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Preliminaries

@ Notation

@ Transcendence degree theorem
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Scalar quantities

Let p be a fixed prime; q a fixed power of p.

A= Fq[f] .
k := Fq(0) .
k —
ko :=Fq((1/0))
Coo = ko —
[ -
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Functions

@ Rational functions:

]Fq(t),
@ Analytic functions:

T := {
and

> ait’ € Coo[f]]
i>0

]a,-]oo — 0}.

L := fraction field of T.
@ Entire functions:

E = {Zait’ ecC

@, , Ve
i>0 [kOO(
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Galois groups and transcendence degree

Theorem (P. 2008)

Let M be a t-motive, and let Ty, be its associated group via Tannakian
duality. Suppose that ¢ € GL,(k(t)) N Mat,(k[t]) represents
multiplication by o on M and that det® = c(t — 6)S, c€ k. Let W be a
rigid analytic trivialization of ® in GL,(T) N Mat,(E). That is,

v = ov.
Finally let L
L =K(V(9)) C Koo

Then
tr.dege L=dimly (=dimly).
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Carlitz logarithms

@ Difference equations for Carlitz logarithms
@ Calculation of the Galois group
@ Algebraic independence

@ An explicit example: log(¢p)
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Carlitz logarithms

@ Recall the Carlitz exponential

expo(z) = 2+ Z

(09 —

z9
0)(69 — 69)

. (eq! _ 9qi—1)'
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Carlitz logarithms

@ Recall the Carlitz exponential

zd
expo(z) = z + Z e

(eql _ eq) . (eq/ _ 0qi—1)'
@ lts formal inverse is the Carlitz logarithm

loge(z) =z + i

z9

0 —09)(0 —0F)--- (0 —09)
logo(2) converges for | 2|, < |0]9/(91) and satisfies
0log¢(z) = logc(02) + loge(z9)
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The function L,(t)

@ For a € K, |a|s < 1019/(9=1), we define

t)_a+z(t—9q

qi
@ Connection with Carlitz logarithms

—09%) ..

(t -

_ T,
09)

La(6) =

@ Functional equation

logc(a).

L1

t—40
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Difference equations for Carlitz logarithms

@ Suppose at,...,ar € K, |aj|oo < |0|§</>(q’1) for each i.
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Difference equations for Carlitz logarithms
@ If we set )

@ Suppose at,...,ar € K, |aj|oo < |¢9|§</>(q’1) for each i.
t—40

0 --- 0
(=1
Q t—0) 1 0
o |1 =0
ol (t-6) 0 - 1
then & represents multiplication by o on a t-motive M with

0—-C—-M-—=1"-50.
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Difference equations for Carlitz logarithms
@ If we set

@ Suppose ai, ..., ar € K, |ajlso < 101297 for each .
t—20 o --- 0
o |0 1 0
- 0) 0 o

e 1
then & represents multiplication by o on a t-motive M with
e We let

0—-C—-M-—=1"-50.

Q 0 0
QL,, 1 --- 0
V= ) . )
QL,, O
Then

o 1
vl — ow
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@ Specialize ¥ at t = 6 and find

—1/mq
w(o) =

~loge(ar)/mq O
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—loge(ay)/mg 1
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@ Specialize ¥ at t = 6 and find

—1/mq
w(o) =

—log¢(ar)/mq O
@ Thus we can determine

tr. degg k(mq,l09c(v1), - .., loge(ar))
by calculating

dimly.
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Calculating Ny

(\U1 )Ij = \U,'j ®1,

(\Ug),'j =1 \U,'j,
and set U = W1‘1W2 € GL4¢(L ) L).
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Calculating Ny

(\U1),-j-:\ll,~j®1,

(\Ug),'j =1 \U,'j,
and set U = \U1_1\l!2 € GL4¢(L ) L).
@ Define an F4(t)-algebra map,

p=(Xj— Wy) : Fg(t)[X,1/detX] — L g, L,
which defines the Fq(t)-subgroup scheme 'y C GL,, 1 /p(1)-
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Calculating Ny
@ Set Wy, Vs € GI—r—H (L ®E(1‘) L) so that

(V)j=Vv;el, (V);=1aVj,

and set W = W "W, € GL, 41 (L @y L)
@ Define an Fq4(t)-algebra map,

p=(Xj— V) : Fg(t)[X, 1/ det X] — L &g, L,

which defines the [F4(t)-subgroup scheme Ny C GL,+1/Fq(t).
@ In our case, this implies first that

x 0
My C {[* idr]} C GLri/my(t) -

Thus we can consider the coordinate ring of 'y to be a quotient of
IFCI(Z‘)[)(O) LR XI’7 1/X0]
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The vector group V

