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About These Notes/Note to Students

These notes are for the Arizona Winter School on Number Theory
and Dynamical Systems, March 13–17, 2010. They include background
material on complex dynamics and Diophantine equations (§§2–4) and
expanded versions of lectures on preperiodic points and height func-
tions (§5), arithmetic dynamics of maps with good reduction (§6), and
integer points in orbits (§7). Two final sections give a brief description
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of dynamical analogues of classical results from the theory of Diophan-
tine equations (§8) and some pointers toward other topics in arithmetic
dynamics (§9).

The study of arithmetic dynamics draws on ideas and techniques
from both classical (discrete) dynamical systems and the theory of
Diophantine equations. If you have not seen these subjects or want
to do further reading, the books [1, 5, 15] are good introductions to
complex dynamics and [2, 9, 12] are standard texts on Diophantine
equations and arithmetic geometry. Finally, the textbook [22] is an
introduction to arithmetic dynamics and includes expanded versions of
the material in these notes, as well as additional topics.

I have included a number of exercises that are designed to help the
reader gain some feel for the subject matter. Exercises (A)–(J) are in
the background material sections. If you are not already familiar with
this material, I urge you to work on these exercises as preparation for
the later sections. Exercises (K)–(Q) are on arithmetic dynamics and
will help you to understand the notes and act as a warm-up for some
of the projects.

There are also some brief paragraphs in small type marked “Sup-
plementary Material” that describe advanced concepts and generaliza-
tions. This material is not used in these notes and may be skipped on
first reading.

Following the notes are three suggested projects for our winter school
working group. The specific questions described in these projects are
meant only to serve as guidelines, and we may well find ourselves pur-
suing other problems during the workshop.

1. Introduction

A (discrete) dynamical system is a pair (S, ϕ) consisting of a set S
and a self-map

ϕ : S −→ S.

The goal of dynamics is to study the behavior of points in S as ϕ is
applied repeatedly. We write

ϕn(x) = ϕ ◦ ϕ ◦ · · · ◦ ϕ︸ ︷︷ ︸
n iterates

(x).

The orbit of x is the set of points obtained by applying the iterates
of ϕ to x. It is denoted

Oϕ(x) =
{
x, ϕ(x), ϕ2(x), ϕ3(x), . . .

}
.

(For convenience, we let ϕ0(x) = x be the identity map.)
There are two possibilities for the orbits:
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• If the orbit Oϕ(x) is finite, we say that x is a preperiodic point.
• If the orbit Oϕ(x) is infinite, we say that x is a wandering point.

A important subset of the preperiodic points consists of those points
whose orbit eventually return to its starting point. These are called
periodic points.

Example 1. We study iteration of the polynomial map

ϕ(z) = z2 − 1

on the elements of the field F11. Figure 1 describes this dynamical
system, where each arrow connects a point to its image by ϕ.
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Figure 1. Action of ϕ(z) = z2 − 1 on the field F11.

The points 4 and 8 are fixed points, i.e., periodic points of period
one, while 0 and 10 are periodic points of period two. All other points
are preperiodic, but not periodic. And since F11 is a finite set, there
obviously are no wandering points.

Example 2. Suppose that we use the same polynomial ϕ(z) = z2− 1,
but we now look at its action on Z. Then

1 −→ 0 −→←− −1,

so 1 is preperiodic, while 0 and −1 are periodic. Every other element
of Z is wandering, since if |z| ≥ 2, then clearly limn→∞ ϕn(z) = ∞.
More generally, the only ϕ-preperiodic points in Q are {−1, 0, 1}. (Do
you see why? Hint: if z /∈ Q, let p be a prime in the denominator
and prove that

∣∣ϕn(z)
∣∣
p
→ ∞.) On the other hand, if we look at

ϕ : C→ C as a map on C, then ϕ has (countably) infinitely many
complex preperiodic points.

Notation. The sets of preperiodic and periodic points of the map
ϕ : S → S are denoted respectively by

PrePer(ϕ, S) and Per(ϕ, S).
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Exercise A. Let G be a group, let d ≥ 2 be an integer, and define a
map ϕ : G → G by ϕ(g) = gd. Prove that PrePer(ϕ, G) = Gtors, i.e., prove
that the preperiodic points are exactly the points of finite order in G.

Exercise B. If S is a finite set, prove that there exists an integer N such
that

Per(ϕ, S) = ϕn(S) for all n ≥ N .

Arithmetic Dynamics, which is the subject of these notes, is the
study of arithmetic properties of dynamical systems. To give a flavor
of arithmetic dynamics, here are two motivating questions that we will
investigate. Let ϕ(z) ∈ Q(z) be a rational function of degree at least
two.

(I) Can ϕ have infinitely manyQ-rational preperiodic points? More
generally, what can we say about the size of Per

(
ϕ,P1(Q)

)
and PrePer

(
ϕ,P1(Q)

)
?

(II) Under what circumstances can an orbit Oϕ(α) contain infinitely
many integers?

Although it may not be immediately apparent, these two questions
are dynamical analogues of the following classical questions from the
theory of Diophantine equations.

(I′) How many Q-rational points on an elliptic curve can be torsion
points? (Answer: Mazur proved that #E(Q)tors ≤ 16.)

(II′) Under what circumstances can an affine curve contain infinitely
many points with integer coordinates? (Answer: Siegel proved
that C(Z) is finite if genus(C) ≥ 1.)

2. Background Material: Geometry

A rational map ϕ(z) is a ratio of polynomials

ϕ(z) =
F (z)

G(z)
=

a0 + a1z + · · ·+ adz
d

b0 + b1z + · · ·+ bdzd

having no common factors. The degree of ϕ is

deg ϕ = max{deg F, deg G}.
This section contains a brief introduction to the complex projective
line P1(C) and the geometry of rational maps ϕ : P1(C) → P1(C).

2.1. The Complex Projective Line. A rational map ϕ(z) ∈ C(z)
with a nonconstant denominator does not define a map from C to
itself since ϕ(z) will have poles. Instead ϕ(z) defines a self-map of the
complex projective line

P1(C) = C ∪ {∞},
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Figure 2. Identifying C ∪∞ with the Riemann sphere.

where we set ϕ(α) = ∞ if ϕ(z) has a pole at α, and we define

ϕ(∞) = lim
z→∞

ϕ(z).

A convenient way to visual P1(C) is to identify it with the unit sphere
in R3 by drawing lines from the north pole of the sphere to points in
the xy-plane. This identification is illustrated in Figure 2.

We put a topology on P1(C) using the chordal metric,

ρch(z1, z2)
def
=

|z1 − z2|√
|z1|2 + 1

√
|z2|2 + 1

=
1

2
|z∗1 − z∗2 |. (1)

Exercise C. Prove the second equality in (1).

If one of z1 or z2 is ∞, we take the limit, thus

ρch(z,∞) =
1√

|z|2 + 1
.

We also note that the chordal metric satisfies 0 ≤ ρch ≤ 1.

2.2. Linear fractional transformations. A linear fractional trans-
formation (or Möbius transformation) is a map of the form

z 7−→ az + b

cz + d
with ad− bc 6= 0.

It defines an automorphism of P1, and composition corresponds to mul-
tiplication of the corresponding matrices ( a b

c d ). These are the only au-
tomorphisms of P1(C), and two matrices give the same linear fractional
transformation if and only if they are scalar multiples of one another,
so

Aut(P1(C)) = PGL2(C) = GL2(C)/C∗.
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For ϕ(z) ∈ C(z) and f ∈ PGL2(C), we define ϕf to be the conjuga-
tion of ϕ by f ,

ϕf (z) = (f−1 ◦ ϕ ◦ f)(z).

Conjugation is illustrated by the commutativity of the diagram

P1 ϕf−−−→ P1

f

y f

y
P1 ϕ−−−→ P1

The reason that conjugation is important for dynamics is because it
commutes with iteration,

(ϕf )n = (f−1 ◦ ϕ ◦ f)n = f−1 ◦ ϕn ◦ f = (ϕn)f .

Exercise D. Let ϕ(z) ∈ C(z) be a rational function and f(z) ∈ PGL2(C)
a linear fractional transformation. Prove that α ∈ P1(C) is periodic for ϕ
of period n if and only if f−1(α) is periodic for ϕf of period n. In partic-
ular, there is a natural identification of Per

(
ϕ,P1(C)

)
with Per

(
ϕf ,P1(C)

)
.

Formulate and prove an analogous statement for preperiodic points.

2.3. Critical points and the Riemann–Hurwitz formula. Let
ϕ(z) ∈ C(z) be a rational function and α ∈ C a point with ϕ(α) 6= ∞.
Then ϕ has a Taylor series expansion around α of the form

ϕ(z) = ϕ(α) + ϕ′(α)(z − α) +
1

2
ϕ′′(α)(z − α)2 + · · · .

We say that α is a critical point if ϕ′(α) = 0, in which case ϕ(α) is a
critical value. The ramification index of ϕ at α, denoted eα(ϕ), is the
smallest integer e ≥ 1 such that

ϕ(z) = ϕ(α) + c(z − α)e + . . . with c 6= 0.

Thus α is a critical point if and only if eα(ϕ) ≥ 2. If eα(ϕ) = deg(ϕ),
we say that ϕ is totally ramified at α, in which case ϕ−1

(
ϕ(α)

)
= {α}

consists of a single point.

