
p-adic cohomology: from theory to practice

Kiran S. Kedlaya1

Introduction

These notes (somewhat revised from the version presented at the 2007 AWS)
present a few facets of the relationship between p-adic analysis, algebraic de Rham
cohomology, and zeta functions of algebraic varieties. A key theme is the explicit,
computable nature of these constructions, which makes them suitable for numerical
calculations. For instance, if you ask the computer algebra system Magma for the
order of the Jacobian of a hyperelliptic curve over a field of small characteristic, this
order is computed using p-adic cohomology. The same is true if you ask the system
Sage for the p-adic regulator of an elliptic curve over Q, for p a good ordinary
prime.

1. Algebraic de Rham cohomology

In this section, we introduce the notion of algebraic de Rham cohomology for
smooth varieties, as originally introduced by Grothendieck [19] based on ideas of
Atiyah and Hodge.

Notation 1.0.1. Throughout this section, let K be a field of characteristic
zero. By a “variety over K”, we will mean a K-scheme of finite type which is
reduced and separated, but not necessarily irreducible.

1.1. de Rham cohomology of smooth affine varieties. To deal with de
Rham cohomology for general varieties, we will need some machinery of sheaf co-
homology and hypercohomology. Before doing so, however, let us consider the case
of smooth affine varieties, for which no such machinery is needed.

Definition 1.1.1. Let R be a finitely generated, reduced K-algebra, and let
X = SpecR be the corresponding affine variety over K. Let ΩR/K denote the
module of Kähler differentials; that is, ΩR/K is the R-module generated by symbols
dr for r ∈ R, modulo the relations dr for r ∈ K, and d(ab)−a db− b da for a, b ∈ R.
The module ΩR/K is finitely generated over R, and is equipped with a derivation
d : R → ΩR/K carrying r to dr; it has the universal property that for any K-
linear derivation D : R → M into an R-module, there is a unique R-linear map
ψ : ΩR/K →M such that D = ψ ◦ d.
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We assume hereafter that X/K is smooth, which forces ΩR/K to be a locally
free R-module of rank dim(X). Let

ΩiR/K = ∧iRΩR/K

be the i-th alternating power (or wedge power) of ΩR/K over R. That is, ΩiR/K
is the free R-module generated by symbols ω1 ∧ · · · ∧ ωi, modulo the submodule
generated by

(rω1 + r′ω′1) ∧ ω2 ∧ · · · ∧ ωi − rω1 ∧ ω2 ∧ · · · ∧ ωi − r′ω′1 ∧ ω2 ∧ · · · ∧ ωi
for r, r′ ∈ R, and by ω1 ∧ · · · ∧ ωi whenever two of the factors are equal. Beware
that the elements of the form ω1 ∧ · · · ∧ωi, the so-called decomposable elements, do
not comprise all of ΩiR/K ; e.g., if R = k[x1, x2, x3, x4], then dx1 ∧ dx2 + dx3 ∧ dx4

is a nondecomposable element of Ω2
R/K .

The map d induces maps d : ΩiR/K → Ωi+1
R/K . Moreover, the composition d ◦ d

is always zero. We thus have a complex Ω·R/K , called the de Rham complex of X.
The cohomology of this complex is called the (algebraic) de Rham cohomology of X,
denoted Hi

dR(X); it is contravariantly functorial in X. Note that for i > dim(X),
ΩiR/K = 0 and so Hi

dR(X) = 0.

Exercise 1.1.2. Put R = K[x1, . . . , xn], so that X = AnK is the affine n-space
over K. Check that

H0(X) = K, Hi(X) = 0 (i > 0).

Terminology 1.1.3. The elements of ΩiR/K are referred to as i-forms. An
i-form is closed if it is in the kernel of d : ΩiR/K → Ωi+1

R/K , and exact if it is in the
image of d : Ωi−1

R/K → ΩiR/K . In this terminology, Hi
dR(X) is the quotient of the

space of closed i-forms by the subspace of exact i-forms.

Remark 1.1.4. There is a construction of algebraic de Rham cohomology that
allows affines which are not smooth. Roughly speaking, given a closed immersion
of the given affine scheme into a smooth affine variety (e.g., an affine space), one
may use the cohomology of the de Rham complex on the formal neighborhood of
the image; this does not depend on the choice of the immersion. This constructed
is developed by Hartshorne in [22].