@ The homomorphism of F4(t)-group schemes
0 r
[(; idr} HazrwiGm
coincides with the surjection,

Ny — e

(rc & Gm)

AWS 2008 (Lecture 4)

Galois Group Examples and Applications



The vector group V

@ The homomorphism of F4(t)-group schemes

a 0
6 id,

} — ooy Lt Gm
coincides with the surjection,

My — rc. (rc & Gm)

@ Thus we have exact sequence of group schemes over Fq(t)

0—V—-Ty%Gy—0,
and we can consider V' C (G,)" over Fq(t).
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@ Consider a € Gy(Fqg(t)) and a lift v € Ty (Fq(t)).
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@ Consider a € Gy(Fqg(t)) and a lift v € Ty (Fq(t)).
@ Forany u=[}?] € V(Fqy(t)), we find that

1 [1 0]
Ty =

av I

€ V(Fq(D)-
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@ Consider a € Gy(Fqg(t)) and a lift v € Ty (Fq(t)).
@ Forany u=[}?] € V(Fqy(t)), we find that

1 [1 0]
Ty =

av | € V(Fq(t)).
@ Thus V(IFq4(t)) is a vector subspace of Fq()
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@ Consider a € Gy(Fqg(t)) and a lift v € Ty (Fq(t)).
@ Forany u=[}?] € V(Fqy(t)), we find that

v luy = [Ojv 2] € V(Fq(1)).

@ Thus V(IFq4(t)) is a vector subspace of Fq()

,
@ Now V is smooth over Fy(t) because pr: 'y — G, is surjective
on Lie algebras.
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@ Consider a € Gy(Fqg(t)) and a lift v € Ty (Fq(t)).
@ Forany u=[}?] € V(Fqy(t)), we find that

v luy = [Ojv 2] e V(Fq(1)).

@ Thus V(IFq4(t)) is a vector subspace of Fq() "
@ Now V is smooth over Fy(t) because pr: 'y — G, is surjective
on Lie algebras.

@ It follows that defining equations for V are linear forms in
Xi,..., Xr over Fg(t).
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Definining equations for Iy

@ Pick by € Fq(t)* \ Fy.
@ Lift (use Hilbert Thm. 90) to

bp O --- 0O
by 1 - 0
v= 1, | € Mu(Fq(t)).
br 0 --- 1
forms for V.

@ We can use + to create defining equations for 'y using defining
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Theorem

@ Suppose F = c1 X1 +---+ ¢ X, ¢y,...,¢ € Fy(t), is a defining
linear form for V. Then

G=(bg—1)F—F(by,...,b)( X —1)

is a defining polynomial for T'y.
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Theorem

@ Suppose F = c1 X1 +---+ ¢ X, ¢y,...,¢ € Fy(t), is a defining
linear form for V.. Then

G=(bg—1)F—F(by,...,b)( X —1)

is a defining polynomial for I'y. In particular, if we take t = 6,

r

(bo(0) — 1) ci() logg(ai) = ci(0)bi(0)mg = 0.
(=1

i=1
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Theorem

@ Suppose F = c1 X1 +---+ ¢ X, ¢y,...,¢ € Fy(t), is a defining
linear form for V.. Then

G=(bg—1)F—F(by,...,b)( X —1)

is a defining polynomial for I'y. In particular, if we take t = 6,

r

(bo(0) — 1) ci() logg(ai) = ci(0)bi(0)mg = 0.
i=1

i=1

@ Every k-linear relation among mq, logc(a), . .., loggc(ar) is a
k-linear combination of relations of this type.
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Theorem

@ Suppose F = c1 X1 +---+ ¢ X, ¢y,...,¢ € Fy(t), is a defining
linear form for V.. Then

= (bg —1)F — F(by,...,b/)(Xp — 1)

is a defining polynomial for I'y. In particular, if we take t = 6,

r
0) — 1)) ci(0)logg(a) Zc, )bi(0)mq =
i=

@ Every k-linear relation among g, logs(cv), ..., l0gc(ar) is a
k-linear combination of relations of this type.
@ Let N be the k-linear span of wq, logg(a1), ..., logc(ar). Then

dim My = dimg N.
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Algebraic independence of Carlitz logarithms
@ Starting with oy,

it .,ar € k (suitably small), we found
® € Mat,(k[t]) and ¥ € Mat,(E) so that

Afmg 0 - O
—logg(avq)/mg 1 -+ 0

W(9) =

-1
@ Since tr. degy k(mg,logc(ay),...loge(ar)) = dimTy = dimg N, we
can prove the following the following theorem.
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Algebraic independence of Carlitz logarithms