Exercise E. Prove that

(ϕn)′(α) =
n−1∏

i=0

ϕ′
(
ϕi(α)

)
.

In particular, α is a critical point of ϕn if and only if one of the points
α, ϕ(α), . . . , ϕn−1(α) is a critical point of ϕ.

Remark 3. To deal with the case that α = ∞ and/or ϕ(α) = ∞, we
choose some f ∈ PGL2(C) such that f(∞) does not equal either α
or ϕ(α) and then set

eα(ϕ) = ef−1(α)(ϕ
f ).
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Exercise F. Prove that eα(ϕ) is independent of the choice of the map f in
Remark 3.

Example 4. The function ϕ(z) = zd is totally ramified at 0 and ∞,
and has no other critical points.

The ramification indices are defined locally at the critical points.
The following important result says that they satisfy a global relation.

Theorem 5 (Riemann–Hurwitz formula). Let ϕ(z) ∈ C(z) be a ratio-
nal function of degree d ≥ 1. Then

2d− 2 =
∑

α∈P1(C)

(
eα(ϕ)− 1

)
.

Proof. See, e.g., [22, Theorem 1.1]. ¤

3. Background Material: Classical Dynamics

Let α be a periodic point of ϕ of exact period n. The multiplier of ϕ
at α is the quantity

λα(ϕ) = (ϕn)′(α).

(If ∞ ∈ Oϕ(α), then we first change variables using an appropri-
ate f ∈ PGL2(C) and set λα(ϕ) = λf−1(α)(ϕ

f ).) Since α is fixed by ϕn,
the behavior of ϕn locally around α is determined by the Taylor series

ϕn(z) = α + λα(ϕ)(z − a) + O
(
(z − α)2

)
.

In particular, the size of λα(ϕ) controls what happens when we iter-
ate ϕn. The periodic point α is called:

superattracting if λα(ϕ) = 0

attracting if
∣∣λα(ϕ)

∣∣ < 1

neutral if
∣∣λα(ϕ)

∣∣ = 1

repelling if
∣∣λα(ϕ)

∣∣ > 1

Neutral periodic points, which are also sometimes called indifferent,
are further categorized as being rationally neutral if λα(ϕ) is a root of
unity and irrationally neutral otherwise.

We now come to the central definition of complex (or more generally,
metric) dynamics. Let ϕ(z) ∈ C(z) be a rational map and let α ∈ P1(C)
be a point. We say that ϕ is equicontinuous at α if for every ε > 0
there exists a δ > 0 such that

ρch(α, β) < δ =⇒ ρch

(
ϕn(α), ϕn(β)

)
< ε for all n ≥ 0.

The intuition of equicontinuity is that if β starts close to α, then all
of the points in the ϕ-orbit of β stay close to the corresponding points
in the ϕ-orbit of α. Thus we can approximate the value of ϕn(α)
by computing ϕn(β), even when n becomes very large. Conversely,
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if ϕ is not equicontinuous at α, then no matter how close β is to α,
eventually ϕn(β) moves away from ϕn(α).

Definition. The Fatou set of ϕ, denoted F(ϕ), is the largest open
subset of P1(C) such that ϕ is equicontinuous at every point of F(ϕ).
The Julia set of ϕ, denoted J (ϕ), is the complement of the Fatou set.
One says that points in the Julia set behave chaotically.

Example 6. If α is an attracting periodic point of ϕ, then α ∈ F(ϕ),
and similarly, if α is a repelling periodic point of ϕ, then α ∈ J (ϕ).

Example 7. Let ϕ(z) = zd with d ≥ 2. Then

J (ϕ) = S1 =
{
z ∈ C : |z| = 1

}
,

i.e., the Julia set is the unit circle in C. It is easy to see that J (ϕ) ⊂
S1, since if α /∈ S1, then there is a neighborhood U of α such that
limn→∞ ϕn(U) converges to either 0 or ∞, so α ∈ F(ϕ). Conversely
if α ∈ S1, then any neighborhood of α contains points whose orbit goes
to 0 and points whose orbit goes to ∞, so ϕ is not equicontinuous at α.
Hence J (ϕ) = S1.

Exercise G. The dth Chebyshev polynomial Td(z) ∈ C[z] is the unique poly-
nomial satisfying the identity

Td(z + z−1) = zd + z−d.

(a) Prove that the Chebyshev polynomials satisfy the recursion

T0(x) = 2, T1(x) = x, Td+2(x) = xTd+1(x)− Td(x) for d ≥ 0.

(b) Compute T2(z), T3(z), and T4(z). Prove that deg Td(z) = d.
(c) Prove that the Chebyshev polynomials satisfy (Td ◦ Te)(z) = Tde(z),

and hence they commute under composition.
(d) Prove that Td(−w) = (−1)dTd(w).
(e) For d ≥ 2, prove that Td(z) maps the closed interval [−2, 2] to itself,

and that if α ∈ C is not in [−2, 2], then limn→∞ Tn
d (α) = ∞. Deduce

that J (Td) = [−2, 2]. (Hint. Note that Td(2 cos θ) = 2 cos(dθ).)
(f) For d ≥ 2, prove that aside from ∞, the periodic points of Td(z) are all

in [−2, 2] and are dense in that interval.

Definition. A subset V ⊂ P1(C) is said to be completely invariant
for ϕ if ϕ(V ) = V = ϕ−1(V ).

Theorem 8. Let ϕ(z) ∈ C(z) be a rational map of degree d ≥ 2.

(a) The Fatou set F(ϕ), the Julia set J (ϕ), and the boundary ∂J (ϕ)
of the Julia set are all completely invariant for ϕ.

(b) For every n ≥ 1 we have F(ϕn) = F(ϕ) and J (ϕn) = J (ϕ).
(c) The Julia set J (ϕ) is nonempty.
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(d) The Julia set J (ϕ) is a perfect set, i.e., it contains no isoloated
points.

Remark 9. For polynomials, the Julia set J (ϕ) is a bounded subset
of C, so the Fatou set F(ϕ) is also nonempty, but rational maps may
have empty Fatou set.

The next result illustrates the importance of the critical orbits to the
overall dynamical behavior of ϕ.

Theorem 10. Let ϕ(z) ∈ C[z] be a polynomial of degree d ≥ 2.

(a) The Julia set J (ϕ) is connected if and only if every critical point
α 6= ∞ has orbit Oϕ(α) that is bounded in C.

(b) If every critical point α of ϕ satisfies limn→∞ ϕn(α) = ∞, then the
Julia set J (ϕ) is totally disconnected.

Finally, we describe some of the ways in which the algebraically
defined periodic points of ϕ interact with the metrically defined Fatou
and Julia sets. In particular, all but finitely many of the periodic points
are in J (ϕ), and they form a dense subset of J (ϕ).

Theorem 11. Let ϕ(z) ∈ C(z) be a rational map of degree d ≥ 2.

(a) The map ϕ has at most 2d − 2 non-repelling periodic cycles in
P1(C). If ϕ is a polynomial map, then it has at most d− 1 non-
repelling periodic cycles in C.

(b) The Julia set J (ϕ) is equal to the closure of the repelling periodic
points of ϕ.

4. Background Material: Diophantine Equations

This section contains an overview, without proofs, of the material
from the theory of Diophantine equations that is used later in these
notes.

4.1. Height functions. The height of an algebraic number measures
its arithmetic complexity.

Definition. Let β ∈ Q̄ with β 6= 0 and choose a minimal polynomial

Fβ(X) = a0X
d + a1X

d−1 + · · ·+ ad ∈ Z[X] with gcd(a0, . . . , ad) = 1.

Factor Fβ over C as

Fβ(X) = (X − β1)(X − β2) . . . (X − βd).

Then the (absolute multiplicative) height of β is

H(β) =

(
|a0|

d∏
i=1

max
{|βi|, 1

})1/d

,
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and the (absolute logarithmic) height of β is1

h(β) = log H(β).

(We also set H(0) = H(∞) = 1, and thus h(0) = h(∞) = 0.)

Exercise H. Let β = a/b ∈ Q be a rational number written in lowest terms.
Prove that H(β) = max

{|a|, |b|}.

Height functions are used extensively throughout arithmetic geom-
etry because they transform geometry into arithmetic and they have
important finiteness properties, as in the following result.

Theorem 12.

(a) Let ϕ(z) ∈ Q̄(z) be a rational function of degree d ≥ 1. Then

h
(
ϕ(β)

)
= dh(β) + O(1) for all β ∈ P1(Q̄).

(N.B. The O(1) depends on ϕ, but is independent of β.)
(b) Fix a number field K. Then for all B > 0, the set{

β ∈ P1(K) : h(β) ≤ B
}

is finite.

More generally, for all B > 0 and D ≥ 1, the set{
β ∈ P1(Q̄) : h(β) ≤ B and [Q(β) : Q] ≤ D

}
is finite.

Proof Sketch. (a) For simplicity, we restrict attention to β ∈ Q. Write
ϕ(z) = F (z)/G(z) with F (z) =

∑
Aiz

i and G(z) = Biz
i, and let

β = a/b. Then

ϕ
(a

b

)
=

∑
Aia

ibd−i

∑
Biaibd−i

=
U

V
.

