : A \ {0} → 1
n
v(L) which satisfies v(a + b) ≥ min(v(a), v(b)), for all

a, b ∈ A \ {0} with b 6= −a and v(a + b) = min(v(a), v(b)), whenever v(b) 6= v(a). Deduce
that A cannot contain any zero divisors.

The division algebra version of the inverse Galois problem now reads as follows: Given a
field F , which finite groups are admissible over F ?

We start with a brief summary of known results. For example, if F = Q, a theorem of
Brauer, Hasse, and Noether may be reformulated to read

Theorem 4.10. Every cyclic group is admissible over the field Q of rational numbers.

One reason why the admissibility problem is fun is that one can not expect all groups to
be admissible. This is due to Schacher, who found the following necessary condition in 1968
([Sch68]):

Theorem 4.11. If a finite group G is admissible over Q, then all its Sylow subgroups must
be metacyclic.
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Here, a (finite) group is called metacyclic if it is an extension of a cyclic group by a cyclic
group (i.e., if it contains a normal cyclic subgroup such that the quotient is also cyclic).
Groups that satisfy the necessary condition of the theorem are also called Sylow metacyclic
for short. In the same paper, Schacher conjectures that this condition is indeed sufficient,
i.e., that the admissible groups over Q are exactly those that are Sylow metacyclic. This
conjecture is still open. In fact, there are Sylow metacyclic groups that are not even known to
be Galois groups over Q. But of course the conjecture created a whole industry of showing
that certain examples or classes of Sylow metacyclic groups are admissible over Q. One
of the most far reaching results in this direction is due to Sonn ([Son83]), who showed that
every solvable Sylow metacyclic group is admissible over Q. (For solvable groups, the inverse
Galois problem also has a positive solution due to Shafarevich, so at least there’s nothing to
worry about in that respect.)

There is a statement similar to Schacher’s Theorem 4.11 and a corresponding conjecture
for function fields over finite fields (which are generally expected to behave in analogy to
number fields). In our course, we are going to apply patching methods to show the following:

Theorem 4.12. Let K be a complete discretely valued field with algebraically closed residue
field k, and let F be an algebraic function field over K. Let G be a finite group of order not
divisible by the characteristic of k. Then G is admissible over F if and only if every Sylow
subgroup of G is abelian of rank at most two.

Note that instead of abelian of rank at most two we could have said abelian metacyclic,
to emphasize the analogy with Schacher’s theorem. We already mentioned that over a field
F as in the theorem, all groups occur as Galois groups.

The forward direction of the proof is indeed very similar to Schacher’s original proof.
Just like Schacher it uses that over the field F , the period of a central simple algebra equals
its index, at least for classes of period not divisible by the characteristic of k. The proof of
this ([HHK09] or [Lie07]) uses the fact that k is algebraically closed. This direction will be
treated only briefly in the course, for the sake of completeness.

The backward direction, i.e., the realization of a given group G as the Galois group of a
maximal subfield of some division algebra, extends the patching methods used to prove the
inverse Galois problem to solve this new noncommutative inverse Galois type problem.

Problems for Section 4

Problem 4.13. (1) Show that the algebra A given in the definition of a crossed product
is associative.

(2) Show that the center of A is F .

(3) Use Lemma 3.2 to show that A is an F -central simple algebra.

Problem 4.14. Find an example of a Galois extension E/F and a Gal(E/F )-crossed product
algebra which is not a division algebra.
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Problem 4.15. Let F be a field and let A be an F -central simple algebra. Then there exists
a finite Galois extension E/F and a Gal(E/F )-crossed product algebra B such that A and
B are Brauer equivalent.

Problem 4.16. Find an example of a Sylow-metacyclic group which is not solvable.

Problem 4.17. Study the classes of groups whose Sylow subgroups are all metacyclic or all
abelian of rank two, respectively. In particular, give examples of such groups.

Problem 4.18. (1) Find an example of a cyclic extension F of Q of degree four such that
F is a maximal subfield of a Q-division algebra.

(2) Do the same with respect to the group V4 = C2 × C2, instead of C4.

(3) Show that this new example necessarily contains a C4-Galois subfield, and exhibit one
such subfield explicitely.

You can first try to do this over Q(i) instead of Q.

Problem 4.19. Find explicit examples of admissible groups over F whose order is divisible
by the characteristic of k.

5 Patching crossed product algebras

In order to construct crossed product division algebras with respect to a prescribed group G
(which satisfies the necessary condition on the Sylow subgroups given in Theorem 4.12), we
are going to use the patching method introduced in the first part of the notes. For simplicity,
we restrict our attention to the following situation: Let k denote an algebraically closed field,
let T = k[[t]] be the ring of power series over k with field of fractions K, and let F = K(x).
Just as the patching methods generalize to more general one variable function fields (see the
comments at the end of Section 2), so do the results of this section.

