
Determining large groups and varieties from small

subgroups and subvarieties

This course will consist of two parts with the common theme of analyzing a
geometric object via geometric sub-objects which are ‘small’ in an appropriate
sense.

In the first half of the course, we will begin by describing the work on
H. W. Lenstra, Jr., on finding generators for the unit groups of subrings of
number fields. Lenstra discovered that from the point of view of computational
complexity, it is advantageous to first consider the units of the ring of S-integers
of L for some moderately large finite set of places S. This amounts to allowing
denominators which only involve a prescribed finite set of primes. We will de-
velop a generalization of Lenstra’s method which applies to find generators of
small height for the S-integral points of certain algebraic groups G defined over
number fields. We will focus on G which are compact forms of GLd for d ≥ 1.

In the second half of the course, we will turn to smooth projective surfaces
defined by arithmetic lattices. These are Shimura varieties of complex dimension
2. We will try to generate subgroups of finite index in the fundamental groups
of these surfaces by the fundamental groups of finite unions of totally geodesic
projective curves on them, that is, via immersed Shimura curves.

In both settings, the groups we will study are S-arithmetic lattices in a prod-
uct of Lie groups over local fields. We will use the structure of our generating
sets to consider several open problems about the geometry, group theory, and
arithmetic of these lattices. In particular, we will consider the structure of the
cohomology of S-arithmetic groups and characteristic p analogues. We will also
discuss connections with the congruence subgroup problem, which is open in
many of the cases under consideration in this project.

1 Small generators for S-units of division alge-
bras

The first goal of this course will be to generalize ideas of H. W. Lenstra Jr. for
generating S-units of algebraic number fields to the noncommutative setting.
This portion of the course should be easily accessible to graduate students of all
backgrounds. We will assume familiarity with basic algebraic number theory,
and some exposure to the theory of division algebras over local and global
fields will be useful. A good way to prepare for this part of the course is to
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read Chapters I–V and VIII–XI in André Weil’s Basic Number Theory [13] and
Lenstra’s survey [5].

1.1 Number fields and Lenstra’s algorithm

The Dirichlet unit theorem says that the unit group O∗k of the ring of integers
Ok of a number field k is a finitely generated abelian group. The explicit compu-
tation of generators for O∗k is a basic problem in computational number theory.
This problem arises in many contexts, e.g. in class field theory.

Dirichlet’s theorem specifies exactly how many generators one needs for O∗k.
One measure of the difficulty of finding a set of generators is simply the number
of bits of data necessary to specify each element of the set. This leads to the
notion of the height of elements of k. One cannot expect to generate O∗k by
elements whose height is bounded by a constant times a fixed power of the
absolute value |∆k| of the discriminant of k. A surprising discovery of H. W.
Lenstra was that one can find such “small” generators for the unit group O∗k,S of
the S-integers Ok,S of k for some moderately large set of places S. To describe
this result we need some additional notation.

Let V = V∞ ∪ Vf be the places of k, where V∞ (resp. Vf ) is the set of
archimedean (resp. finite) places. If R is a k-algebra or Ok-module and v ∈ V ,
let Rv denote the completion of R at v.

Suppose that S is a finite set of places of k with V∞ ⊂ S and let Sf = SrV∞.
The S-integers of Ok, denoted Ok,S , is the ring of elements of k which lie in
Ok,v for every v /∈ S. The multiplicative group of units of Ok,S is the group
O∗k,S of S-units of k.

For example, suppose k = Q and that S = {∞, p1, . . . , pr} where the pj are
prime numbers. Then OQ,S = ZS is the subring Z[p−1

1 , . . . , p−1
r ] of Q, with unit

group
Z∗S = 〈−1, p1, . . . , pr〉 ∼= (Z/2Z)× Zr,

generated by −1 and pj for 1 ≤ j ≤ r.
For general k, finding generators for O∗k,S is much more difficult. Our notion

of complexity of a generator comes from the height of an algebraic number. The
height of x ∈ k∗ is the quantity

Hk(x) =
∏
v∈V

max{1, |x|v},

where | |v is the normalized absolute value at v. One natural measure of the
size of the field k is the absolute value of the discriminant ∆k of k. Finally a
measure of the size of S is simply the maximum mS of the norm N(v) of a finite
place v ∈ S, where N(v) is the order of the residue field of the completion of k
at v.