(The fraction U/V need not be in lowest terms.) The triangle inequality
can be used to show that

max
{|U |, |V |} ≤ C max

{|a|, |b|}d
,

where C = C(ϕ) is independent of β = a/b. This gives one inequality.
For the other, one uses the relative primality of F (z) and G(z) to limit
the amount of cancelation gcd(U, V ) and then to obtain the opposite
inequality. (For details, see [22, Theorem 3.7]. The case β ∈ Q is in [23,
III §3, Lemma 3′].)
(b) It is reasonable to suppose that the height of the roots of a polyno-
mial are related to the size of its coefficients, since the coefficients are
the elementary symmetric polynomials of the roots. This is indeed the
case. For Fβ(X) be as above, one proves that

log max
{
1, |a1|, |a2|, . . . , |ad|

} ≤ dh(β) + d log 2.

1From a information theory perspective, it takes O
(
h(β)

)
bits to store an exact

description of β.
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Hence if h(β) and d are bounded by h(β) ≤ B and d ≤ D, then Fβ(X)
is a polynomial of degree at most D whose coefficients are integers
of bounded absolute value. There are only finitely many such poly-
nomials, hence only finitely many β. (For details, see [22, Theo-
rem 3.11].) ¤
Supplementary Material (Weil’s Height Machine). Let V/Q̄ be a nonsingular algebraic variety.
The general theory of heights, which is due to Weil, assigns a height function hD : V (Q̄) → R to
each divisor D ∈ Div(V ), where hD is determined by D up to a bounded function. Heights have
many useful properties, including the following:

(i) (Functoriality) Let ϕ : W → V be a morphism defined over Q̄. Then hV,D

(
ϕ(P )

)
=

hW,ϕ∗D(P ) + O(1) for all P ∈ V (Q̄).

(ii) (Additivity) Let D, E ∈ Div(V ). Then hD+E(P ) = hD(P )+hE(P )+O(1) for all P ∈ V (Q̄).
(iii) (Linear Equivalence) Let D, E ∈ Div(V ) be linearly equivalent divisors. Then hD(P ) =

hE(P ) + O(1) for all P ∈ V (Q̄).
(iv) (Finiteness) If D ∈ Div(V ) is ample, then

{
P ∈ V (Q̄) : hD(P ) ≤ B and [Q(V, P ) : Q] ≤ D

}
is finite. (Here Q(V, P ) is the smallest field over which V and P are defined.)

For the construction of Weil’s height machine, see for example [9, Theorem B.3.2] or [12, Chap-
ter 4].

4.2. Diophantine approximation. The subject of Diophantine ap-
proximation asks how closely an irrational number β ∈ R can be ap-
proximated by rational numbers a/b ∈ Q. The obvious answer is that
we can make a/b arbitrarily close to β, since Q is dense in R. The
subtlety is to get a/b close to β without taking a and b too large, as in
the following classical result.

Proposition 13. (Dirichlet) Let β ∈ R with β /∈ Q. Then there are
infinitely many rational numbers a/b ∈ Q satisfying

∣∣∣a
b
− β

∣∣∣ ≤ 1

b2
.

Proof. See [9, Theorem D.1.1]. ¤
Exercise I. Let β = (1 +

√
5)/2.

(a) Prove that for all 0 < k ≤ √
5 there are infinitely many a/b ∈ Q

satisfying |a/b− β| ≤ 1/kb2.
(b) Prove that for all k >

√
5 there are only finitely many a/b ∈ Q satisfying

|a/b− β| ≤ 1/kb2.

If β is an algebraic number, then a famous result of Roth says that
we cannot do much better.

Theorem 14. (Roth) Let β ∈ Q̄ with β /∈ Q, and let ε > 0. Then
there is a constant c = c(β, ε) > 0 such that∣∣∣a

b
− β

∣∣∣ ≥ c

b2+ε
for all

a

b
∈ Q.

Proof. See [9, Theorem D.2.1]. ¤
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Exercise J. Let f(X, Y ) = Xd + a1X
d−1Y + · · · + adY

d ∈ Z[X, Y ] be a
homogeneous polynomial of degree d ≥ 3 with the property that f(X, 1) has
distinct complex roots. Use Roth’s theorem to prove that for all nonzero
integers m, the Diophantine equation f(X,Y ) = m has only finitely many
solutions (x, y) ∈ Z2.

5. Preperiodic Points and Height Functions

Periodic and preperiodic points play a crucial role in classical com-
plex dynamics, as illustrated for example by Theorem 11, which says
that ϕ(z) has only finitely many non-repelling cycles and that the Ju-
lia set is the closure of the repelling periodic points. If ϕ(z) ∈ Q̄(z)
has algebraic coefficients, then the preperiodic points of ϕ are clearly
in P1(Q̄). In this section we prove a theorem of Northcott which says
that there are only finitely many ϕ-preperiodic points in P1(K) for any
number field K. The proof uses height functions, and a more detailed
analysis leads us to the construction of a canonical height associated
to ϕ.

5.1. Finiteness of preperiodic points. A natural arithmetic prob-
lem is to describe the fields generated by preperiodic points. The first
result in this direction was proven by Northcott in 1950.

Theorem 15. (Northcott [18]) Let ϕ(z) ∈ Q̄(z) be a rational function
of degree d ≥ 2. Then

PrePer(ϕ, Q̄)
def
=

{
β ∈ P1(Q̄) : β is ϕ-preperiodic

}

is a set of bounded height. In particular, if K is a number field and
ϕ(z) ∈ K(z), then PrePer(ϕ,K) is a finite set.

Proof. Theorem 12(a) says that there is a constant C = C(ϕ) so that

h
(
ϕ(α)

) ≥ dh(α)− C for all α ∈ Q̄.

Applying this inequality to α, ϕ(α), . . . , ϕn−1(α) yields

h
(
ϕ(α)

) ≥ dh(α)− C

h
(
ϕ2(α)

) ≥ dh
(
ϕ(α)

)− C ≥ d2h(α)− (d + 1)C

h
(
ϕ3(α)

) ≥ dh
(
ϕ2(α)

)− C ≥ d3h(α)− (d2 + d + 1)C

...
...

h
(
ϕn(α)

) ≥ dh
(
ϕn−1(α)

)− C ≥ dnh(α)− (dn−1 + · · ·+ d + 1)C.

Using the estimate

dn−1 + · · ·+ d + 1 =
dn − 1

d− 1
≤ dn

d− 1
,
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this last inequality implies that

C

d− 1
≥ h(α)− 1

dn
h
(
ϕn(α)

)
, (2)

where the constant C is independent of both α and n.
Now suppose that β ∈ PrePer(ϕ, Q̄), so

ϕi+n(β) = ϕi(β) for some i ≥ 0 and n ≥ 1.

We apply (2) with α = ϕi(β) and use the assumption ϕi+n(β) = ϕi(β)
to deduce that

C

d− 1
≥ h

(
ϕi(β)

)− 1

dn
h
(
ϕi+n(β)

)
=

(
1− 1

dn

)
h
(
ϕi(β)

)
.

Since n ≥ 1, this proves that h
(
ϕi(β)

)
is bounded. More precisely,

h
(
ϕi(β)

) ≤ Cd/(d− 1)2.
Finally, applying (2) with α = β and n = i yields

C

d− 1
≥ h(β)− 1

di
h
(
ϕi(β)

)
.

Hence

h(β) ≤ C

d− 1
+ h

(
ϕi(β)

) ≤ C

d− 1
+

dC

(d− 1)2
=

(2d− 1)C

(d− 1)2
.

This completes the proof that the preperiodic points of ϕ have height
that is bounded by a constant depending only on the map ϕ.

The second statement is then an immediate consequence of Theo-
rem 12(b), which says that there are only finitely elements of K of
bounded height. ¤

As an immediate consequence of Northcott’s theorem and the fact
(Theorem 12(b)) that there are only finitely many algebraic numbers
of bounded degree and bounded height, we have the following result.

Corollary 16. With notation as in Theorem 15, let ϕ(z) ∈ K(z) and
let β1, β2, . . . ∈ P1(Q̄) be a sequence of distinct preperiodic points of ϕ.
Then

lim
i→∞

[
K(βi) : K

]
= ∞.

5.2. Canonical heights. Let ϕ(z) ∈ Q̄(z) be a rational function of
degree d ≥ 2. Theorem 12(a) says that

h
(
ϕ(β)

)− dh(β)

is bounded as β varies over P1(Q̄). It would be nice if we could modify
the height so that h

(
ϕ(β)

)
exactly equals dh(β). A construction of

Tate shows how this can be done.
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Theorem 17. Let ϕ(z) ∈ Q̄(z) be a rational function of degree d ≥ 2.
Then for all β ∈ P1(Q̄) the limit

ĥϕ(β)
def
= lim

n→∞
1

dn
h
(
ϕn(β)

)

exists and has the following properties :

(a)

ĥϕ(β) = h(β) + O(1) for all β ∈ P1(Q̄),

where the O(1) depends only on ϕ and is independent of β.
(b)

ĥϕ

(
ϕ(β)

)
= dĥϕ(β) for all β ∈ P1(Q̄).

(c) ĥϕ(β) ≥ 0, and ĥϕ(β) = 0 if and only if β is a preperiodic point
for ϕ.

Exercise K. Prove that (a) and (b) in Theorem 17 uniquely characterize
the function ĥϕ.

