Transcendence in Positive Characteristic

Introduction to Function Field Transcendence

W. Dale Brownawell
Matthew Papanikolas

Penn State University
Texas A&M University

Arizona Winter School 2008
March 15, 2008
Outline

1. Things Familiar
2. Things Less Familiar
3. Things Less Less Familiar
Things Familiar
Arithmetic objects from characteristic 0

- The multiplicative group and exp(z)
- Elliptic curves and elliptic functions
- Abelian varieties
The multiplicative group

We have the usual exact sequence of abelian groups

$$0 \rightarrow 2\pi i\mathbb{Z} \rightarrow \mathbb{C} \xrightarrow{\exp} \mathbb{C}^\times \rightarrow 0,$$

where

$$\exp(z) = \sum_{i=0}^{\infty} \frac{z^i}{i!} \in \mathbb{Q}[[z]].$$
The multiplicative group

We have the usual exact sequence of abelian groups

\[0 \to 2\pi i \mathbb{Z} \to \mathbb{C}^{\exp} \to \mathbb{C}^\times \to 0, \]

where

\[\exp(z) = \sum_{i=0}^{\infty} \frac{z^i}{i!} \in \mathbb{Q}[[z]]. \]

For any \(n \in \mathbb{Z}, \)

\[\mathbb{C} \xrightarrow{\exp} \mathbb{C}^\times \xrightarrow{\cdot n} \mathbb{C}^\times \xrightarrow{\exp} \mathbb{C}^\times \]

which is simply a restatement of the functional equation

\[\exp(nz) = \exp(z)^n. \]
The n-th roots of unity are defined by
\[
\mu_n := \{ \zeta \in \mathbb{C}^\times \mid \zeta^n = 1 \} = \{ \exp(2\pi i a/n) \mid a \in \mathbb{Z} \}
\]

- $\text{Gal}(\mathbb{Q}(\mu_n)/\mathbb{Q}) \cong (\mathbb{Z}/n\mathbb{Z})^\times$.
- **Kronecker-Weber Theorem:** The cyclotomic fields $\mathbb{Q}(\mu_n)$ provide explicit class field theory for \mathbb{Q}.
- For $\zeta \in \mu_n$,
 \[
 \log(\zeta) = \frac{2\pi i a}{n}, \quad 0 \leq a < n.
 \]
Elliptic curves over \mathbb{C}

Smooth projective algebraic curve of genus 1.

$$E : y^2 = 4x^3 + ax + b, \quad a, b \in \mathbb{C}$$

$E(\mathbb{C})$ has the structure of an abelian group through the usual chord-tangent construction.
Weierstrass uniformization

There exist \(\omega_1, \omega_2 \in \mathbb{C} \), linearly independent over \(\mathbb{R} \), so that if we consider the lattice
\[
\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2,
\]
then the Weierstrass \(\wp \)-function is defined by
\[
\wp_\Lambda(z) = \frac{1}{z^2} + \sum_{\omega \in \Lambda, \omega \neq 0} \left(\frac{1}{(z - \omega)^2} - \frac{1}{\omega^2} \right).
\]
The function \(\wp(z) \) has double poles at each point in \(\Lambda \) and no other poles.
We obtain an exact sequence of abelian groups,

\[0 \rightarrow \Lambda \rightarrow \mathbb{C} \xrightarrow{\exp_E} E(\mathbb{C}) \rightarrow 0, \]

where

\[\exp_E(z) = (\varphi(z), \varphi'(z)). \]
We obtain an exact sequence of abelian groups,

$$0 \to \Lambda \to \mathbb{C} \xrightarrow{\exp_E} E(\mathbb{C}) \to 0,$$

where

$$\exp_E(z) = (\wp(z), \wp'(z)).$$

Moreover, we have a commutative diagram

$$\begin{array}{ccc}
\mathbb{C} & \xrightarrow{\exp_E} & E(\mathbb{C}) \\
\downarrow{z\mapsto nz} & & \downarrow{P\mapsto [n]P} \\
\mathbb{C} & \xrightarrow{\exp_E} & E(\mathbb{C})
\end{array}$$

where $[n]P$ is the n-th multiple of a point P on the elliptic curve E.
Periods of E
How do we find ω_1 and ω_2?