@ Starting with a1, ..., o, € k (suitably small), we found
® € Mat,(k[t]) and ¥ € Mat,(E) so that

—1/mq 0O --- 0
B —logg(avq)/mg 1 -+ 0
~logg(ar)/mg O - 1

@ Since tr. degy k(mg,logc(ay),...loge(ar)) = dimTy = dimg N, we
can prove the following the following theorem.

Theorem (P. 2008)

Suppose logg(at), ..., logg(ar) are linearly independent over
k =TFq4(0). Then they are algebraically independent over k
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An Example

@ Recall

G = "V=b, expo(mq/b) = o, logo(Co) = -
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An Example

@ Recall

@ We take

G = "V=b, expo(mq/b) = o, logo(Co) = -

t—20 0 Q
®= [c;/"(t—o) 1]’ v=|
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An Example

@ Recall

C@ — q_\‘1 _07
@ We take

T,
expe(mq/0) = (o, loge(Co) = 7‘7.
_ t—0 0 . [ Q O]
Tl -0 1] (L, 1)
@ We have a relation over k on the entries of

w(9) = [—1/7rq 0
namely

~1/6 1]’

X1 +1=0.
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@ Sodimly = 1. (It's at least 1 since Ny — Gp,.)

@ Question: What are its defining equations?
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@ Sodimly = 1. (It's at least 1 since Ny — Gp,.)
@ Question: What are its defining equations?

@ We begin with matrices in GL,(L Dk L):

Q@1 0 [1s9
w1_[QL¢9®1 1}’ ‘"2_[

0
100l 1)
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@ Sodimly = 1. (It's at least 1 since Ny — Gp,.)
@ Question: What are its defining equations?
@ We begin with matrices in GL,(L Dk L):

[ Qet1 o0 [1@Q 0
“”—k%®11] %_&®Q% J'

Then the defining equations over Fq(t) for 'y will be precisely
relations among the entries of

1
w;1w2:[ o @ O]

L, ®Q+100L, 1
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@ Sodimly = 1. (It's at least 1 since Ny — Gp,.)
@ Question: What are its defining equations?
@ We begin with matrices in GL,(L Dk L):

[ Qet1 o0 [1@Q 0
w1_[QL<9®1 1}’ “’2—[1®QLCQ 1]'

Then the defining equations over Fq(t) for 'y will be precisely
relations among the entries of

1
w;wz:[ o @ 0]

—L,, ®Q+10QL, 1
@ Consider the identity of functions (check!),
Co(t—0)Q(t) — tQ(t)Le, (1) —1 =0,
and substitute into the lower left entry of Wy Wy,
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1
1 . §®Q
Vive=| o010l

0
Go(t—0)Q — 1L, —1=0
o Lower left entry of W Wy is

L, @Q+ 1L, (3eo(t—0) — 5) @ Q
+1@ He(t-0Q-1)
=-1G{t-0)2Q+ 520
+1etpt-00-121
=t(geQ) —(1e1).
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1
1 . §®Q
Vive=| o010l

0
Go(t—0)Q — 1L, —1=0
o Lower left entry of W Wy is

L, ® Q+1® QL

—(16(t=0) — ) ®Q

+1@ He(t-0Q-1)

=-1G{t-0)2Q+ 520

+1etpt-00-121
=1(Eeq) -1(1e1).

@ Therefore, I'y is defined by

AWS 2008 (Lecture 4)

My : X2 — X419 +1=0.

[m]
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Carlitz zeta values

@ Brief review of Carlitz zeta values

@ Algebraic independence theorem of Chang-Yu

@ Theorem of Chang-P.-Yu for varying q
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Applications to Carlitz zeta values

Ce(m =Y 1

E S ko<>7
acFq[6]
a monic
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Applications to Carlitz zeta values

Ce(m =Y 1

E S ko<>7 n= 1,2,
acFq[6]
a monic

@ As you may recall from the 2nd lecture, using the theory of

Anderson and Thakur, one can construct a system of difference
equations W(-1) = &W so that ¢c(n) appears in W(4).
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Applications to Carlitz zeta values

1
Ce(m =Y o C ko N=1,2,
ackq[o]
a monic

@ As you may recall from the 2nd lecture, using the theory of
Anderson and Thakur, one can construct a system of difference
equations W(-1) = &W so that ¢c(n) appears in W(4).