Proof. Theorem 12(a) says that there is a constant C = C(ϕ) such that
∣∣h(

ϕ(α)
)− dh(α)

∣∣ ≤ C for all α ∈ P1(Q̄). (3)

We are going to show that the sequence d−nh
(
ϕn(β)

)
for n = 0, 1, 2, . . .

is Cauchy. To do this, we let n > m ≥ 0 and compute
∣∣∣∣

1

dn
h
(
ϕn(β)

)− 1

dm
h
(
ϕm(β)

)∣∣∣∣

=

∣∣∣∣∣
n−1∑
i=m

(
1

di+1
h
(
ϕi+1(β)

)− 1

di
h
(
ϕi(β)

))
∣∣∣∣∣ telescoping sum,

≤
n−1∑
i=m

1

di+1

∣∣∣h
(
ϕi+1(β)

)− dh
(
ϕi(β)

)∣∣∣ triangle inequality,

≤
n−1∑
i=m

1

di+1
C using (3) with α = ϕi(β),

≤ C

dm(d− 1)
. (4)

This last quantity goes to 0 as n ≥ m →∞, which completes the proof
that the sequence d−nh

(
ϕn(β)

)
is Cauchy, hence converges.

(a) Taking m = 0 in the inequality (4) yields
∣∣∣∣

1

dn
h
(
ϕn(β)

)− h(β)

∣∣∣∣ ≤
C

d− 1
.
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Now let n →∞ to obtain
∣∣ĥϕ(β)− h(β)

∣∣ ≤ C

d− 1
.

(b) This is immediate from the limit definition of ĥϕ. Thus

ĥϕ

(
ϕ(β)

)
= lim

n→∞
1

dn
h
(
ϕn+1(β)

)
= lim

n→∞
d

dn+1
h
(
ϕn+1(β)

)
= dĥϕ(β).

(c) It is clear that ĥϕ(β) ≥ 0, since it is a limit of non-negative
quantities. Further, if β is preperiodic, then h

(
ϕn(β)

)
takes on only

finitely many values as n → ∞, so the limit definition of ĥϕ shows

that ĥϕ(β) = 0.

Suppose now that β ∈ P1(Q̄) satisfies ĥϕ(β) = 0. Then

h
(
ϕn(β)

)
= ĥϕ

(
ϕn(β)

)
+ O(1) = dnĥϕ(β) + O(1) = O(1).

Hence the points in the orbit

Oϕ(β) =
{
β, ϕ(β), ϕ2(β), . . .

}

have bounded height. Further, if we let K be a number field such
that ϕ(z) ∈ K(z) and β ∈ P1(K), then Oϕ(β) is contained in P1(K).
Theorem 12(b) says that sets of bounded height in P1(K) are finite,
so Oϕ(β) is a finite set, and hence β is preperiodic. ¤

Néron and Tate originally constructed canonical heights on abelian
varieties. Tate used the telescoping sum trick as in Theorem 17, while
Néron constructed the canonical height as a sum of local heights. See [3]
for the general construction of canonical heights associated to polarized
dynamical systems.

Supplementary Material (Polarized dynamical systems). A polarized dynamical system is a
triple (V, ϕ, D) consisting of a (smooth projective) variety V/Q̄, a morphism ϕ : V → V , and a
divisor D ∈ Div(V )⊗R satisfying ϕ∗D ∼ κD for some real number κ > 1, where ∼ denotes linear
equivalence. (The terminology polarized dynamical system is due to Shouwu Zhang.) The limit
construction described in Theorem 17 works in the setting of polarized dynamical systems, and
the associated canonical height is defined by

ĥϕ,D(P ) = lim
n→∞

1

κn
hD

(
ϕn(P )

)
.

If D is ample, then ĥϕ,D(P ) = 0 if and only if P is preperiodic for ϕ.

Supplementary Material (Local heights, Green functions, and invariant measures). The

canonical height ĥϕ associated to ϕ may be decomposed as a sum of local height functions λ̂ϕ,v,
one for each absolute value v on the number field K,

ĥϕ(P ) =
1

[K : Q]

∑

v∈MK

nvλ̂ϕ,v(P ).

(See [3] or [22, §§3.5, 5.9] for details.) If ϕ(z) ∈ K[z] is a polynomial, then the local height is
given by the natural limit

λ̂ϕ,v(β) = lim
n→∞

1

dn
log max

{∣∣ϕn(β)
∣∣
v
, 1

}
,
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but for rational maps the construction is somewhat more complicated. For archimedean v, the
associated local height function is a Green function for the filled Julia set and is closely related to
the invariant measure attached to the rational map ϕ.

5.3. Conjectures and generalizations. We proved (Theorem 15)
that a rational map has only finitely many rational preperiodic points.
It is natural to ask how large this set can be as we vary the map ϕ.

Exercise L. Prove that for all d ≥ 2 there exists a rational function ϕ(z) ∈
Q(z) of degree d with a Q-rational periodic point of period 2d + 1.

Thus if we allow the degree to be large, then we can get rational
periodic points of large period. What happens if we look at maps of a
fixed degree?

Conjecture 18 (Uniform Boundedness Conjecture I). Let d ≥ 2.
There is a constant C = C(d) such that for all rational maps ϕ(z) ∈
Q(z) of degree d,

# Per
(
ϕ,P1(Q)

) ≤ C.

The conjecture is not known even if we restrict to polynomials of
degree two. Here is the current status in that case.

Theorem 19. For c ∈ Q, let ϕc(z) = z2 + c.

(a) There are infinitely many c ∈ Q such that ϕc has a Q-rational
point of period 1, period 2, or period 3.

(b) (Morton [16]) There is no c ∈ Q such that ϕc has a Q-rational
point of period 4.

(c) (Flynn–Poonen–Schaefer [8]) There is no c ∈ Q such that ϕc has
a Q-rational point of period 5.

(d) (Stoll [24]) If the conjecture of Birch and Swinnerton-Dyer is true,
then there is no c ∈ Q such that ϕc has a Q-rational point of
period 6.

Poonen has conjectured that ϕc(z) = z2 + c can never have a Q-
rational point of period greater than 3.

Exercise M. Prove part (a) of Theorem 19.

The general form of uniform boundedness for preperiodic points on
projective space reads as follows.

Conjecture 20 (Uniform Boundedness Conjecture II).
(Morton–Silverman [17]) Let d ≥ 2, D ≥ 1, and n ≥ 1. There is
a constant C = C(d,D, n) such that for all fields K/Q of degree at
most D and all morphisms ϕ : Pn → Pn of degree d defined over K,

# PrePer
(
ϕ,Pn(K)

) ≤ C.
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Supplementary Material (Applications of Uniform Boundedness). To illustrate the depth
of Conjecture 20, we note that the case (d, D, n) = (4, 1, 1) implies Mazur’s theorem [13] that
the size of the torsion subgroup E(Q)tors of an elliptic curve E/Q is bounded by a constant that
does not depend on E. The proof uses the existence of a rational map ϕ : P1 → P1 making the
following diagram commute:

E
P 7→2P−−−−−→ E

x

y x

y

P1 ϕ−−−−−→ P1

(In dynamics, maps of this sort are called Làttes maps.) Fakhruddin [6] has shown that the full
Conjecture 20 implies uniform boundedness of torsion on abelian varieties of fixed dimension over
fields of bounded degree. This last statement is known unconditionally only in dimension one,
i.e., for elliptic curves, where it was proven by Merel [14].

Wandering points are characterized by the fact that their heights
are strictly positive (Theorem 17(c)), so we might ask how small these
positive heights can be. There are two natural ways make this precise.
We can fix the map ϕ and vary the field of defintion of the wandering
point β, or we can fix a field K and vary the map ϕ ∈ K(z) and
the point β ∈ P1(K). Questions of of the first sort were studied by
Lehmer for the multiplicative group, and those of the second type by
Dem’janenko and Lang for elliptic curves. Here are the dynamical
analogues.

Conjecture 21. (Dynamical Lehmer conjecture) Let K/Q be a number
field and let ϕ(z) ∈ K(z) be a rational function of degree d ≥ 2. There
is a constant C = C(ϕ) such that for all ϕ-wandering points β ∈ P1(K̄),

ĥϕ(β) ≥ C[
K(β) : K

] .

In order to state the second conjecture, we need a way of measuring
the intrinsic size of a rational map. For simplicity, we restrict attention
to functions with Q-coefficients

Definition. Let ϕ(z) ∈ Q(z). The height of ϕ is the quantity

h(ϕ) = log max
{|a0|, . . . , |ad|, |b0|, . . . , |bd|

}
,

where we write ϕ(z) as

ϕ(z) =
F (z)

G(z)
=

a0 + a1z + · · ·+ adz
d

b0 + b1z + · · ·+ bdzd

with integer coefficients satisfying

gcd(a0, a1, . . . , ad, b0, b1, . . . , bd) = 1.

We say that ϕ(z) ∈ Q(z) is minimal if

h(ϕ) = min
f∈PGL2(Q)

h(ϕf ).
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Conjecture 22. (Dynamical Lang height conjecture) Let K/Q be a
number field and let d ≥ 2 be an integer. There is a constant C =
C(K, d) > 0 so that for all minimal rational maps ϕ(z) ∈ K(z) of
degree d and all ϕ-wandering points β ∈ P1(K),

ĥϕ(β) ≥ Ch(ϕ).

6. Arithmetic Dynamics of Maps with Good Reduction

In the last section we gave a global proof that a rational map has only
finitely many preperiodic points defined over any given number field.
In this section we take a local point of view and study the reduction
of maps and points modulo p. For ease of exposition, we restriction
attention to Q, but everything in this section can be generalized to
arbitrary fields K that come equipped with a (discrete) valuation v.
We begin by describing which rational maps behave well when reduced
modulo p, after which we prove our main theorem on reduction of
periodic points for maps that have good reduction.