An elliptic curve E,

$$E : y^2 = 4x^3 + ax + b, \quad a, b \in \mathbb{C},$$

has the geometric structure of a torus in $\mathbb{P}^2(\mathbb{C})$. Let

$$\gamma_1, \gamma_2 \in H_1(E, \mathbb{Z})$$

be generators of the homology of E.
Periods of E

How do we find ω_1 and ω_2?

An elliptic curve E,

$$E : y^2 = 4x^3 + ax + b, \quad a, b \in \mathbb{C},$$

has the geometric structure of a torus in $\mathbb{P}^2(\mathbb{C})$. Let

$$\gamma_1, \gamma_2 \in H_1(E, \mathbb{Z})$$

be generators of the homology of E.

Then we can choose

$$\omega_1 = \int_{\gamma_1} \frac{dx}{\sqrt{4x^3 + ax + b}}, \quad \omega_2 = \int_{\gamma_2} \frac{dx}{\sqrt{4x^3 + ax + b}}.$$
Quasi-periods of \(E \)

- The differential \(dx/y \) on \(E \) generates the space of holomorphic 1-forms on \(E \) (differentials of the first kind).
- The differential \(x \, dx/y \) generates the space of differentials of the second kind (differentials with poles but residues of 0).
Quasi-periods of E

- The differential dx/y on E generates the space of holomorphic 1-forms on E (differentials of the first kind).
- The differential $x \, dx/y$ generates the space of differentials of the second kind (differentials with poles but residues of 0).
- We set
 \[\eta_1 = \int_{\gamma_1} \frac{x \, dx}{\sqrt{4x^3 + ax + b}}, \quad \eta_2 = \int_{\gamma_2} \frac{x \, dx}{\sqrt{4x^3 + ax + b}}, \]

 and η_1, η_2 are called the quasi-periods of E.
- η_1, η_2 arise simultaneously as special values of the Weierstrass ζ-function and as periods of extensions of E by \mathbb{G}_a.
Period matrix of E

- The period matrix of E is the matrix

$$P = \begin{bmatrix} \omega_1 & \eta_1 \\ \omega_2 & \eta_2 \end{bmatrix}.$$

It provides a natural isomorphism

$$H^1_{\text{sing}}(E, \mathbb{C}) \cong H^1_{\text{DR}}(E, \mathbb{C}).$$
The period matrix of E is the matrix

$$P = \begin{bmatrix} \omega_1 & \eta_1 \\ \omega_2 & \eta_2 \end{bmatrix}.$$

It provides a natural isomorphism

$$H^1_{\text{sing}}(E, \mathbb{C}) \cong H^1_{\text{DR}}(E, \mathbb{C}).$$

Legendre Relation: From properties of elliptic functions, the determinant of P is

$$\omega_1 \eta_2 - \omega_2 \eta_1 = \pm 2\pi i.$$
An abelian variety A over \mathbb{C} is a smooth projective variety that is also a group variety.

Elliptic curves are abelian varieties of dimension 1.
Abelian varieties
Higher dimensional analogues of elliptic curves

- An abelian variety A over \mathbb{C} is a smooth projective variety that is also a group variety.
- Elliptic curves are abelian varieties of dimension 1.
- Much like for \mathbb{G}_m and elliptic curves, an abelian variety of dimension d has a uniformization,

$$\mathbb{C}^d / \Lambda \cong A(\mathbb{C}),$$

where Λ is a discrete lattice of rank $2d$.
The period matrix of an abelian variety

Let A be an abelian variety over \mathbb{C} of dimension d.