For example, suppose k = Q. When x = p is a prime number one has
|p|v ≤ 1 for all places v except for the infinite place ∞, and |p|∞ = p. Similarly,
|p−1|v ≤ 1 for all v 6= p, and |p−1|p = p. Thus HQ(p±1) = p, and HQ(−1) = 1.
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One sees from this that OQ,S can be generated by elements of height bounded
by mS , where ∆Q = 1.

The next relevant example is when k = Q(
√
d) is the real quadratic field

associated to a square free integer d > 1 and S consists of the two archimedean
places and no finite places. Then

O∗k,S = O∗k = {±εjk}
∞
j=−∞

is generated by −1 and a fundamental unit εk of k whose embedding εk,1 at one
infinite place ∞1 of k satisfies εk,1 > 1. One then has

|εk|∞2 = |εk|−1
∞1

= ε−1
k,1 < 1

at the other infinite place ∞2, while |εk|v ≤ 1 at all finite places v. So

Hk(εk) = εk,1.

The Brauer–Siegel Theorem implies that for any δ > 0, there is a constant
cδ > 0 independent of the real quadratic field k such that

Hk(εk) = εk,1 > cδ ·
exp(|∆k|

1
2−δ)

hk
.

where hk is the class number of k. It is a major open problem determine whether
or not there are infinitely many real quadratic fields of class number 1, and it
is widely believed that there are. If there are infinitely many such k, we see
that their unit groups O∗k cannot be generated by elements whose heights are
bounded by a polynomial in |∆k|.

In view of this, the following result shown by Lenstra in [5] is somewhat
surprising:

Theorem 1. (Lenstra) Suppose S contains V∞ and all places v of norm bounded
by (2/π)s|∆k|1/2, where s is the number of complex places of k. Then O∗k,S
is generated by those elements with height bounded above by (2/π)s|∆k|1/2mS,
where mS is the maximum norm of a nonarchimedean place in S.

Lenstra’s proof is geometric. Indeed, he builds an explicit fundamental set
for the action of O∗k,S on the space

XS =
∏
v∈S

k∗v ,

which is a locally compact space on which O∗k,S acts discretely and cocompactly.
He then uses a lemma from geometric group theory to recover a set of generators,
and proves that these generators have height bounded as above.
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1.2 Algebraic groups and division algebras

The first goal of this course will be to generalize the above results to the non-
commutative setting. From the point of view of algebraic groups, the group
of S-units of a number field k is the group of S-integral points of the alge-
braic group GL1/k. We will be generalize this by considering the S-integral
points of algebraic groups which are compact forms of the group GLd for d ≥ 1
constructed in the following way.

Let D be finite dimensional division algebra with center k. The dimension
of D over k then equals d2 for some integer d. By letting D act on itself by left
multiplication, we have an algebra embedding of D into Matd2(k). This realizes
the multiplicative group G = D∗ = D r {0} as an algebraic group. The group
G becomes isomorphic to GLd over an algebraic closure of k.

We will begin the course recalling the basic structure of division algebras over
local and global fields, their adelic points, S-orders OD,S of division algebras D
when S is a finite set of places of k, and the S-units groups O∗D,S of such orders.
As in the case of number fields, O∗D,S is a finitely generated group.

The groups O∗D,S act on products of symmetric spaces and Bruhat–Tits
buildings, and include a large number of classically studied groups. For example,
when S = V∞ and D is a quaternion algebra over k with certain ramification
properties, we obtain cocompact lattices acting on products of hyperbolic planes
and hyperbolic 3-spaces. Finding generators and relators for these groups has
been of significant interest since the late 19th century.

We also must introduce a notion of height on a division algebra D over a
number field k. Rather than utilizing a projective embedding of D, we will
construct a height that is more closely related to the group law on the algebra.
In particular, we exploit an embedding of our algebra into matrices over a finite
extension ` of k and use the extension of the usual height H` to n× n matrices
over `. This has the added feature of being very concrete when one wants to
actually compute a generating set for the S-units.

We consider the S-units O∗D,S as a discrete subgroup acting cocompactly
on the product

∏
v∈S D

∗
v . Using Minkowski’s lattice point theorem, we gener-

alize Lenstra’s fundamental set in the number field case to get an effectively
computable fundamental set for the action of O∗D,S .