6.1. Resultants and Good Reduction. We say that a rational map
ϕ(z) ∈ Q(z) is in normalized form if it is written as a ratio of polyno-
mials

ϕ(z) =
F (z)

G(z)
=

a0 + a1z + · · ·+ adz
d

b0 + b1z + · · ·+ bdzd

with integer coefficients satisfying

gcd(a0, a1, . . . , ad, b0, b1, . . . , bd) = 1.

For a given prime p, we can then reduce ϕ modulo p to get a rational
function

ϕ̃(z) =
F̃ (z)

G̃(z)
=

ã0 + ã1z + · · ·+ ãdz
d

b̃0 + b̃1z + · · ·+ b̃dzd
∈ Fp(z)

with coefficients in the finite field Fp. We say that ϕ(z) has good re-
duction at p if

deg(ϕ̃) = deg(ϕ),

or equivalently, if F̃ (z) and G̃(z) have no common factors in Fp[z].
For any two polynomials F (z) and G(z), the resultant of F and G,

denoted Res(F,G), is polynomial in the coefficients of F and G that
vanishes if and only if F and G have a common factor (or if their
leading coefficients both vanish). This gives the alternative definition

ϕ has good reduction at p ⇐⇒ p - Res(F,G).

In particular, we see that ϕ has only finitely many primes of bad re-
duction.
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Supplementary Material (Scheme-Theoretic Definition of Good Reduction). A rational
map ϕ ∈ Qp(z) is a morphism ϕ : P1

Qp
→ P1

Qp
, so it induces a rational map ϕ : P1

Zp
99K P1

Zp

over Spec(Zp). Then ϕ has good reduction at p if and only if this rational map extends to a
morphism over Spec(Zp). If this happens, then the reduced map ϕ̃ is the restriction of ϕ to the
special fiber P1

Fp
.

Example 23. The resultant of two quadratic polynomials F (z) =
a0 + a1z + a2z

2 and G(z) = b0 + b1z + b2z
2 is given by the formula

Res(F,G) = a2
2b

2
0−a2a1b1b0+a2

1b2b0−2a2a0b2b0+a2a0b
2
1−a1a0b2b1+a2

0b
2
2.

The following elementary proposition shows why good reduction is a
useful property for ϕ to have when studying its dynamical properties.

Proposition 24. Let ϕ(z) ∈ Q(z) have good reduction at p.

(a) ϕ̃n = ϕ̃n, i.e., reduction commutes with iteration.

(b) ϕ̃(α) = ϕ̃(α̃), i.e., reduction commutes with evaluation.
(c) Let α ∈ P1(Q) be a periodic point of exact period n for ϕ. Then α̃ ∈

P1(Fp) is periodic for ϕ̃ and its period m divides n.

Proof. Parts (a) and (b) follow easily from standard properties of re-
sultants, or directly from the scheme-theoretic description of good re-
duction. See [22, Theorem 2.18] for details.

To prove (c), we use (a) and (b) to compute

α̃ = ϕ̃n(α) = ϕ̃n(α̃),

so α̃ is periodic with period at most n. Let m be its exact period,
so ϕ̃m(α̃) = α̃, and write n = mq + r with 0 ≤ r < m. Then

α̃ = ϕ̃n(α̃) = ϕ̃r ◦ ϕ̃m ◦ · · · ◦ ϕ̃m

︸ ︷︷ ︸
q iterations

(α̃) = ϕ̃r(α̃).

The minimality of m implies that r = 0, and hence m divides n. ¤

Exercise N. Give examples of maps with bad reduction for which parts (a)
and (b) of Proposition 24 are false.

We now come to the main theorem on reduction of periodic points for
rational maps having good reduction. It is the dynamical analogue of
classical theorems on reduction of torsion points on elliptic curves and
abelian varieties (cf. [20, Proposition VII.3.1] and [9, Theorem C.1.4]).

Theorem 25. Let ϕ(z) ∈ Q(z) be a rational function of degree d ≥ 2
and let p be a prime of good reduction for ϕ. Let α ∈ P1(Q) be a
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periodic point of ϕ, and set :

n = the exact period of α for the map ϕ.

m = the exact period of α̃ for the map ϕ̃.

r = the smallst integer such that λϕ̃(α̃)r = 1, or ∞ if no power of

λϕ̃(α̃) equals 1. (Note that the multiplier is λϕ̃(α̃) = (ϕ̃m)′(α̃).)

Then n has one of the following forms :

n = m or n = mr or n = mrp.

(If p ≥ 5, then only the first two are possible.)

Proof. Proposition 24(c) tells us that m | n, so replacing ϕ by ϕm and m
by 1, we are reduced to the case that α̃ is a fixed point of ϕ̃. If ϕ(α) = α,
then n = 1 = m and we are done. Otherwise we can find a change of
variables that moves α to 0 and preserves the good reduction property
of ϕ. (See [22, Proposition 2.11].) The assumption that 0 is fixed
modulo p means that ϕ has the form

ϕ(z) =
a0 + a1z + · · ·+ adz

d

b0 + b1z + · · ·+ bdzd

with
ϕ(0) = a0/b0 ≡ 0 (mod p).

The fact that ϕ(z) has good reduction implies that a0 and b0 are not
both divisible by p, so we see that p | a0 and p - b0. Let

Rp =
{a

b
∈ Q : p - b

}

be the localization of Z at p. Then long division shows that the Taylor
expansion of ϕ(z) around z = 0 looks like

ϕ(z) = µ + λz +
A(z)

1 + zB(z)
z2, (5)

where

A(z), B(z) ∈ Rp[z], λ = ϕ′(0), and µ = a0/b0 ∈ pRp.

Applying (5) repeatedly to α = 0, an easy induction shows that

ϕj(0) ≡ µ(1 + λ + λ2 + · · ·+ λj−1) (mod µ2Rp).

In particular, since ϕn(0) = 0 and µ ∈ pRp, we see that

0 = ϕn(0) ≡ 1 + λ + λ2 + · · ·+ λn−1 (mod pRp). (6)

Suppose now that r ≥ 2, i.e., λ 6≡ 1 (mod p). Then (6) implies
that λn ≡ 1 (mod p), so r | n. (Recall that r is the multiplicative order
of λ in F∗p.) If n = r, we are done. Otherwise we replace ϕ with ϕr



Arithmetic Dynamics 21

and n with n/r, which has the effect of replacing λ with λr, so our new
multiplier satisfies

λ ≡ 1 (mod pRp).

Retaining the notation in (5) (of course, µ, λ, A(z), and B(z) will
change), we have reduced to the case that

ϕ(0) 6= 0, µ = ϕ(0) ≡ 0 (mod pRp),

ϕn(0) = 0, λ = ϕ′(0) ≡ 1 (mod pRp).

Then (6) yields

0 ≡ 1 + λ + λ2 + · · ·+ λn−1 ≡ n (mod pRp),

so p | n. This allows us to replace ϕ by ϕp and n by n/p. If now ϕ(0) =
0, we’re done, otherwise repeating the same argument again shows
that p | n. This process must stop eventually, which concludes the
proof that either n = m or n = mr or n = mrpk for some k ≥ 1.

A refined analysis using a third-order expansion

ϕ(z) = µ + λz + νz2 +
A(z)

1 + zB(z)
z3

can be used to prove that k = 0 when p ≥ 5; see [22, Theorem 2.31]
for details. The remaining cases p = 2 and p = 3 are more complicated
and are left for the reader. ¤
Corollary 26. Let ϕ(z) ∈ Q(z) be a rational function of degree d ≥ 2
and let p be the smallest primes for which ϕ(z) has good reduction.
Suppose that α ∈ P1(Q) is a periodic point for ϕ of exact period n.
Then

n ≤ p3 − p.

(If p ≥ 5, then n ≤ p2 − 1.)

Proof. In the notation of Theorem 25, the period m of α̃ is certainly
no larger than p+1, since P1(Fp) has p+1 points. Similarly, r ≤ p−1,
since r is the order of λ in F∗p and #F∗p = p− 1. Hence

n ≤ mrp ≤ (p + 1)(p− 1)p = p3 − p.

Further, if p ≥ 5, then n ≤ mr ≤ p2 − 1. ¤
Exercise O. Let ϕ(z) = (az2 +bz +c)/z2 with a, b, c ∈ Z and gcd(c, 6) = 1.
Suppose that α ∈ P1(Q) is periodic for ϕ(z) of exact period n. Prove that
n ∈ {1, 2, 3}, and that all three values are possible. (Challenge: Prove the
same result under the weaker assumption that gcd(c, 2) = 1.)

A modified version of Theorem 25 is true when ϕ is defined over an
extension field, but the proof is much harder when p is highly ramified.
Here is the full generalization.
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Theorem 27. (Zieve [28]) Let K/Qp be a finite extension, let e =
e(K/Qp) be the ramification degree, let ϕ(z) ∈ K(z) be a rational map
with good reduction, and let α ∈ P1(K) be a periodic point of exact
period n. Further let m and r be defined as in Theorem 25. Then
either n = m or n = mrpk for some k ≥ 0 satisfying

pk−1 ≤ 2e

p− 1
.

(If p = 2, the upper bound may be replaced with e/(p− 1).)