- As in the case of elliptic curves, there is a natural isomorphism,

$$H^1_{\text{sing}}(A, \mathbb{C}) \cong H^1_{\text{DR}}(A, \mathbb{C}),$$

defined by period integrals, whose defining matrix P is called the *period matrix of A.*
The period matrix of an abelian variety

Let A be an abelian variety over \mathbb{C} of dimension d.

- As in the case of elliptic curves, there is a natural isomorphism,
 $$H^1_{\text{sing}}(A, \mathbb{C}) \cong H^1_{\text{DR}}(A, \mathbb{C}),$$
defined by period integrals, whose defining matrix P is called the
period matrix of A.

- We have
 $$P = \begin{bmatrix} \omega_{ij} & \eta_{ij} \end{bmatrix} \in \text{Mat}_{2d}(\mathbb{C}),$$
 where $1 \leq i \leq 2d$, $1 \leq j \leq d$.

- The ω_{ij}’s provide coordinates for the period lattice Λ.
- The η_{ij}’s provide periods of extensions of A by \mathbb{G}_a.
Things Less Familiar
Transcendence in characteristic 0

- Theorems of Hermite-Lindemann and Gelfond-Schneider
- Schneider’s theorems on elliptic functions
- Linear independence results
- Grothendieck’s conjecture
Transcendence from \mathbb{G}_m

Theorem (Hermite-Lindemann 1870’s, 1880’s)

Let $\alpha \in \overline{\mathbb{Q}}$, $\alpha \neq 0$. Then $\exp(\alpha)$ is transcendental over \mathbb{Q}.

Examples

Each of the following is transcendental:

- e \hspace{1cm} ($\alpha = 1$)
- π \hspace{1cm} ($\alpha = 2\pi i$)
- $\log 2$ \hspace{1cm} ($\alpha = \log 2$)
Hilbert’s Seventh Problem

Theorem (Gelfond-Schneider 1930’s)

Let $\alpha, \beta \in \overline{\mathbb{Q}}$, with $\alpha \neq 0, 1$ and $\beta \notin \mathbb{Q}$. Then α^β is transcendental.

Examples

Each of the following is transcendental:

- $2\sqrt{2}$ ($\alpha = 2, \beta = \sqrt{2}$)
- e^π ($e^\pi = (-1)^{-i}$)
- $\log 2 \over \log 3$ ($3^{\log 2 \over \log 3} = 2$)
Periods and quasi-periods of elliptic curves

Theorem (Schneider 1930’s)

Let E be an elliptic curve defined over $\overline{\mathbb{Q}}$,

$$E : y^2 = x^3 + ax + b, \quad a, b \in \overline{\mathbb{Q}}.$$

- The periods and quasi-periods of E,

$$\omega_1, \omega_2, \eta_1, \eta_2$$

are transcendental.
- Let $\tau = \omega_1/\omega_2$. Then either $\mathbb{Q}(\tau)/\mathbb{Q}$ is an imaginary quadratic extension (CM) or a purely transcendental extension (non-CM).
Linear independence
Linear forms in logarithms

Theorem (Baker 1960’s)

Let $\alpha_1, \ldots, \alpha_m \in \overline{\mathbb{Q}}$. If $\log(\alpha_1), \ldots, \log(\alpha_m)$ are linearly independent over \mathbb{Q}, then

$$1, \log(\alpha_1), \ldots, \log(\alpha_m)$$

are linearly independent over $\overline{\mathbb{Q}}$.

- Extension of the Gelfond-Schneider theorem ($m = 2$).
- Work of Bertrand, Masser, Waldschmidt, Wüstholz (1970’s, 1980’s) extended this result to elliptic and abelian integrals.
Linear independence
Linear forms in logarithms

Theorem (Baker 1960’s)

Let \(\alpha_1, \ldots, \alpha_m \in \overline{\mathbb{Q}} \). If \(\log(\alpha_1), \ldots, \log(\alpha_m) \) are linearly independent over \(\mathbb{Q} \), then

\[
1, \log(\alpha_1), \ldots, \log(\alpha_m)
\]

are linearly independent over \(\overline{\mathbb{Q}} \).