1.2. Example: an incomplete elliptic curve.

Example 1.2.1. Assume that P (x) = x3 +ax+b ∈ K[x] has no repeated roots,
and put

R = K[x, y]/(y2 − P (x)),
so that X = SpecR is the affine part of an elliptic curve over K (i.e., the complete
elliptic curve minus the one point at infinity). Then H0

dR(X) = K, and Hi
dR(X)

vanishes for i > 1.
The interesting space H1

dR(X) is simply the cokernel of d : R → ΩR/K . To
describe it, we use the relation

0 = d(y2 − P (x)) = 2y dy − P ′ dx

in ΩR/K . (Throughout this example, primes denote differentiation with respect to
x.) Since P has no repeated roots, we can choose polynomials A,B ∈ K[x] such
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that AP +BP ′ = 1. Now put

ω = Ay dx+ 2B dy

so that
dx = yω, dy =

1
2
P ′ω.

Consequently, every element of ΩR/K has a unique representation as (C+Dy)ω for
some C,D ∈ K[x]. For this form to be exact, there must exist E,F ∈ K[x] such
that

(C +Dy)ω = d(E + Fy)

= E′ dx+ F ′y dx+ F dy

=
(

1
2
P ′F + F ′P

)
ω + E′yω.

In particular, Dyω is always exact. As for Cω, if F has leading term cxd, then
1
2P
′F + F ′P has leading term

(
3
2 + d

)
cxd+2. Since 3

2 + d is never an integer, we
can choose c so that subtracting

(
3
2 + d

)
cxd+2 removes the leading term of C.

Repeating this process (of clearing leading terms from C) allows us to write
Cω as an exact differential plus a K-linear combination of

ω, xω.

These two thus form a basis of H1
dR(X).

Remark 1.2.2. Note that by writing

ω =
dx

y
=

2 dy
P ′(x)

,

we can see that ω actually extends to a 1-form on the complete elliptic curve,
whereas xω has a double pole at infinity.

Remark 1.2.3. From the point of view of making machine computations, what
is crucial here is not simply that we were able to compute the dimension of H1

dR(X),
or write down a basis. Rather, it is crucial that given any (closed) 1-form, we have
a simple algorithm for presenting it as an exact 1-form plus a linear combination
of basis elements.

Later, we will need a slight variation of the above example.

Example 1.2.4. Define P as in Example 1.2.1, but this time put

R = K[x, y, z]/(y2 − P (x), yz − 1),

so that X = SpecR is an elliptic curve over K minus the point at infinity and the
three points of order 2. Again, H0

dR(X) = K, and Hi
dR(X) vanishes for i > 1.

In this case, to calculate H1
dR(X), we will work not with ω but directly with dx.

Any given element of ΩR/K can be written as (C+Dy)y−2i dx for some nonnegative
integer i and some C,D ∈ K[x]. Now the relevant calculation of an exact differential
(for E,F ∈ K[x]) is

d((E + Fy)y−2j) = E′y−2j dx+ F ′y−2j+1 dx− 2jEy−2j−1 dy − (2j − 1)Fy−2j dy

= (E′P − jP ′E) y−2j−2 dx+
(
F ′P +

1− 2j
2

P ′F

)
y−2j−1 dx.
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We interpret this as saying that in H1
dR(X),

(jP ′E) y−2j−2 dx+
(

2j − 1
2

P ′F

)
y−2j−1 dx

is cohomologous to something of the form (G+Hy)y−2j dx.
At this point we may treat the even and odd powers of y completely inde-

pendently. (This is explained by the fact that the curve admits a hyperelliptic
involution x 7→ x, y 7→ −y; the even and odd powers of y correspond to the plus
and minus eigenspaces under this involution.) In both cases, we use the fact that
P and P ′ generate the unit ideal of K[x].

In the odd powers of y, we can reduce all the way down to Dy−1 dx, then
eliminate multiples of P ′y−1 dx. We are thus left with generators dx/y, x dx/y.

In the even powers of y, we can reduce all the way down to Cy−2 dx, then elimi-
nate multiples of Py−2 dx. We are thus left with generators dx/y2, x dx/y2, x2 dx/y2.