7. Integer Points in Orbits

Let ϕ(z) ∈ Q(z) be a rational function of degree d ≥ 2 and let α ∈ Q.
A natural number theoretic question to ask is whether the orbit Oϕ(α)
may contain infinitely many integers. The answer is obviously yes,
since for example, if ϕ(z) ∈ Z[z] and α ∈ Z, then every point ϕn(α)
in the orbit is an integer. But even if we rule out polynomials, there
are rational functions with orbits containing infinitely integers. For
example,

ϕ(z) =
2z2 − 2z + 1

4z2 − 4z + 1
has the orbit

2
ϕ−→ 5

9

ϕ−→ 41
ϕ−→ 3281

6561

ϕ−→ 21523361
ϕ−→ 926510094425921

1853020188851841
ϕ−→ 1716841910146256242328924544641

ϕ−→ . . .

in which every other entry is an integer. The explanation is that the
second iterate of ϕ is itself a polynomial,

ϕ2(z) = 8z4 − 16z3 + 12z2 − 4z + 1.

Clearly a similar phenomenon will occur if some higher iterate of ϕ(z)
is polynoimal, but surprisingly, if this happens, then already ϕ2(z) is a
polynomial.

Proposition 28. Let ϕ(z) ∈ C(z) be a rational function of degree d,
and suppose that some iterate ϕn(z) is a polyomial, i.e., ϕn(z) ∈ C[z].
Then one of the following is true.

(a) ϕ(z) is a polynomial.
(b) ϕ2(z) is a polynomial, and there is a linear function f(z) = az + b

such that ϕf (z) = z−d.

Proof. The fact that ϕn(z) is a polynomial implies that (ϕn)−1(∞)
consists of the single point ∞. For notational convenience, we let

αi = ϕi(∞) for i = 0, 1, 2, . . . , n.
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Note that α0 = ∞ and αn = ϕn(∞) = ∞. Further, the fact that
(ϕn)−1(∞) = {∞} implies the ϕ−1(αi) consists of the single point αi−1

for each 1 ≤ i ≤ n. Thus ϕ is totally ramified at every αi, so the
ramification index at αi satisfies eαi

(ϕ) = d.
Let m be the smallest integer such that ϕm(∞) = ∞, so α0, . . . , αm−1

are distinct points. We apply the Riemann–Hurwitz formula (Theo-
rem 5) to compute

2d− 2 =
∑

β∈P1(C)

(
eβ(ϕ)− 1

)
(Riemann–Hurwitz formula)

≥
m−1∑
i=0

(
eαi

(ϕ)− 1
)

= m(d− 1).

Hence m ≤ 2. (Note how we use here the assumption that d ≥ 2.)
There are two cases. First, if m = 1, then α0 = α1 = ∞, so

ϕ−1(∞) = ϕ−1(α1) = {α0} = {∞}.
Hence ϕ is a polynomial.

Second, if m = 2, then α0 = α2 = ∞ and α1 6= ∞. Conjugating ϕ(z)
by f(z) = z + α1, we may assume that α1 = 0. Then ϕ−1(0) = {∞}
and ϕ−1(∞) = {0}. The only rational functions of degree d with
this property have the form ϕ(z) = az−d, and conjugating by f(z) =
a1/(d+1)z puts ϕ into the form z−d. ¤

In view of Proposition 28, the following result is perhaps not surpris-
ing. The proof, however, is not trivial.

Theorem 29. ([21]) Let ϕ(z) ∈ Q(z) be a rational map such that ϕ2(z)
is not a polynomial and let α ∈ P1(Q). Then

Oϕ(α) ∩ Z
is a finite set.

In the next section we sketch the proof of a stronger result.
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7.1. A non-integrality theorem for wandering points.

Theorem 30. ([21]) Let ϕ(z) ∈ Q(z) be a rational map such that ϕ2(z)
is not a polynomial and let α ∈ P1(Q) be a wandering point for ϕ. For
each n ≥ 0, write

ϕn(α) =
an

bn

∈ Q
as a fraction in lowest terms. Then

lim inf
n→∞

log |bn|
log |an| ≥ 1.

In other words, as n increases, the number of digits in the denom-
inator bn is (up to a small factor) at least as large as the number of
digits in the numerator an. Further, we know from Theorem 17 that

max
{
log |an|, log |bn|

}
= h

(
ϕn(α)

)
= ĥϕ

(
ϕn(α)

)
+ O(1)

= dnĥϕ(α) + O(1),

so Theorem 30 implies that there are constants C > 0 and B > 1 such
that

|bn| ≥ CBdn

for all n ≥ 0.

This statement is clearly much stronger than Theorem 29, which merely
says that |bn| ≥ 2 for sufficiently large values of n.

Proof Sketch of Theorem 30. Let ε > 0. We need to show that there
are only finitely many points in the orbit satisfying

|bn| ≤ |an|1−ε. (7)

In particular, such points satisfy |an| ≥ |bn|, so

H
(
ϕn(α)

) def
= max

{|an|, |bn|
}

= |an|.
(Here H is the multiplicative height defined in Section 4.1.) This allows
us to rewrite (7) as ∣∣ϕn(α)

∣∣ ≥ H
(
ϕn(α)

)ε
. (8)

Since log H
(
ϕn(α)

) ≈ dnĥϕ(α) from Theorem 17, this shows that∣∣ϕn(α)
∣∣ gets extremely large as n → ∞ for points satisfying (7). In

terms of P1(C), the point
∣∣ϕn(α)

∣∣ gets close to ∞, and an easy calcu-
lation gives the quantitative estimate

ρch

(
ϕn(α),∞) ≈ 1∣∣ϕn(α)

∣∣ ≤ H
(
ϕn(α)

)−ε ≈ e−εdnĥϕ(α).

Here is a rough idea of the proof. Since ϕn(α) is very close to ∞, the
rational number ϕn−k(α) should be quite close to one of the algebraic
numbers β in the inverse image ϕ−k(∞). With some care and a little
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luck, we can apply Roth’s theorem (Theorem 14) to show that this
cannot happen if n is sufficiently large.

We fix an integer k satisfhing dk > 6/ε and we let β ∈ Q̄ be the point
in ϕ−k(∞) that is closest to ϕn−k(α). Assume for the moment that the
map ϕ is unramified, i.e., it has no critical points.2 Unramified maps
more-or-less preserve distances, so

ρch

(
ϕn−k(α), β) ≈ ρch

(
ϕn(α), ϕk(β)) = ρch

(
ϕn(α),∞).

We now do a computation, where the constants C1, C2, . . . may de-
pend on ϕ, α, β, and k, but do not depend on n.

1

|an|ε ≥
∣∣∣∣
bn

an

∣∣∣∣ from the assumption (7),

=
1∣∣ϕn(α)

∣∣ since ϕn(α) = an/bn,

≥ C1ρch

(
ϕn(α),∞)

from definition of ρch,

= C1ρch

(
ϕn(α), ϕk(β)

)
since ϕk(β) = ∞,

≥ C2ρch

(
ϕn−k(α), β

)
from our choice of β, and
assuming ϕ is unramified,

≥ C3

∣∣ϕn−k(α)− β
∣∣ definition of ρch,

≥ C4

H
(
ϕn−k(α)

)3 Roth’s theorem (with exponent 3),

≥ C5

H
(
ϕn(α)

)3/dk using the canonical height,

=
C5

|an|3/dk since |an| ≥ |bn|,

≥ C6

|an|ε/2
since k satisfies dk ≥ 6/ε.

Hence |an| ≤ C
2/ε
6 , so there are only finitely many choices for an, and

since |an| ≥ |bn|, there are also only finitely many choices for bn.
How do we fix the proof? First we need to know how ramification

affects the distance between points. Near a point γ of ramification
index e for a map ψ we have ψ(z) = ψ(γ)+c(z−γ)e + · · · , so distances
are dilated by an exponent of e. In other words, if z is close to γ, then

ρch

(
ψ(z), ψ(γ)

) ≈ ρch(z, γ)eγ(ψ).

2Yes, I know this is a ridiculous assumption, since ϕ always has at least two
critical points! But this incorrect argument will help clarify the correct proof and
will show exactly where we use the assumption that ϕ2(z) is not a polynoimal.
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If we use this corrected formula in our earlier calculation, we get (after
some work)

1

|an|ε ≥ C1ρch

(
ϕn(α), ϕk(β)

)
from earlier,

≥ C2ρch

(
ϕn−k(α), β

)eβ(ϕk)
corrected for ramification,

≥ C5

|an|3eβ(ϕk)/dk completing the calculation as above.

We want to choose a value of k that makes the exponent

3eβ(ϕk)

dk
(9)

smaller than ε/2.
Suppose, for example, that ϕ(z) were a polynomial and β = ∞.

Then ϕ(z) is totally ramified at β, so

eβ(ϕk) = e∞(ϕ)k = dk

and we’re stuck. Similarly, eβ(ϕk) = dk if ϕ2(z) is a polynomial. But if
we assume that ϕ2(z) is not a polynomial, then iteration tends to spread
out ramification, and the Riemann-Hurwitz formula (Theorem 5) can
be used to prove that

lim
k→∞

max
β∈ϕ−k(∞)

eβ(ϕk)

dk
= 0. (10)

The proof of (10) is an elaboration of the proof of Proposition 28;
see [22, Lemma 3.52] for details. This allows us to make (9) smaller
than ε/2 and completes our sketch of the proof of Theorem 30. For
full details, see [22, §3.8], or see [21] for the proof of a more general
statement. ¤
Exercise P. Let ϕ(z) ∈ C(z) be a rational map of degree d ≥ 2, let k ≥ 1,
and let β ∈ P1(C) be a point such that β, ϕ(β), . . . , ϕk−1(β) are distinct.
Prove that eβ(ϕk) ≤ e2d−2. (Note that eβ is the ramification index, while e =
2.71828 . . . .)