- Extension of the Gelfond-Schneider theorem \((m = 2)\).
- Work of Bertrand, Masser, Waldschmidt, Wüstholz (1970’s, 1980’s) extended this result to elliptic and abelian integrals.

Conjecture (Gelfond/Folklore)

Let \(\alpha_1, \ldots, \alpha_m \in \overline{\mathbb{Q}} \). If \(\log(\alpha_1), \ldots, \log(\alpha_m) \) are linearly independent over \(\mathbb{Q} \), then they are algebraically independent over \(\overline{\mathbb{Q}} \).
Conjecture (Grothendieck)

Suppose A is an abelian variety of dimension d defined over $\overline{\mathbb{Q}}$. Then

\[
\text{tr. deg}(\overline{\mathbb{Q}}(P)/\overline{\mathbb{Q}}) = \dim \text{MT}(A),
\]

where $\text{MT}(A) \subseteq \text{GL}_{2d}/\mathbb{Q}$ is the Mumford-Tate group of A.

Let A be an elliptic curve. One can show

\[
\dim \text{MT}(A) = \begin{cases} \ 4 & \text{if } \text{End}(A) = \mathbb{Z}, \\ \ 2 & \text{if } \text{End}(A) \neq \mathbb{Z}. \end{cases}
\]

(G. Chudnovsky, 1970's) If $\text{End}(A) \neq \mathbb{Z}$, then Grothendieck's conjecture is true.
Grothendieck’s conjecture

Conjecture (Grothendieck)

Suppose A is an abelian variety of dimension d defined over \mathbb{Q}. Then

$$\text{tr. deg}(\mathbb{Q}(P)/\mathbb{Q}) = \dim \text{MT}(A),$$

where $\text{MT}(A) \subseteq \text{GL}_{2d}/\mathbb{Q}$ is the Mumford-Tate group of A.

Let A be an elliptic curve.

- One can show

$$\dim \text{MT}(A) = \begin{cases} 4 & \text{if } \text{End}(A) = \mathbb{Z}, \\ 2 & \text{if } \text{End}(A) \neq \mathbb{Z}. \end{cases}$$

- (G. Chudnovsky, 1970’s) If $\text{End}(A) \neq \mathbb{Z}$, then Grothendieck’s conjecture is true.
Things Less Familiar

- Function fields
- Drinfeld modules
 - The Carlitz module
 - Drinfeld modules of rank 2
- t-modules (higher dimensional Drinfeld modules)
- Transcendence results
Let p be a fixed prime; q a fixed power of p.

\[A := \mathbb{F}_q[\theta] \quad \longleftrightarrow \quad \mathbb{Z} \]
\[k := \mathbb{F}_q(\theta) \quad \longleftrightarrow \quad \mathbb{Q} \]
\[\overline{k} \quad \longleftrightarrow \quad \overline{\mathbb{Q}} \]
\[k_{\infty} := \mathbb{F}_q((1/\theta)) \quad \longleftrightarrow \quad \mathbb{R} \]
\[\mathbb{C}_{\infty} := \overline{k_{\infty}} \quad \longleftrightarrow \quad \mathbb{C} \]
\[|f|_{\infty} = q^{\deg f} \quad \longleftrightarrow \quad |\cdot| \]
Twisted polynomials