@ Known algebraic relations over k among (¢ (n):

(@=1)|n = ¢c(n) =rml, r€Fg(h), (Euler-Carlitz)
Ce(np) = Ce(n)P, (Frobenius).
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The Chang-Yu Theorem

Algebraic independence of (¢(n)

Theorem (Chang-Yu 2007)

For any positive integer n, the transcendence degree of the field
over k is

E(ﬂ-q’ CC(1 )> o

n_{gJ_{qu%p( : J+1'

qa-1)

- Ge(n)
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The Chang-Yu Theorem

Algebraic independence of (¢(n)

Theorem (Chang-Yu 2007)
For any positive integer n, the transcendence degree of the field

R(ﬂ-q’ CC(1 )? © 009 CC(n))

" EJ - {qLJ " {p(qn—UJ o

Question: What can we say about Carlitz zeta values if we allow g to
vary?

overk is
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The Chang-Yu Theorem

Algebraic independence of {¢(n)

Theorem (Chang-Yu 2007)
For any positive integer n, the transcendence degree of the field

R(an CC(1 )? © 009 CC(”))

" BJ - {qLJ " {p(qn—UJ o

Question: What can we say about Carlitz zeta values if we allow g to
vary?

Answer: Even then, the Euler-Carlitz relations and the Frobenius p-th
power relations tell the whole stoty....

overk is
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Zeta values with varying constant fields

For m > 1, we set

1
Cm(n): Z E, n=12....

aeIFpm [9]
a monic

Theorem (Chang-P.-Yu)

For any positive integers s and d, the transcendence degree of the
field

k(U2 _y {mpm, Cm(1), - - - Cm(S)})

overk is
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Rank 2 Drinfeld modules

@ Periods and quasi-periods

@ A Galois group example

@ Algebraic independence in the non-CM case
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Periods and quasi-periods of rank 2 Drinfeld modules

@ Recall that for a rank 2 Drinfeld module p : Fq[t] — k[F] with
we can take

p(t) = 0+ kF + F?,
1 271!

o_| 0 wo [0 1T s
t—0 —x'/4)° 1 —k

@ Furthermore,

1
SS) SéZ)
w(e)—‘l — |:(d1

m]
wo M2’
where w1, wo, 11, 72 are the periods and quasi-periods for p.
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An example (k = V0 + V/69)
@ Assume p # 2. Consider the Drinfeld module p with

p(t) =0+ (V0 +V09)F + F2.
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An example (k = V6 + v/#9)
case

@ Assume p # 2. Consider the Drinfeld module p with

=0+ (V0 + Vo9)F + F?
@ After going through the Galois group calculation, we find in this
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An example (k = V6 + v/#9)
case

@ Assume p # 2. Consider the Drinfeld module p with

=0+ (V0 + Vo9)F + F?
@ After going through the Galois group calculation, we find in this

@ Thus
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An example (k = V6 + v/#9)

@ Assume p # 2. Consider the Drinfeld module p with

=0+ (VO+V09)F + F2.
@ After going through the Galois group calculation, we find in this
case

My
@ Thus

diml'w=2
Vtactsby Vo + F

@ However, here p has complex multiplication by F,[v/t], where
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An example (k = V0 + V/69)

@ Assume p # 2. Consider the Drinfeld module p with
p(t) =0+ (VO + V609)F + F2.

@ After going through the Galois group calculation, we find in this
case

@ Thus

@ However, here p has complex multiplication by F4[v/], where
V'tacts by Vo + F.

Theorem (Thiery 1992)

The period matrix of a Drinfeld module of rank 2 over k with CM has
transcendence degree 2 over k.
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Rank 2 Drinfeld modules without CM
multiplication if

In general, we say that a Drinfeld module p does not have complex
End(p) = Flt]
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Rank 2 Drinfeld modules without CM

In general, we say that a Drinfeld module p does not have complex
multiplication if
End(p) = Fqlt].

Theorem (Chang-P.)

Suppose that p # 2. Let p be a Drinfeld module of rank 2 over k
without CM. Then
M, =GLs.

In particular, the periods and quasi-periods of p,

W, W2, 11, 712,

are algebraically independent over k.
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