
Non-archimedean Dynamics in Dimension One:
Lecture 2

Robert L. Benedetto
Amherst College

Arizona Winter School

Sunday, March 14, 2010



Problems with P
1(CK )

◮ P
1(CK ) is not compact, or even locally compact.



Problems with P
1(CK )

◮ P
1(CK ) is not compact, or even locally compact.

◮ P
1(CK ) is totally disconnected.

That makes it hard to study “components” of the Fatou set
in a meaningful way.



Problems with P
1(CK )

◮ P
1(CK ) is not compact, or even locally compact.

◮ P
1(CK ) is totally disconnected.

That makes it hard to study “components” of the Fatou set
in a meaningful way.

There are ways to get around that (see Section 5 of the
lecture notes), but there is a better way.



Problems with P
1(CK )

◮ P
1(CK ) is not compact, or even locally compact.

◮ P
1(CK ) is totally disconnected.

That makes it hard to study “components” of the Fatou set
in a meaningful way.

There are ways to get around that (see Section 5 of the
lecture notes), but there is a better way.

There is a nicer space P
1
Ber that:

◮ contains P
1(CK ) as a subspace,



Problems with P
1(CK )

◮ P
1(CK ) is not compact, or even locally compact.

◮ P
1(CK ) is totally disconnected.

That makes it hard to study “components” of the Fatou set
in a meaningful way.

There are ways to get around that (see Section 5 of the
lecture notes), but there is a better way.

There is a nicer space P
1
Ber that:

◮ contains P
1(CK ) as a subspace,

◮ is compact,



Problems with P
1(CK )

◮ P
1(CK ) is not compact, or even locally compact.

◮ P
1(CK ) is totally disconnected.

That makes it hard to study “components” of the Fatou set
in a meaningful way.

There are ways to get around that (see Section 5 of the
lecture notes), but there is a better way.

There is a nicer space P
1
Ber that:

◮ contains P
1(CK ) as a subspace,

◮ is compact,

◮ is (still) Hausdorff, and



Problems with P
1(CK )

◮ P
1(CK ) is not compact, or even locally compact.

◮ P
1(CK ) is totally disconnected.

That makes it hard to study “components” of the Fatou set
in a meaningful way.

There are ways to get around that (see Section 5 of the
lecture notes), but there is a better way.

There is a nicer space P
1
Ber that:

◮ contains P
1(CK ) as a subspace,

◮ is compact,

◮ is (still) Hausdorff, and

◮ is path-connected.
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n
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ζ(0,1)
:= max{|cn| : n ≥ 0}.

Equivalently, for all f ∈ A(0, 1),

‖f ‖ζ(0,1) := sup{|f (x)| : x ∈ D(0, 1)}

= max{|f (x)| : x ∈ D(0, 1)}
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Definition
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ζ = ‖ · ‖ζ : A(0, 1) → [0,∞) such that

◮ ‖0‖ζ = 0 and ‖1‖ζ = 1,

◮ ‖fg‖ζ = ‖f ‖ζ · ‖g‖ζ for all f , g ∈ A(0, 1),

◮ ‖f + g‖ζ ≤ ‖f ‖ζ + ‖g‖ζ for all f , g ∈ A(0, 1), and

◮ ‖f ‖ζ ≤ ‖f ‖ζ(0,1) for all f ∈ A(0, 1).

Note: We do not require that ‖f ‖ζ = 0 implies f = 0.

By the way: we get ‖f + g‖ζ ≤ max{‖f ‖ζ , ‖g‖ζ} for free.
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Examples of Bounded Multiplicative Seminorms

1. For any x ∈ D(0, 1), define ‖ · ‖x by ‖f ‖x := |f (x)|.

2. For any disk D ⊆ D(0, 1), define ‖ · ‖D by

‖f ‖D := sup{|f (x)| : x ∈ D}.

If D = D(a, r) or D = D(a, r), and f (z) =
∑

cn(z − a)n, then

‖f ‖D = max{|cn|r
n : n ≥ 0}.

If D is rational closed, then ‖f ‖D = max{|f (x)| : x ∈ D}.

Since ‖ · ‖D(a,r) = ‖ · ‖D(a,r), we can denote both by ‖ · ‖ζ(a,r).
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The Berkovich Disk

Definition
The Berkovich unit disk DBer(0, 1) is the set of all bounded
multiplicative seminorms on A(0, 1).