- Let $F : \mathbb{C}_\infty \to \mathbb{C}_\infty$ be the q-th power Frobenius map: $F(x) = x^q$.
- For a subfield $F_q \subseteq K \subseteq \mathbb{C}_\infty$, the ring of twisted polynomials over K is

 $$K[F] = \text{polynomials in } F \text{ with coefficients in } K,$$

subject to the conditions

 $$Fc = c^q F, \quad \forall \ c \in K.$$
Twisted polynomials

- Let $F : \mathbb{C}_\infty \to \mathbb{C}_\infty$ be the q-th power Frobenius map: $F(x) = x^q$.
- For a subfield $\mathbb{F}_q \subseteq K \subseteq \mathbb{C}_\infty$, the ring of *twisted polynomials* over K is
 \[K[F] = \text{polynomials in } F \text{ with coefficients in } K, \]
 subject to the conditions
 \[Fc = c^q F, \quad \forall \ c \in K. \]
- In this way,
 \[K[F] \cong \{ \mathbb{F}_q\text{-linear endomorphisms of } K^+ \}. \]

For $x \in K$ and $\phi = a_0 + a_1 F + \cdots a_r F^r \in K[F]$, we write
\[\phi(x) := a_0 x + a_1 x^q + \cdots + a_r x^{q^r}. \]
Drinfeld modules
Function field analogues of \mathbb{G}_m and elliptic curves
Let $\mathbb{F}_q[t]$ be a polynomial ring in t over \mathbb{F}_q.

Definition

A *Drinfeld module* over \mathbb{F}_q is an \mathbb{F}_q-algebra homomorphism,

$$\rho : \mathbb{F}_q[t] \to \mathbb{C}_\infty[F],$$

such that

$$\rho(t) = \theta + a_1 F + \cdots + a_r F^r.$$
Drinfeld modules

Function field analogues of \mathbb{G}_m and elliptic curves

Let $\mathbb{F}_q[t]$ be a polynomial ring in t over \mathbb{F}_q.

Definition

A Drinfeld module over \mathbb{F}_q is an \mathbb{F}_q-algebra homomorphism,

$$\rho : \mathbb{F}_q[t] \rightarrow \mathbb{C}_\infty[F],$$

such that

$$\rho(t) = \theta + a_1F + \cdots a_rF^r.$$

- ρ makes \mathbb{C}_∞ into a $\mathbb{F}_q[t]$-module in the following way:

 $$f \ast x := \rho(f)(x), \quad \forall f \in \mathbb{F}_q[t], x \in \mathbb{C}_\infty.$$

- If $a_1, \ldots, a_r \in K \subseteq \mathbb{C}_\infty$, we say ρ is defined over K.
- r is called the rank of ρ.
The Carlitz module

The analogue of \mathbb{G}_m

We define a Drinfeld module $C : F_q[t] \rightarrow C_\infty[F]$ by

$$C(t) := \theta + F.$$

Thus, for any $x \in C_\infty$,

$$C(t)(x) = \theta x + x^q.$$
Carlitz exponential

We set

\[
\exp_C(z) = z + \sum_{i=1}^{\infty} \frac{z^{q^i}}{(\theta q^i - \theta)(\theta q^i - \theta q) \cdots (\theta q^i - \theta q^{i-1})}.
\]

- \(\exp_C : \mathbb{C}_\infty \to \mathbb{C}_\infty\) is entire, surjective, and \(\mathbb{F}_q\)-linear.

- Functional equation:

\[
\exp_C(\theta z) = \theta \exp_C(z) + \exp_C(z)^q,
\]
\[
\exp_C(f(\theta)z) = C(f)(\exp_C(z)), \quad \forall f(t) \in \mathbb{F}_q[t].
\]
Carlitz uniformization and the Carlitz period

We have a commutative diagram of $\mathbb{F}_q[t]$-modules,

\[
\begin{array}{ccc}
\mathbb{C}_\infty & \xrightarrow{\exp_C} & \mathbb{C}_\infty \\
\downarrow & & \downarrow \\
\mathbb{C}_\infty & \xrightarrow{\exp_C} & \mathbb{C}_\infty
\end{array}
\]

$z \mapsto \theta z$

$\ker(\exp_C(z)) = \mathbb{F}_q[\theta]$,

$\pi_q = \theta^{q-1} - \theta^{-\infty} \prod_{i=1}^{\infty} (1 - \theta^{-q^i})^{-1}$.