To conclude, we have the following basis for H1
dR(X):

dx

y
,

x dx

y
,

dx

y2
,

x dx

y2
,

x2 dx

y2
,

and again we can explicitly rewrite any 1-form in terms of these plus an exact
1-form.

Exercise 1.2.5. Let P (x) ∈ K[x] be a squarefree polynomial. Compute
Hi

dR(X) for the punctured affine line X = SpecK[x, y]/(yP (x) − 1); again, this
means that you should have an explicit recipe for presenting any 1-form as an
exact 1-form plus a linear combination of basis elements.

Exercise 1.2.6. Repeat the derivations of Example 1.2.1 and 1.2.4 for a hy-
perelliptic curve y2 = P (x). Note that the net result depends on whether deg(P )
is odd or even; for an explanation of this, see Exercise 1.6.4.

1.3. Sheaf cohomology. In order to move past affines, we must work with
sheaf cohomology and hypercohomology. We give here a rapid summary of the key
points; we presume that the reader has encountered sheaf cohomology previously,
e.g., in [23, Chapter III].

Definition 1.3.1. Let X be a scheme, and let AbX denote the category of
sheaves of abelian groups on X. Given two complexes C · = (0→ C0 → C1 → · · · )
and D· in AbX , a morphism C · → D· is a commuting diagram

0 // C0 //

��

C1 //

��

C2 //

��

· · ·

0 // D0 // D1 // D2 // · · · .

This morphism is a quasi-isomorphism if the induced maps on cohomology:

ker(Ci → Ci+1)
image(Ci−1 → Ci)

→ ker(Di → Di+1)
image(Di−1 → Di)

are isomorphisms.

Definition 1.3.2. Let C be a full subcategory of AbX (i.e., retain some of the
objects but keep all morphisms between such objects). For C · a complex, a reso-
lution by C of C · is a second complex D· in C equipped with a quasi-isomorphism
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C · → D·. As a special case, if C ∈ AbX is a single object, we may identify C
with the complex C · defined by C0 = C, Ci = 0 for i > 0 and all morphisms zero;
this gives the notion of a resolution by C of the object C, which is just an exact
sequence 0 → C → D0 → D1 → · · · with each Di ∈ C. (If C is defined by an
adjective describing certain objects of AbX , e.g., “injective”, we will refer to an
“injective resolution” instead of a “resolution by C”.)

Definition 1.3.3. We say F ∈ AbX is injective if the functor Hom(·,F ) is
exact. For any F ∈ AbX , there exists a monomorphism F → G with G injective
[23, Proposition III.2.2]; this is commonly described by saying that AbX is an
abelian category which has enough injectives.

Definition 1.3.4. Since AbX has enough injectives, any F admits an injec-
tive resolution F ·; moreover, given two injective resolutions, there is a third one to
which each admits a quasi-isomorphism. We define the sheaf cohomology Hi(X,F )
as the i-th cohomology of the complex Γ(X,F ·); it turns out to be canonically inde-
pendent of the choice of an injective resolution. The construction F 7→ Hi(X,F )
is functorial in F , with H0(X, ·) being the global sections functor Γ(X, ·). Also,
given a short exact sequence 0 → F → G → H → 0, we obtain a long exact
sequence

· · · → Hi(X,F )→ Hi(X,G )→ Hi(X,H ) δi→ Hi+1(X,F )→ · · · ;

the maps δi : Hi(X,H ) → Hi+1(X,F ) (which are themselves functorial in the
short exact sequence) are the connecting homomorphisms. (Here H−1(X,H ) = 0,
so we start 0→ H0(X,F )→ H0(X,G )→ · · · .)

Definition 1.3.5. We say F is acyclic if Hi(X,F ) = 0 for i > 0. One can then
show that sheaf cohomology can be computed using any acyclic resolution, not just
any injective resolution. However, we must use injectives in order to define sheaf
cohomology, because the notion of acyclicity is not available until after cohomology
has been defined. In other words, the notion of injectivity depends only on the
category AbX , whereas acyclicity depends on the choice of the functor Γ(X, ·) to
serve as H0.

Remark 1.3.6. What makes the previous observation helpful is that it is quite
easy to construct acyclic resolutions in many cases, using Čech complexes. The
key input in the next definition is the fact that if X is affine, then any quasico-
herent sheaf of OX -modules on X is acyclic, because the global sections functor on
quasicoherent sheaves is exact.