As a topological space, DBer(0, 1) is equipped with the Gel’fand
topology.

This is the weakest topology such that for every f ∈ A(0, 1), the
map DBer(0, 1) → R given by

ζ 7→ ‖f ‖ζ

is continuous.
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Berkovich’s Classification of Points

There are four kinds of points in DBer(0, 1).

1. Type I: seminorms ‖ · ‖x corresponding to (classical) points
x ∈ D(0, 1).

2. Type II: norms ‖ · ‖ζ(a,r) corresponding to rational closed

disks D(a, r) ⊆ D(0, 1).

3. Type III: norms ‖ · ‖ζ(a,r) corresponding to irrational disks

D(a, r) ⊂ D(0, 1).

4. Type IV: norms ‖ · ‖ζ corresponding to (equivalence classes
of) decreasing chains D1 ⊇ D2 ⊇ · · · of disks with empty
intersection.

Chains of disks as in Type IV must have radius bounded below.



Path-connectedness, intuitively

x

y

D(0,1)

D(x,|x-y|)=D(y,|x-y|)

D(x,r)

D(y,r)

x y

ζ(x,r) ζ(y,r)

ζ(x,|x-y|)

ζ(0,1)



DBer(0, 1) as an R-tree

ζ(0,1)



The Berkovich Projective Line P
1
Ber

Glue two copies of DBer(0, 1) along |z | = 1 via z 7→ 1/z .

0

1

α

∞

ζ(0,1)

ζ(0,|α|)=ζ(α,|α|)
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Berkovich Disks

Definition
Let a ∈ CK and r > 0.

◮ The closed Berkovich disk DBer(a, r) is the set of all
ζ ∈ P

1
Ber corresponding to a point/disk/chain of disks

contained in D(a, r).

◮ The open Berkovich disk DBer(a, r) is the set of all ζ ∈ P
1
Ber

corresponding to a point/disk/chain of disks contained in
D(a, r), except ζ(a, r) itself.

Fact:

DBer(a, r) is open, and DBer(a, r) is closed.

Moreover:
The open Berkovich disks and the complements of closed
Berkovich disks together form a subbasis for the Gel’fand topology.
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More on the Gel’fand Topology

Definition
An (open) connected Berkovich affinoid is the intersection of
finitely many (open) Berkovich disks and complements of (closed)
Berkovich disks.

Theorem

◮ The open connected Berkovich affinoids form a basis for the

Gel’fand topology.

◮ P
1
Ber is uniquely path-connected.

For any ζ ∈ P1
Ber, the complement P1

Ber r {ζ} consists of

1. one component if ζ is type I or type IV,

2. infinitely many components if ζ is type II,

3. two components if ζ is type III.

The components of P
1
Ber r {ζ} are called the directions at ζ.



Recall: The Berkovich Projective Line P
1
Ber

0
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ζ(0,|α|)=ζ(α,|α|)
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Let φ(z) ∈ CK (z). Then for each point ζ ∈ P
1
Ber, there is a unique

point φ(ζ) ∈ P
1
Ber such that

‖h‖φ(ζ) = ‖φ ◦ h‖ζ

for all h ∈ CK (z).

If ζ is type I, then φ(ζ) is what you think.

Then φ : P1
Ber → P1

Ber is the unique continuous extension of
φ : P

1(CK ) → P
1(CK ).
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◮ φ(z) = cz maps ζ(a, r) to ζ(ca, |c |r).

◮ φ(z) = z + b maps ζ(a, r) to ζ(a + b, r).

◮ φ(z) = 1/z maps ζ(a, r) to

{

ζ(0, 1/r) if 0 ∈ D(a, r),

ζ(1/a, r/|a|2) if 0 6∈ D(a, r).

◮ So for any φ ∈ PGL(2, CK ), i.e., φ(z) =
az + b

cz + d
with

ad − bc 6= 0, you can figure out what φ(ζ) is for any ζ ∈ P
1
Ber.

◮ Given φ ∈ PGL(2, CK ), then

φ(ζ(0, 1)) = ζ(0, 1) if and only if φ ∈ PGL(2,O),

i.e., φ(z) =
az + b

cz + d
with |a|, |b|, |c |, |d | ≤ 1 and |ad −bc | = 1.
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Reduction of φ ∈ CK (z)

For more general φ ∈ CK (z), when does φ(ζ(0, 1)) = ζ(0, 1)?