Function Field Transcendence
March 15, 2008 26 / 33
Carlitz uniformization and the Carlitz period

We have a commutative diagram of $\mathbb{F}_q[t]$-modules,

\[
\begin{array}{ccc}
\mathbb{C}_\infty & \xrightarrow{\exp_C} & \mathbb{C}_\infty \\
\downarrow & & \downarrow \\
\mathbb{C}_\infty & \xrightarrow{\exp_C} & \mathbb{C}_\infty
\end{array}
\]

$z \mapsto \theta z \quad x \mapsto \theta x + x^q$

The kernel of $\exp_C(z)$ is

\[
\ker(\exp_C(z)) = \mathbb{F}_q[\theta] \pi_q,
\]

where

\[
\pi_q = \theta^{q-1} \sqrt{-\theta} \prod_{i=1}^{\infty} \left(1 - \theta^{1-q^i}\right)^{-1}.
\]
Wade’s result

Thus we have an exact sequence of $F_q[t]$-modules,

$$0 \rightarrow F_q[\theta] \pi_q \rightarrow C_\infty \xrightarrow{\exp_c} C_\infty \rightarrow 0.$$

Theorem (Wade 1941)

The Carlitz period π_q is transcendental over \overline{k}.
Drinfeld modules of rank 2

- Suppose \(\rho : \mathbb{F}_q[t] \to \overline{k}[F] \) is a rank 2 Drinfeld module defined over \(\overline{k} \) by
 \[
 \rho(t) = \theta + \kappa F + \lambda F^2.
 \]
- Then there is an unique, entire, \(\mathbb{F}_q \)-linear function
 \[
 \exp_\rho : \mathbb{C}_\infty \to \mathbb{C}_\infty,
 \]
so that
 \[
 \exp_\rho(f(\theta)z) = \rho(f)(\exp_\rho(z)), \quad \forall f \in \mathbb{F}_q[t].
 \]
Periods of Drinfeld modules of rank 2

- Furthermore, there are $\omega_1, \omega_2 \in \mathbb{C}_\infty$ so that

$$\ker(\exp_\rho(z)) = \mathbb{F}_q[\theta]\omega_1 + \mathbb{F}_q[\theta]\omega_2 =: \Lambda,$$

where Λ is a discrete $\mathbb{F}_q[\theta]$-submodule of \mathbb{C} of rank 2.
Furthermore, there are \(\omega_1, \omega_2 \in C_\infty \) so that

\[
\ker(\exp_\rho(z)) = \mathbb{F}_q[\theta]\omega_1 + \mathbb{F}_q[\theta]\omega_2 =: \Lambda,
\]

where \(\Lambda \) is a discrete \(\mathbb{F}_q[\theta] \)-submodule of \(C \) of rank 2.

Chicken vs. Egg:

\[
\exp_\rho(z) = z \prod_{0 \neq \omega \in \Lambda} \left(1 - \frac{z}{\omega}\right).
\]

Again we have a uniformizing exact sequence of \(\mathbb{F}_q[t] \)-modules

\[
0 \rightarrow \Lambda \rightarrow C_\infty \xrightarrow{\exp_\rho} C_\infty \rightarrow 0.
\]
Transcendence results for Drinfeld modules of rank 2

Quasi-periods: It is possible to define quasi-periods $\eta_1, \eta_2 \in \mathbb{C}_\infty$ for ρ with the following properties (see notes):

- η_1, η_2 arise as periods of extensions of ρ by \mathbb{G}_a.
- Legendre relation: $\omega_1 \eta_2 - \omega_2 \eta_1 = \zeta \pi_q$ for some $\zeta \in \mathbb{F}_q^\times$.

Theorem (Yu 1980’s) For a Drinfeld module ρ of rank 2 defined over k, the four quantities $\omega_1, \omega_2, \eta_1, \eta_2$ are transcendental over k.