This leads to a primitive recursive algorithm for computing generators for
O∗D,S , strengthening the results of Grunewald and Segal [2] for these S-arithmetic
lattices. Indeed, we will use our fundamental domain and some combinatorial
group theory to construct generators of height bounded explicitly in the basic
arithmetic invariants of D, S and k. Considering k as an algebra of degree 1
recovers Lenstra’s results as a special case.

1.3 Applications, questions, and problems

We now list several projects related to the first half of the course.

Run time analysis. We begin with a problem in the number field setting.
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Lenstra shows that one can determine generators for O∗k in time at most

(2 log |∆k|)O(n)|∆| 34 .

He raises the question of whether the 3
4 can be reduced unconditionally,

possibly to 1
2 . See §5 of [5].

Behavior of heights. Our notion of height on an algebra requires a choice of
subfield ` of D. Analyze the generating sets coming from different subfields
`. Is there a canonical ` that gives the ‘smallest’ generators for O∗D,S?

Small topological generators. Let D be a division algebra over the number
field k and S a finite set of places of k containing all archimedean places.
Our results exploit a set of topological generators for the group

D∗S =
∏
v∈S

D∗S .

This is a finite subset R ⊂ D∗S such that R and U generate D∗S for any open
subgroup U of D∗S . What is the minimum height of a set of topological
generators of D∗S?

Shrinking S. In the number field case, Lenstra is able to use the fact thatO∗S is
a finitely generated abelian group to study generators for O∗S′ where S′ ⊂
S. This is not possible in the noncommutative setting. Use the geometry
of Bruhat–Tits buildings to find an effectively computable generating set
for O∗D,S′ for S′ ⊂ S.

Groups acting on products of trees. Let k = Q and let D be a quaternion
division algebra over Q ramified at the infinite place. Let S contain exactly
two places over which D is not a division algebra. Then O∗D,S is a lattice
acting irreducibly on a product of two Bruhat–Tits trees (see [11]). Find a
presentation for the group O∗D,S . No such explicit presentations are known
in the literature.

Cohomology of S-arithmetic groups. Groups of S-units of division alge-
bras are fundamental examples of S-arithmetic lattices, and the cohomol-
ogy of arithmetic and S-arithmetic groups are of very significant interest.
Present some S-unit groups and use a computer algebra program to study
the behavior of their cohomology groups on subgroups of finite index. Of
particular interest lately has been the growth of torsion in cohomology of
arithmetic groups, and it would be interesting to get an idea what might
happen in the S-arithmetic setting.

The congruence subgroup problem. Again, using a presentation for an S-
unit group, analyze the possible finite quotients ofO∗D,S . There is a natural
system of finite quotients arising from reductions of Ok modulo ideals. In
its most basic form, the congruence subgroup problem asks whether or
not these are the only finite quotients. For example, it is known that
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SL2(Ok) has the congruence subgroup property if and only if k is not Q
or an imaginary quadratic field [10]. This question is open for all but
some small cases relevant to this project (e.g., it is open for lattices acting
irreducibly on a product of Bruhat–Tits trees).

Other fields. Study analogous questions for algebras in characteristic p or al-
gebras over higher dimensional fields.

Other algebraic groups. The obstruction to generalizing our results to arbi-
trary S-arithmetic lattices in a reductive algebraic group over a number
field lies in our use of Minkowski’s lattice point theorem. Find a way to
obtain generators for other classes of S-arithmetic lattices, e.g., lattices in
products of orthogonal groups of quadratic forms over number fields.

Cayley algebras. Generalize our methods to nonassociative algebras, partic-
ularly Cayley algebras over number fields.

2 Generating arithmetic varieties by arithmetic
subvarieties

The second half of this course will concentrate on generating fundamental groups
of certain smooth projective arithmetically defined surfaces by the fundamental
groups of a nice collection of small subvarieties. The main tools are so-called Lef-
schetz Theorems. These give sufficiently conditions for the fundamental group
of a Zariski closed subset Y of a variety X to generate a subgroup of finite index
in the fundamental group of X .