Definition 1.3.7. Let X be a separated scheme, let F be a quasicoherent
sheaf of OX -modules on X, let I be a finite totally ordered set, and let {Ui}i∈I
be a cover of X by open affine subschemes. Since X is separated, any nonempty
finite intersection of Ui’s is again affine. (This is the algebro-geometric analogue of
a “good cover” in the parlance of [6], i.e., a cover of a manifold by open subsets
such that each nonempty finite intersection is contractible.) For each finite subset
J of I, put UJ = ∩j∈JUj and let jJ : UJ ↪→ X be the implied open immersion.
Then jJ is an affine morphism, so (jJ)∗ is exact. Since every quasicoherent sheaf
on the affine UJ is acyclic, (jJ)∗j∗JF is acyclic on X.

We thus obtain an acyclic resolution F · of F as follows.
• The term F i consists of the direct sum of (jJ)∗j∗JF over all (i+1)-element

subsets J of I.
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• The map F i → F i+1, applied to an element of F i with component xJ in
(jJ)∗j∗JF , produces an element of F i+1 whose component in (jJ)∗j∗JF
with J = {j0 < · · · < ji+1} is

i+1∑
h=0

(−1)hxJ\{jh}.

In particular, the sheaf cohomology of F is given the cohomology of the correspond-
ing complex of global sections. In the i-th position, this consists of the direct sum of
Γ(UJ , j∗JF ) over all (i+1)-element subsets J of I. (Compare [23, Theorem III.4.5],
[20, Proposition 1.4.1].)

1.4. Hypercohomology and de Rham cohomology. We now pass from
sheaf cohomology to sheaf hypercohomology as in [20, §0.11.4], then give the defi-
nition of algebraic de Rham cohomology for an arbitrary smooth variety.

Definition 1.4.1. Let C · be a complex in AbX . The sheaf hypercohomology
of C ·, denoted Hi(C ·), is defined as the cohomology of Γ(X,D·) for any acyclic
resolution D· of C ·; again, this is independent of the choice of the resolution (one
can always compare to an injective resolution).

To make this definition useful, one needs a good way to manufacture acyclic
resolutions of complexes, rather than of individual sheaves.

Remark 1.4.2. Suppose we can construct a double complex D·,· such that the
diagram

0

��

0

��
0 // C0 //

��

C1 //

��

· · ·

0 // D0,0 //

��

D1,0 //

��

· · ·

0 // D0,1 //

��

D1,1 //

��

· · ·

...
...

commutes, and each column gives an acyclic resolution of Ci. (In a double complex,
the composition of two consecutive horizontal arrows, or two consecutive vertical
arrows, must vanish.) Let D· be the associated total complex of D·,·, constructed
as follows.

• We take Di = ⊕j+k=iDj,k.
• The map Di → Di+1, applied to an element of Di with component xj,k

in Dj,k, produces an element of Di+1 whose component in Dj,k is

dhorizontal(xj−1,k) + (−1)jdvertical(xj,k−1).
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(The factor of (−1)j is needed to ensure that the composition of two of
these derivations is zero; it forces the “cross terms” involving one horizon-
tal and one vertical derivation to cancel each other out.)

Then D· forms an acyclic resolution of C ·.

Definition 1.4.3. Since the construction of the Čech resolution in Defini-
tion 1.3.7 is functorial in the sheaf, applying it to a complex immediately gives a
diagram of the sort discussed in Remark 1.4.2.

We are now ready to give Grothendieck’s definition of the algebraic de Rham
cohomology of a smooth variety. (Although [19] is the source of the original defi-
nition, it is very cursory; see [23] for a fuller treatment.)

Definition 1.4.4. Let X be a variety over K. We now obtain a sheaf ΩX/K of
Kähler differentials, which is coherent. Let us assume further that X is smooth of
relative dimension n; then ΩX/K is locally free of rank n. The exterior derivative
is now a map of sheaves (but not of OX -modules!) d : OX → ΩX/K , and using it
we construct the de Rham complex of X:

0→ Ω0
X/K → Ω1

X/K → · · · → ΩnX/K → 0.