AWS 2008 (Lecture 1) Function Field Transcendence March 15, 2008 30 / 33
Transcendence results for Drinfeld modules of rank 2

Quasi-periods: It is possible to define quasi-periods $\eta_1, \eta_2 \in \mathbb{C}_\infty$ for ρ with the following properties (see notes):

- η_1, η_2 arise as periods of extensions of ρ by \mathbb{G}_a.
- Legendre relation: $\omega_1 \eta_2 - \omega_2 \eta_1 = \zeta \pi_q$ for some $\zeta \in \mathbb{F}_q^\times$.

Theorem (Yu 1980’s)

For a Drinfeld module ρ of rank 2 defined over \overline{k}, the four quantities $\omega_1, \omega_2, \eta_1, \eta_2$ are transcendental over \overline{k}.
A *-module* A of dimension d is an \mathbb{F}_q-linear homomorphism,

$$A : \mathbb{F}_q[t] \to \text{End}_{\mathbb{F}_q}(\mathbb{C}^d_\infty) \cong \text{Mat}_d(\mathbb{C}_\infty[F]),$$

such that

$$A(t) = \theta \text{Id} + N + a_0 F + \cdots + a_r F^r,$$

where $N \in \text{Mat}_d(\mathbb{C}_\infty)$ is nilpotent.

Thus \mathbb{C}^d_∞ is given the structure of an $\mathbb{F}_q[t]$-module via

$$f \ast x := A(f)(x), \quad \forall f \in \mathbb{F}_q[t], \; x \in \mathbb{C}^d_\infty.$$
Exponential functions of t-modules

- There is a unique entire $\exp_A : \mathbb{C}_\infty^d \to \mathbb{C}_\infty^d$ so that
 \[
 \exp_A((\theta\text{Id} + N)z) = A(t)(\exp_A(z)).
 \]

- If \exp_A is surjective, we have an exact sequence
 \[
 0 \to \Lambda \to \mathbb{C}_\infty^d \xrightarrow{\exp_A} \mathbb{C}_\infty^d \to 0,
 \]
 where Λ is a discrete $\mathbb{F}_q[t]$-submodule of \mathbb{C}_∞^d.

- Λ is called the period lattice of A.

- Quasi-periods can also be defined (see notes).
Yu’s Theorem of the Sub-\(t\)-module
Analogue of Wüstholz’s Subgroup Theorem

Theorem (Yu 1997)

Let \(A\) be a \(t\)-module of dimension \(d\) defined over \(\overline{k}\). Suppose \(u \in \mathbb{C}_\infty^d\) satisfies \(\exp_A(u) \in \overline{k}^d\). Then the smallest vector space \(H \subseteq \mathbb{C}_\infty^d\) defined over \(k\) which is invariant under \(\theta \text{Id} + N\) and which contains \(u\) has the property that

\[
\exp_A(H) \subseteq A(\mathbb{C}_\infty),
\]

is a sub-\(t\)-module of \(A\).
Yu’s Theorem of the Sub-t-module

Analogue of Wüstholz’s Subgroup Theorem

Theorem (Yu 1997)

Let A be a t-module of dimension d defined over \overline{k}. Suppose $u \in \mathbb{C}^d_\infty$ satisfies $\exp_A(u) \in \overline{k}^d$. Then the smallest vector space $H \subseteq \mathbb{C}^d_\infty$ defined over k which is invariant under $\theta \text{Id} + N$ and which contains u has the property that

$$\exp_A(H) \subseteq A(\mathbb{C}_\infty),$$

is a sub-t-module of A.

Theorem (Yu 1997 (Linear independence of Carlitz logarithms))

Suppose $\alpha_1, \ldots, \alpha_m \in \overline{k}$. If $\log_C(\alpha_1), \ldots, \log_C(\alpha_m) \in \mathbb{C}_\infty$ are linearly independent over $k = \mathbb{F}_q(\theta)$, then

$$1, \log_C(\alpha_1), \ldots, \log_C(\alpha_m)$$

are linearly independent over \overline{k}.