We will consider X which are complex surfaces given by the quotient of a
hermitian symmetric domain W by a cocompact arithmetic lattice. The Y we
will consider are the connected union of Shimura curves on X. We will not
assume that students have a background in the theory of arithmetic groups,
hermitian symmetric domains, or Shimura varieties. Some familiarity with the
basic complex algebraic geometry found in the first chapters of Griffiths and
Harris [1] or of Hartshorne [3] would be helpful. It would also be very use-
ful preparation to read Chapters 1 and 9 of [12] and relevant parts of [4] to
understand the arithmetic theory of Fuchsian groups, since the groups we will
consider are the natural generalization to one dimension higher.

2.1 Positive Fuchsian curves on arithmetic surfaces

We will begin with a crash-course on Nori’s Weak Lefschetz Theorem [9]. We
will sketch the alternate proof of Napier and Ramachandran [8].

The two hermitian symmetric domains W which we will consider are the
product H2×H2 of two hyperbolic planes and the complex hyperbolic plane H2

C.
We will describe the constructions of these spaces and describe the cocompact
arithmetic lattices acting on them. This will require quaternion algebras over
number fields and some basic hermitian linear algebra over number fields.
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In X = Γ\W we will consider Fuchsian curves. These are totally geodesic π1-
injective immersions of a projective curve C = Σ\H2 realized as an arithmetic
quotient of the hyperbolic plane in Γ\X. We will give a complete classification
of the Fuchsian curves on any such X. Our goal will then be to determine
a finite collection of Fuchsian curves on X with the property that the union
Y of these curves is a connected closed subset of X whose fundamental group
π1(Y ) maps to a subgroup of finite index in π1(X). A more subtle question is
whether the same is true when we replace π1(Y ) by the group generated by the
fundamental groups of the irreducible components of Y .

2.2 Applications, questions, and problems

Effectivity. Show in an effective way how to generate π1(X) from a finite set
of fundamental groups of irreducible Fuchsian curves.

Higher dimensional analogues. Prove similar results for other Shimura va-
rieties. The results of Napier and Ramachandran hold for ample subvari-
eties of higher codimension, and it is natural to consider generating fun-
damental groups other Shimura varieties by smaller Shimura varieties. Of
particular interest are arithmetic lattices in SU(n, 1) for large n, where one
can potentially prove strong cohomological vanishing theorems previously
inaccessible using the Trace Formula. This also may have applications to
disproving a (believed to be false) conjecture of Hartshorne on the inter-
section properties of ample subvarieties of smooth projective varieties.

Cohomology of arithmetic groups and modular cycles on Shimura varieties.
The extent to which the cohomology of a Shimura variety is determined
by the cohomology of its Shimura subvarieties is an important question
with applications (especially in the middle dimension) to the Langlands
program. Study the extent to which the cohomology of a Shimura variety
is determined by its Shimura subvarieties using weak Lefschetz techniques
and analysis of normal bundles to totally geodesic subvarieties.

The congruence subgroup problem. For lattices acting irreducibly and co-
compactly on a product of hyperbolic planes, we are again in a situation
where the congruence subgroup problem is open. Fuchsian curves are
known to have a wealth of noncongruence subgroups, and one can quan-
tify the congruence subgroup property in terms of the number of étale
coverings of the surface S (see [6]). Can one use a positive Fuchsian divi-
sor on a Shimura variety S to count the number of finite étale coverings
of S of degree d for large d?

Albanese varieties of complex hyperbolic surfaces There has been some
work [7] on the structure of Albanese varieties of complex hyperbolic sur-
faces coming from congruence subgroups. In particular, they have complex
multiplication. Consider a noncongruence subgroup. Does the Albanese
have complex multiplication, or can a non-CM factor of the Jacobian of a
Fuchsian curve contribute?
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Characteristic p analogues A simplified version of the methods of Napier
and Ramachandran show that the étale fundamental group of S is gener-
ated by those of connected unions of Fuchsian curves. Use this to consider
similar problems for Shimura varieties in positive characteristic. Where
appropriate, consider the effect on the structure of étale cohomology.
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Norm. Sup. 16 no. 2 (1983), 305–344.

[10] J.-P. Serre, Le problème des groupes de congruence pour SL2, Ann. of
Math. 92 (1970), 489–527.

[11] J.-P. Serre, Trees, Springer Monographs in Mathematics, Springer (2003).

[12] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Func-
tions, Publications of the Mathematics Society of Japan 11, Princeton
University Press (1994).

[13] A. Weil, Basic Number Theory, Classics in Mathematics, Springer (1995).

8