The basic strategy is now the following: Assuming we have crossed product division
algebras for the Sylow subgroups of G over some patches we want to glue them together
using a version of Theorem 2.8. But there is one technical difficulty we have to overcome:
The objects we construct a priori have different dimensions (as vector spaces). To resolve
this, we introduce induced algebras.

Given a finite group G and a subgroup H , any H-Galois field extension L/F gives rise
to a G-Galois F -algebra E = IndG

H L, called the F -algebra obtained from L by inducing up
to G. In fact, the construction goes as follows:

(1) Pick left coset representatives c1, . . . , cn of H in G.

(2) As an algebra, define E = L⊕|G/H|. We identify the standard vector space basis with
c1, . . . , cn.
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(3) If we fix i, each g ∈ G can be written in the form cjhc
−1
i for some h ∈ H and some

j ∈ {1, . . . , n}. This can be used to define a G-action on E by g(ci · a) = cj · h(a)
(where a ∈ L).

This is a commutative algebra which is independent of all the choices and has good properties
(see Problem 5.3).

Now suppose we are given an H-crossed product division algebra D over F with H-Galois
subfield L. The above construction yields a G-Galois algebra E. The following lemma gives
the right analog for D.

Lemma 5.1. In the above situation, let n = [G : H ]. Then E = IndG
H(L) embeds as a

maximal commutative subalgebra of Matn(D).

Proof. Since [L : F ] = deg(D), the central simple L-algebra D ⊗F L is isomorphic to
Matm(L), where m = [L : F ]. By the definition of E, this implies that D ⊗F E is a
direct sum of copies of Matm(L). One may conclude that E is a maximal commutative
separable subalgebra of some central simple F -algebra B which is Brauer equivalent to D
(this uses [DI71], Theorem II.5.5. and Proposition V.1.2). For dimension reasons, B is a
matrix algebra over D and isomorphic to Matn(D).

At this point we are ready to get the patching machinery to work. Recall the notation
introduced at the beginning of Section 2.

Theorem 5.2. Let F be as above and let G be a finite group. Let H1, . . . , Hr be subgroups of
G, and let Q1, . . . , Qr be closed points on P1

k. Let Fi := F{Qi}. Suppose for each i = 1, . . . , r,
we are given an Hi-crossed product division algebra Di over Fi with Hi-Galois maximal
subfield Li. Suppose moreover that Li ⊗Fi

F∅ is a direct sum of copies of F∅, for each i.
Then there exists a central simple F -algebra A with maximal G-Galois subalgebra E such
that E⊗F Fi →

∼ Ei := IndG
Hi
(Li) for all i = 1, . . . , r. If moreover the greatest common divisor

of the indices ni := [G : Hi] is equal to 1, then A is a division algebra and E is a Galois field
extension of F .

Proof. The first step is to use patching to obtain a G-Galois F -algebra E for which E⊗F Fi →
∼

Ei for all i = 1, . . . , r. Then one needs to patch the algebras Ai, compatibly with the
inclusions of Ei into Ai. Both of these steps are done in Problem 5.4.

Finally, assume the condition on the indices ni = [G : Hi]. First, note that

|G|/ni = |Hi| = [Li : Fi] = deg(Di) = ind(Ai) | ind(A)

since Li is a maximal subfield of Di and since the index of a base changed algebra is a divisor
of the index of the original algebra (see Section 3).

By the condition on the ni,

deg(A) = |G| = lcm(|G|/n1, . . . , |G|/nr) | ind(A).

But for any central simple algebra, the index divides the degree, hence the index of A must
equal the degree of A which is the order of G. Thus A is a division algebra, forcing E to be
a field.
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Problems for Section 5

Problem 5.3. Show that the induced algebra E = IndG
H(L) is a commutative algebra which

is independent of the choices made (e.g. the coset representatives). Also show that EG = F .
Do the explicit construction of IndG

H in the case when G = S3, and H is either a cyclic
subgroup of order two or A3.

Problem 5.4. Consider the setup of Theorem 5.2.

(1) Use the hypothesis on Li ⊗F F∅ to define a patching problem which will yield a G-
Galois F -algebra E with the required property. You will need to use an extra set U
to cover P1

k by patches, and a corresponding EU and AU . The latter should satisfy
AU ⊗FU

F∅ →∼ Matn(F∅).

(2) Now use the hypothesis again to show that there exist isomorphisms Ai ⊗Fi
F∅ →∼

Matn(F∅) for all i = 1, . . . , r, where n = |G|.