Write φ(z) =
adzd + · · · + a1z + a0

bdzd + · · · + b1z + b0
,

with ai , bi ∈ O and some |ai | = 1 and/or some |bj | = 1.

Then φ(z) :=
adzd + · · · + a1z + a0

bdzd + · · · + b1z + b0

∈ k(z).

But we might have cancellation in φ.

If deg φ = deg φ, we say φ has good reduction.
If deg φ ≥ 1, we say φ has nonconstant reduction.

Fact: φ(ζ(0, 1)) = ζ(0, 1) if and only if φ has nonconstant
reduction.
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Understanding φ ∈ CK (z) at type II points

◮ For any type II point ζ ∈ P
1
Ber, there is some η ∈ PGL(2, CK )

such that η(ζ) = ζ(0, 1).

◮ Given φ ∈ CK (z) nonconstant and ζ ∈ P
1
Ber of type II, choose

η ∈ PGL(2, CK ) for ζ as above. Then there is some
θ ∈ PGL(2, CK ) such that the rational function

θ ◦ φ ◦ η−1(z) ∈ CK (z)

has nonconstant reduction.

◮ Then φ(ζ) = θ−1(ζ(0, 1)).

◮ η, θ ∈ PGL(2, CK ) are not unique,
but the cosets PGL(2,O)η and PGL(2,O)θ are unique.
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.

What is φ(ζ)?

η(z) = z/p maps ζ to ζ(0, 1), and

φ ◦ η−1(z) = φ(pz) =
p2z3 − pz2 + z + p

z
.

Note φ ◦ η−1 = z/z = 1 is constant.

So let θ(z) = (z − 1)/p.

Then θ ◦ φ ◦ η−1(z) =
pz3 − z2 + 1

z
, and so

θ ◦ φ ◦ η−1(z) = (1 − z2)/z is nonconstant.

So φ(ζ) = θ−1(ζ(0, 1)) = ζ(1, |p|p).
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1
Ber: Classifying Periodic Points

Definition
If ζ and ξ are type II points and φ(ζ) = ξ, then the local degree
or multiplicity of φ at ζ is

degζ φ := deg θ ◦ φ ◦ η−1,

where η(ζ) = ζ(0, 1) and θ(ξ) = ζ(0, 1).

If ζ is type II and periodic of exact period n, we say ζ is

◮ indifferent (or neutral) if degζ φn = 1.

◮ repelling if degζ φn ≥ 2.

Warning: Repelling type II points (usually) do not actually repel
in most directions.

Note: Periodic type III and IV points are always indifferent.
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Definition
An open set U ⊆ P1

Ber is dynamically stable under φ ∈ CK (z) if
⋃

n≥0

φn(U) omits infinitely many points of P1
Ber.

The (Berkovich) Fatou set of φ is the set FBer = Fφ,Ber given by

FBer := {x ∈ P
1
Ber : x has a dynamically stable neighborhood}.

The (Berkovich) Julia set of φ is the set

JBer = Jφ,Ber := P
1
Ber r Fφ,Ber.
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Basic Properties of Berkovich Fatou and Julia Sets

◮ FBer is open, and JBer is closed.

◮ Fφn,Ber = Fφ,Ber, and Jφn,Ber = Jφ,Ber

◮ φ(FBer) = FBer = φ−1(FBer), and
φ(JBer) = JBer = φ−1(JBer).

◮ F = FBer ∩ P
1(CK ), and J = JBer ∩ P

1(CK ).

◮ All attracting periodic points are Fatou.

◮ All repelling periodic points are Julia.

◮ Indifferent periodic type II points are Fatou if the residue field
is algebraic over a finite field, but they can be Julia otherwise.

In general, if ζ(0, 1) is fixed by φ,
and if φ

m
(z) = z for some m ≥ 1,

then ζ(0, 1) is Fatou.
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P
1(C) P

1(CK ) P
1
Ber

Some indifferent All indifferent Most indifferent
points are Fatou, points are Fatou points are Fatou.
and some are Julia

J is compact J may not JBer is compact
be compact

J is nonempty J may be empty JBer is nonempty

F may be empty F is nonempty FBer is nonempty

J is the closure JBer is the closure
of the set of ??? of the set of
repelling periodic (see Project #1) repelling periodic
points (Type I & II) points