7.2. Orbits with lots of integer points. Theorem 29 says that or-
bits generally contain only finitely many integer points. It is natural
to ask how large #

(Oϕ(α)∩Z)
may be. If we take ϕ to have degree d,

then it is easy to find lots of examples with 2d + 2 integer points. (Do
you see why?) But even for fixed degree we can make #

(Oϕ(α)∩Z)
as

large as desired by using a “clearing the denominators” trick that was
originally used by Chowla [4] to find elliptic curves with many integer
points.
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Proposition 31. Let ψ(z) ∈ Q(z) be a nonconstant rational function
and let β ∈ Q be a wandering point for ψ. Then for all N ≥ 1 there
exists an integer B ≥ 1 such that the rational map ϕB(z) = Bψ(z/B)
satisfies

#
(OϕB

(Bβ) ∩ Z) ≥ N.

Proof. For each n ≥ 1 write

ψn(β) =
an

bn

as a fraction in lowest terms. Let

B = LCM(b1, b2, . . . , bn).

Note that ϕn
B(z) = Bψn(z/B), so for all n ≤ N we have

ϕn
B(Bβ) = Bψn(β) = B

an

bn

∈ Z. ¤

Exercise Q. In Proposition 31, prove that there is a constant c > 0 and an
increasing sequence of values for B so that

#
(OϕB (Bβ) ∩ Z) ≥ c log log B.

If we prohibit the trick used in the proof of Proposition 31, then it
is not known if Oϕ(β) ∩ Z can be large.

Definition. A map ϕ(z) ∈ Q(z) is said to be affine minimal if

h(ϕ) = min
f=az+b

a∈Q∗,b∈Q
h(ϕf ).

(See Section 5.3, page 17, for the definition of the height of ϕ and for
the analogous definition of minimal rational maps.)

The following is a dynamical analogue of a conjecture originally due
to Lang in the case of elliptic curves.

Conjecture 32. Let d ≥ 2 be an integer. There is a constant C =
C(d) such that for all affine minimal rational functions ϕ(z) ∈ Q(z) of
degree d with ϕ2(z) /∈ Q[z] and all ϕ-wandering points β ∈ P1(Q),

#
(Oϕ(β) ∩ Z) ≤ C.
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8. Dynamical Analogues of Classical Results

In this section we briefly recall some classical results and conjectures
from arithmetic geometry and describe their dynamical analogues. A
rough dictionary between the two subjects equates:

Arithmetic Geometry Dynamical Systems
torsion points ←→ preperiodic points

finitely generated groups ←→ orbits of wandering points

We start with Raynaud’s theorem (originally conjectured by Manin
and Mumford).

Theorem 33. (Raynaud [19]) Let A/C be an abelian variety and let
X ⊂ A be an algebraic subvariety. Then the Zariski closure of

Ators ∩X

in A is a union of a finite number of translates of abelian subvarieties
of A by torsion points of A.

Replacing the abelian variety A and its torsion subgroup Ators with a
dynamical system ϕ : PN → PN and its set of preperiodic points leads
to a dynamical analogue of the Manin–Mumford conjecture.

Definition. A subvariety Y ⊂ PN is ϕ-periodic if there exists an inte-
ger n ≥ 1 such that ϕn(Y ) = Y . Similarly, Y is ϕ-preperiodic if there
exist integers n > m ≥ 0 such that ϕn(Y ) = ϕm(Y ).

Conjecture 34. (Dynamical Manin–Mumford Conjecture) Let ϕ :
PN
C → PN

C be a morphism of degree at least 2 and let X ⊂ PN be
an algebraic subvariety. Then the Zariski closure of

PrePer
(
ϕ,PN(C)

) ∩X

in PN is a union of a finite number of ϕ-preperiodic subvarieties of PN .

A strengthened version of the Manin–Mumford conjecture using ca-
nonical heights was posed by Bogomolov and proven by Ullmo [25] and
Zhang [26]. Here is the dynamical analogue.

Conjecture 35. (Dynamical Bogomolov Conjecture) Let ϕ : PN
Q̄ → PN

Q̄
be a morphism of degree at least 2 and let X ⊂ PN be an irreducible
algebraic subvariety that is not preperiodic for ϕ. Then there exists an
ε > 0 such that the set

{
P ∈ X(Q̄) : ĥϕ(P ) < ε

}

is not Zariski dense in X.
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Since preperiodic points are characterized by having canonical height
zero (Theorem 17), Conjecture 35 says in particular that the preperi-
odic points of ϕ are not Zariski dense in X.

We next recall Mordell’s conjecture, as strengthened by Lang and
proven by Faltings.

Theorem 36. (Faltings [7]) Let A/C be an abelian variety, let Γ ⊂
A(C) be a finitely generated subgroup, and let X ⊂ A be an algebraic
subvariety that contains no nontrivial abelian subvarieties of A. Then

X ∩ Γ

is a finite set.

Replacing A and Γ with a dynamical system and a wandering orbit
gives a dynamical analogue.

Conjecture 37. (Dynamical Mordell–Lang Conjecture) Let ϕ : PN
C →

PN
C be a morphism of degree at least 2, let P ∈ PN(C) be a wandering

point for ϕ, and let X ⊂ PN be an irreducible algebraic subvariety that
contains no ϕ-periodic subvarieties of dimension at least one. Then

X ∩ Oϕ(P )

is a finite set.

For further material on these and other related dynamical conjec-
tures, see the survey article by Zhang [27].

9. Additional Topics

The preceding notes have covered only a small portion of the subject
that loosely goes by the name arithmetic dynamics. Among the many
important topics that have been omitted, we mention:

• p-adic dynamics, especially in the bad reduction case. This
includes dynamics over finite extensions of Qp, over Cp, and in
recent years, on the Berkovich projective line.

• Moduli spaces associated to dynamical systems, especially the
dynamical modular curves that classify quadratic polynomi-
als z2 + c with a marked periodic point or periodic orbit.

• Arithmetic dynamics of maps associated to (commutative) al-
gebraic groups.

• Arithmetic dynamics of rational maps ϕ : PN 99K PN that are
not morphisms; in particular, (regular) automorphisms AN →
AN that do not extend to morphisms on PN .

• Equidistribution for points of small height, for Galois conjugates
of periodic points, and for backward orbits.
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• Dynamics over finite fields, over function fields, over power se-
ries rings, and over Drinfeld modules.

• Dynamics on Lie groups and homogeneous spaces, and asso-
ciated problems of equidistribution, ergodicity, and entropy.
(This area is a huge field in its own right.)

If you want to investigate any of these areas, you will find an intro-
duction to the first four topics in Chapters 4–7 of [22]. And see [22,
pages 5–6] for some pointers towards the literature on the other topics
in this list.

Acknowledgements. I would like to thank Michelle Manes for her careful
reading of these notes.
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List of Notation

ϕn the n’th iterate of ϕ, 2
Oϕ(x) the orbit of x under iteration of ϕ, 2
PrePer(ϕ, S) preperiodic points in S, 3
Per(ϕ, S) periodic points in S, 3
ϕf conjugation of rational map by f , 5
eα(ϕ) ramification index of ϕ at α, 6
λα(ϕ) multiplier of ϕ at α, 7
F(ϕ) the Fatou set of ϕ, 8
J (ϕ) the Julia set of ϕ, 8
H(β) the multiplicative height of β, 9
h(β) the logarithmic height of β, 9
ĥϕ the canonical height associated to ϕ, 13
ϕ̃ reduction of a rational map modulo p, 18
Res(F, G) resultant of the polynomials F and G, 18
M(d) max integer points in orbit of degree d map, 37
Support(A) support of the sequence A, 38
Z(A) the Zsigmondy set of the sequence A, 38
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affine minimal rational map, 27
algebraic number, height of, 9
arithmetic dynamics, 4
attracting periodic point, 7
automorphism of P1, 5

Berkovich projective line, 29
Bogomolov conjecture, 28

canonical height, 13
sum of local heights, 15

Cauchy sequence, 14
chaos, 8
Chebyshev polynomial, 8
chordal metric, 5
completely invariant set, 8
complex projective line, 4
conjugation of rational map by linear

fractional transformation, 5
critical point, 6
critical value, 6

degree of rational map, 4
Diophantine approximation, 11
directed graph, 36
Dirichlet’s theorem on Diophantine

approximation, 11
discrete dynamical system, 2
dynamical system, 2

directed graph of, 36
over finite field, 36
polarized, 15

elliptic curve, 4, 17
equicontinuity, 7

Faltings’ theorem, 29
Fatou set, 8
finite field, 36

good reduction, 18
graph, directed, 36
Green function, 15

height, 9
canonical, 13
finitely many points of bounded,

10

of rational map, 17
Weil height machine, 11

indifferent periodic point, 7
integer point on curve, 4
integer points in orbit, 22, 23, 27, 37
invariant measure, 15
irrationally neutral periodic point, 7
iteration, 2