We now define the algebraic de Rham cohomology of X, denoted Hi
dR(X), as the

hypercohomology Hi(Ω·X/K) of the de Rham complex; again, this is contravariantly
functorial in X. (Formation of Hi

dR(X) commutes with extension of the base field,
because formation of sheaf hypercohomology commutes with flat base change.)

Remark 1.4.5. The fact that we use hypercohomology to define algebraic de
Rham cohomology means that unlike in the affine case, we no longer automatically
have Hi

dR(X) = 0 whenever i > dim(X). This will be apparent in Example 1.5.1
below.

1.5. Example: a complete elliptic curve. Let us watch the definition of
algebraic de Rham cohomology in action, for a complete elliptic curve.

Example 1.5.1. Assume again that P (x) = x3 +ax+b ∈ K[x] has no repeated
roots. However, now let X be the complete elliptic curve y2 = P (x), i.e.,

X = ProjK[X,Y,W ]/(Y 2W −X3 − aXW 2 − bW 3).

Since X admits a one-dimensional space of everywhere holomorphic 1-forms, gener-
ated by ω = dx/y, you might be tempted to think that H1

dR(X) is one-dimensional.
However, this is not what happens!

To compute Hi
dR(X), we use a simple Čech resolution. Let U be the affine

curve, i.e., X minus the point at infinity [0 : 1 : 0]. Let V be X minus the three
geometric points of the form (x, 0), where x is a root of P . We now find that the de
Rham cohomology of X is computed by the cohomology of the complex D·, where

D0 = Γ(U,OU )⊕ Γ(V,OV )

D1 = Γ(U,ΩU )⊕ Γ(V,ΩV )⊕ Γ(U ∩ V,OU∩V )

D2 = Γ(U ∩ V,ΩU∩V ).

Let us start with H0
dR(X); this consists of pairs (f, g) with f ∈ Γ(U,OU ), g ∈

Γ(V,OV ), and ResU,U∩V (f) − ResV,U∩V (g) = 0. In other words, these are just
elements of Γ(X,OX), and the only such elements are the constant functions.



8 p-ADIC COHOMOLOGY: FROM THEORY TO PRACTICE

Next, we considerH1
dR(X). First, note that the 1-cochains are triples (ωU , ωV , f)

with ωU ∈ Γ(U,ΩU ), ωV ∈ Γ(V,ΩV ), f ∈ Γ(U ∩ V,OU∩V ). The differential takes
such a triple to ResV,U∩V (ωV )− ResU,U∩V (ωU )− df .

The 1-coboundaries are expressions of the form (df, dg, g−f) with f ∈ Γ(U,OU )
and g ∈ Γ(V,OV ). Thus the projection (ωU , ωV , f) 7→ ωU induces a map

H1
dR(X)→ H1

dR(U);

we wish to show that this map is a bijection. We first check injectivity. If (ωU , ωV , f)
is a 1-cocycle on X, and ωU is a 1-coboundary on U , then (0, ωV , f) is also a 1-
cocycle on X, that is, df = ResV,U∩V (ωV ). This means that f cannot have a pole
at any point of V , as otherwise df would have at least a double pole at that point.
Consequently, ωV is a 1-coboundary on V , so (0, 0, f) is a 1-cocycle on X. This is
only possible if f is constant, in which case (0, 0, f) is a 1-coboundary on X.

We now check surjectivity. By the computation we made of H1
dR(U) in Ex-

ample 1.2.1, it suffices to check that for any c1, c2 ∈ K, we can find a 1-cocycle
(ωU , ωV , f) with ωU = c1 dx/y + c2x dx/y. Namely, we take

ωV = c1
dx

y
+ c2

(
x dx

y
− d

(
y2

x2

))
, f = −c2

y2

x2
.

(To see that x dx/y + d(y2/x2) is holomorphic at ∞, we compute in terms of the
local coordinate t = y/x at ∞, using the local expansions x = t−2 + O(t0) and
y = t−3 +O(t−1).)