(3) Use the Skolem-Noether Theorem to show that for each i = 1, . . . , r, there is a com-
mutative diagram

Ai ⊗Fi
F∅

// A∅

Ei ⊗Fi
F∅

OO

// F
⊕|G|
∅

OO

(4) Combine the previous steps with a central simple algebra version of Theorem 2.8 to
obtain a central simple algebra A that contains a G-Galois algebra E as a maximal
subalgebra.

Problem 5.5. Let A be a central simple algebra over F , and let Fξ = FUξ
for a finite

collection of subsets Uξ of the projective line over k (as in Problem 5.4 above). Show by
example that the index of the induced Fξ-algebra Aξ can be strictly less than that of A for
some ξ. In fact, can it be strictly less for every ξ?

6 Building blocks for Sylow subgroups

Let F be as in the previous section. Let G be a finite group whose order is not divisible by
the characteristic of the residue field k. Since k is algebraically closed, it contains a primitive
|G|th root of unity. The same holds for all its overfields, in particular, the field F .

Proposition 6.1. Let p be a prime unequal to the characteristic of k and let P be an abelian
p-group of rank at most two. Then for each closed point Q of P1

k, P is admissible over
F{Q}. The corresponding field extension L and division algebra D can be chosen to satisfy

L⊗F{Q}
F∅ →∼ F

⊕|P |
∅ and D ⊗F{Q}

F∅ →∼ Mat|P |(F∅).
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Proof. For simplicity of notation, we assume that Q is a finite place (which is the case after
a suitable change of variables). By hypothesis, P is abelian of rank at most two, so let
P = Cq × Cs where q and s are p-powers. The point Q is defined by t = 0, x = c for some
c ∈ k. Consider the elements a := (x− c)/(x− c− t) and b := (x− c− t2)/(x− c− t− t2).
Let L be the extension of F{Q} defined by yq = a, zs = b. Neither a nor b is a dth power
in F{Q}, for any d > 1 (why?), so the two extensions defined by the individual equations
are Galois with group Cq and Cs, respectively (by Kummer theory). The first extension is
totally ramified over (x − c), whereas the other extension is unramified there. Hence they
are linearly disjoint over F{Q}, and L has Galois group P as required.

By the discussion preceding the proposition, F{Q} contains a primitive |P |th root of
unity ζ . We use the symbol algebra construction provided in Section 3: Let D be the central
simple algebra generated by elements Y, Z subject to the relations Y s = y, Zq = z and
Y Z = ζZY . We leave it to the reader to check that D is a division algebra which contains
L as a maximal subfield (see Problem 6.2).

Finally, we show the splitness assertion L⊗F{Q}
F∅ →∼ F

⊕|P |
∅ , which implies that D⊗F{Q}

F∅ →∼ Mat|P |(F∅). The elements a and b each lie in the valuation ring of the discretely valued
field F∅ (see Problem 2.14.c), and in fact, each is congruent to 1 modulo t. The reductions
of a and b are thus |P |th powers in k, and hence a and b are |P |th powers in F∅, by Hensel’s
Lemma and completeness. But this means the equations defining L define trivial extensions
of F∅, hence the claim.

The proof of the converse direction of Theorem 4.12 is now done by combining Theo-
rem 5.2 with Proposition 6.1. We leave it to the reader to work out the details.

Problems for Section 6

Problem 6.2. Complete the proof of Proposition 6.1: First, show that the symbol algebra
D is equal to a cyclic algebra (h, F{Q}(ỹ)/F, σ) for some suitable h ∈ F{Q} , ỹ ∈ F∅, and
σ ∈ Gal(F{Q}(ỹ)/F{Q}). Then use the valuation theoretic criterion to show that D is a
division algebra. Next show that y and z commute in D, and use this to define an embedding
of L as a subfield of D. Finally, look at the degree of L to conclude it is a maximal subfield
of D. Notice that this gives another proof of the fact that the symbol algebra D is a central
simple algebra (more generally, one can use this type of calculation to relate symbol algebras
and cyclic algebras).

Problem 6.3. Construct a division algebra over F = C((t))(x) that contains a maximal
subfield that is Galois over F with group S3.

Problem 6.4. Show by example what goes wrong if one patches together two division
algebras over F = C((t))(x), each having maximal subfields with Galois group C2 × C2, in
an attempt to prove admissibility of C4

2 over F .

Problem 6.5. Is every cyclic field extension of C((t))(x) a maximal subfield of an F -division
algebra?
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Problem 6.6. Are all cyclic groups admissible over the field of fractions C((x, y)) of the
power series ring C[[x, y]]? You should be able to attack this question using methods similar
to those used in the proof of Proposition 6.1.

Problem 6.7. What can be said about admissible groups over F = k((t))(x) if k is not
algebraically closed? What if the characteristic of k is allowed to divide the order of G?
What if k((t)) is replaced by Qp? Try to formulate conjectures.
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