Julia set, 8

Lang height conjecture, 18
Làttes map, 17
Lehmer conjecture, 17
linear fractional transformation, 5
local height function, 15
logarithmic height, 9

Manin–Mumford conjecture, 28
Mazur’s theorem, 4, 17
metric, chordal, 5
minimal rational map, 17, 27
Möbius transformation, 5
modular curve, 29
moduli space, 29
Mordell–Lang conjecture, 29
multiplicative height, 9
multiplier, 7

neutral periodic point, 7
normalized form, 18
Northcott’s theorem, 12

orbit, 2
integers in, 22, 23, 27, 37

p-adic dynamics, 29
Per(ϕ, S), 3
perfect set, 8
periodic point, 3

classification of, 7
finitely many rational, 12, 21
multiplier, 7
quadratic polynomial, 16
reduction modulo p, 19
uniform boundedness conjecture,

16
34
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permuation polynomial, 36
polarized dynamical system, 15
PrePer(ϕ, S), 3
preperiodic point, 2

finitely many rational, 12
uniform boundedness conjecture,

16
primitive divisor, 38
projective line, 4

quadratic polynomial, rational
periodic point, 16

ramification index, 6
rational map, 4

affine minimal, 27
completely invariant set, 8
conjugation by linear fractional

transformation, 5
critical point, 6
degree of, 4
equicontinuity, 7
good reduction, 18
height of, 17
integer points in orbit, 22, 23, 27,

37
iterate is polynomial, 22

minimal, 17
normalized form, 18
ramification index, 6
reduction modulo p, 18

rationally neutral periodic point, 7
Raynaud’s theorem, 28
reduction modulo p, 18
reduction theorem for periodic

points, 19
repelling periodic point, 7
resultant, 18
Riemann–Hurwitz formula, 7, 23, 26
Roth’s theorem on Diophantine

approximation, 11, 39

Siegel’s theorem, 4
superattracting periodic point, 7
support of a sequence, 38

uniform boundedness conjecture, 16

wandering point, 3
non-integrality of, 24

Weil height machine, 11

Zieve’s theorem, 22
Zsigmondy set, 38
Zsigmondy’s theorem, 38
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Appendix A. Projects

This section describes three projects that we might work on during
the AWS.

Project I: Dynamics over finite fields.
We consider a rational map ϕ(z) ∈ Fp(z) defined over a finite field. It
is clear that every point in P1(Fp) is preperiodic, since P1(Fp) is a finite
set. But there are many natural questions to ask about the structure
of the orbits. Here are a few problems on which we might work.

(1) Let ϕ(z) ∈ Fp(z). What can we say about the proportion of
points that are periodic for ϕ? For example, for which maps ϕ
is it true that

lim
n→∞

# Per
(
ϕ,P1(Fpn)

)

pn
= 0?

(2) Let ϕ(z) ∈ Q(z). Then for all but finitely many p, we can
reduce ϕ modulo p to get a map ϕ̃p : P1(Fp) → P1(Fp). For
which maps is it true that

lim
p→∞

# Per
(
ϕ̃p,P1(Fp)

)

p
= 0?

(3) Can we find maps ϕ(z) ∈ Q(z) such that # Per
(
ϕ̃p,P1(Fp)

)
is large for infinitely many p? (An extreme case is given by
permuation polynomials, which are polynomials ϕ(z) ∈ Z[z]
with the property that ϕ̃p : Fp → Fp is a bijection for infinitely
many p, so in particular every point in Fp is periodic.)

(4) Given ϕ(z) ∈ Fp(z), form a (directed) graph Γϕ whose vertices
are the points in P1(Fp) and such that vertices α and β are
connected if ϕ(α) = β. On average, how many connected com-
ponents would we expect ϕ to have? To answer this question,
we could average over all (or a subset of) maps of a given degree
in Fp(z), or we could fix one ϕ(z) ∈ Q(z) and look at Γϕ̃p as p
varies.

A guiding principle in mathematics is to determine to what extent
local information can be used to make global deductions. So we would
like to use information about the reductions ϕ̃p for varying p to de-
duce information about ϕ itself. For example, here’s a vague question.
If Per

(
ϕ̃p,P1(Fp)

)
is “large,” does that imply that Per

(
ϕ,P1(Q)

)
is

non-empty? And here’s a more precise question. Suppose that ϕ̃p has
a point of exact period N in P1(Fp) for all but finitely many p. Does
it follow that ϕ has a point of exact period N in P1(Q)?
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Project II: Orbits with many integer points.
Proposition 31 says that orbits may contain arbitrarily many integers,
but if we restrict to affine minimal rational maps ϕ, then Conjecture 32
says that the number of integer points should be bounded in terms of
the degree of ϕ.

As a warm-up, prove that for every d ≥ 2 there exist infinitely many
affine minimal rational maps ϕ(z) ∈ Q(z) with ϕ2(z) /∈ Q[z] such that

#
(Oϕ(0) ∩ Z) ≥ 2d + 2.

In general, for each d ≥ 2, define

M(d) = sup



#

(Oϕ(β) ∩ Z)
:

ϕ(z) ∈ Q(z), ϕ2(z) /∈ Q[z],
ϕ is affine minimal, and
β ∈ P1(Q) is ϕ-wandering



 .

The warm-up shows that M(d) ≥ 2d + 2. As a further warm-up, find
examples of rational maps which show that M(2) ≥ 7 and M(3) ≥ 9.

One aim of this project is construct rational maps that give improved
lower bounds for M(d), first for small values of d, and ultimately for
all d. For example, one goal would be to show that M(d) ≥ 2d + 3
for all d. A subsidiary task will be to develop a good algorithm for
determining whether a given rational map is affine minimal.

We might also consider the conjecture on restricted families of maps,
for example maps of the form ϕ(z) = (az2 +bz+c)/z. There is also the
question of integral points in orbits of maps ϕ : PN → PN on higher
dimensional projective spaces.

Project III: Primes, prime support, and primitive divisors in
orbits.
Let ϕ(z) ∈ Z[z] be a polynomial and β ∈ Z a wandering point for ϕ(z).
The orbit Oϕ(β) consists entirely of integers, so it is natural to ask if it
contains infinitely many primes. Of course, there are many cases where
this never happens, for example if ϕ(z) factors.

Question 38. Does there exist a polynomial ϕ(z) ∈ Z[z] of degree
d ≥ 2 that has an orbit Oϕ(β) containing infinitely many primes?

An elementary probabilistic argument suggests that the answer is
no.

Exercise R. A nonzero integer is said to be Pk if it is a product of at
most k (not necessarily distinct) primes. Let ϕ(z) ∈ Z[z] be a polynomial of
of degree d ≥ 2 and let β ∈ Z. Give a probabilistic argument to show that
for any fixed k ≥ 1, the orbit Oϕ(β) should contain only finitely many Pk-
integers. (Hint. A variant of the prime number theorem says that the number
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of Pk-integers less than X is asymptotic to X(log log X)k−1/(log X) as X →
∞ with k fixed.)

A potentially easier question is to study the set of all primes that
divide some point in the orbit.

Definition. The support of a sequence of integers A = (A1, A2, A3, . . .)
is the set

Support(A) =
{
primes p : p divides some term Ai in the sequence

}
.

There are some maps and orbits whose support is uninteresting. For
example, if ϕ(z) = zd, then Support

(Oϕ(β)
)

is simply the set of primes
dividing β. But for most polynomials ϕ(z) ∈ Q[z], it is a challenging
problem to determine if Support

(Oϕ(β)
)

has positive density. There is
recent work of Jones [11] showing that the support of certain quadratic
polynomials has positive density, while others have zero density. As one
part of this project, we will study the support of orbits of polynomials,
and more generally the support of the numerator and denominator
sequences arising from orbits of rational maps.

It is also interesting to look at the primes that divide the individual
terms in a sequence. A primitive prime divisor of An is a prime p such
that

p | An and p - Ai for all i < n.

The existence (or lack thereof) of primitive divisors in integer sequences
is both interesting in its own right and useful as a tool. Here is an
example of a famous theorem on primitive divisors.

Theorem 39. (Zsigmondy) Let a > b ≥ 1 be integers and define An =
an − bn. Then An has a primitive prime divisor for all n ≥ 7.

Example 40. Zsigmondy’s theorem is best possible, since

26 − 1 = 63 = 32 · 7, 22 − 1 = 3, and 23 − 1 = 7,

so 26 − 1 has no primitive divisors.

Definition. The Zsigmondy set of a sequence A is

Z(A) = {n ≥ 1 : An does not have a primitive prime divisor}.
Thus Zsigmondy’s theorem says that

maxZ({an − bn}n≥1

) ≤ 6.

There are similar statements for other sequences such as the Fibonacci
sequences and the sequence of denominators of multiples of a point on
an elliptic curve. In this project we will study primitive divisors in
orbits. Ingram and I [10] recently proved a general result which says
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(under suitable hypotheses) that Z(Oϕ(β)
)

is finite, i.e., ϕn(β) has
a primitive prime divisor for all sufficiently large n. The proof uses
Theorem 30, which in turn relies on Roth’s theorem, so is ineffective.

For special classes of rational maps and orbits, it should be possible
to obtain explicit bounds for the largest element in the Zsigmondy
set Z(Oϕ(β)

)
, as Zsigmondy did for the sequence an− bn. Looking for

such bounds is the second part of this project.
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