Finally, we compute H2
dR(X). This consists of elements of Γ(U ∩ V,ΩU∩V )

modulo expressions of the form ResV,U∩V (ωV )−ResU,U∩V (ωU )− df . By the com-
putation we made of H1

dR(U ∩V ) in Example 1.2.4, we know that every element of
H1

dR(U ∩ V ) can be expressed as a K-linear combination of dx/y, x dx/y, dx/y2,
x dx/y2, x2 dx/y2. The same is true of H2

dR(X), but with some redundancy: the
terms dx/y, x dx/y are holomorphic on U , so they can be absorbed by ωU , while
the terms dx/y2, x dx/y2 are holomorphic on V , so they can be absorbed by ωV .
This proves that H2

dR(X) is at most one-dimensional.
To show that H2

dR(X) is in fact one-dimensional, we must use some properties
of residues (see Definition 1.5.2 below). Any K-linear combination of dx/y, x dx/y,
dx/y2, x dx/y2, x2 dx/y2 with a nonzero coefficient of x2 dx/y2 has a simple pole at
∞ with nonzero residue. On the other hand, the residues at ∞ of the three quan-
tities ResV,U∩V (ωV ),ResU,U∩V (ωU ), df must all vanish: the first is holomorphic at
∞, the third has residue zero by a local computation, and the second has residue
zero because it has no other poles, and the sum of the residues at all poles must
vanish.

To conclude, we find that

dimK H
0
dR(X) = 1, dimK H

1
dR(X) = 2, dimK H

2
dR(X) = 1,

in agreement with the topological Betti numbers. (This agreement is explained by
a comparison theorem with topological cohomology; see Theorem 1.7.2.)

Here are the properties of residues used in the previous example. See [41] for
proofs and further discussion; also see [23, Remark 7.14].

Definition 1.5.2. For z a smooth geometric point on a curve X over K, let
t be a local parameter of X at z. Then any meromorphic 1-form ω on X can be
expanded around z as an expression

∑∞
i=m cit

i dt, with ci ∈ κ(z). The residue of ω
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at z is the value c−1; it is independent of the choice of the parameter t. Moreover,
if X is smooth proper, then the sum of the residues of any given ω at all z is zero.

Remark 1.5.3. In Example 1.5.1, we can form an injection H0(X,Ω1
X/K) ↪→

H1
dR(X) by converting ω ∈ Γ(X,Ω1

X/K) into the triple (ResX,U (ω),ResX,V (ω), 0).
This is a special case of the Hodge filtration on de Rham cohomology; see Re-
mark 1.8.12.

1.6. Excision in de Rham cohomology.

Remark 1.6.1. There is an excision exact sequence in algebraic de Rham coho-
mology. If X is a smooth K-variety, Z is a smooth subvariety of pure codimension
d, and U = X \ Z, then

(1.6.2) · · · → Hi−2d
dR (Z)→ Hi

dR(X)→ Hi
dR(U)→ Hi−2d+1

dR (Z)→ · · ·

Note the shift by the codimension of Z.

Remark 1.6.3. There is a more general version of Remark 1.6.1 with Z not
required to be smooth, but one must replace the terms corresponding to Z by some
sort of local cohomology which will not be introduced here. However, (1.6.2) is
enough to deduce the following additivity property of the Euler characteristic

χdR(X) =
∑
i

(−1)i dimK H
i
dR(X).

Namely, if Z is any subvariety of X, then

χdR(X) = χdR(Z) + χdR(X \ Z).

Exercise 1.6.4. Use (1.6.2) to show that, if C is a smooth, geometrically
connected, projective curve over K, Z is a nonempty zero-dimensional subscheme
of length d, and U = C \ Z, then

dimK H
0
dR(U) = 1

dimK H
1
dR(U) = dimK H

1
dR(C) + d− 1

dimK H
2
dR(U) = 0.

The quantity dimK H
1
dR(C) will turn out to be twice the genus of C, by the topo-

logical comparison (Theorem 1.7.2).

1.7. Comparison with topological cohomology.

Definition 1.7.1. Let X be a scheme locally of finite type over C. Then there
is a functorial way to associate to X a complex analytic variety Xan, called the an-
alytification of X. For instance, if X = SpecR with R = C[x1, . . . , xn]/(f1, . . . , fn)
reduced, then Xan is the common zero locus of f1, . . . , fn as an analytic subvariety
of Cn. See [21, Exposé XII, Théorème et definition 1.1] for a detailed construction.

The definition of algebraic de Rham cohomology is ultimately justified by the
following result.

Theorem 1.7.2 (Grothendieck). Let X be a smooth variety over C. Then there
is a functorial isomorphism Hi

dR(X)→ Hi
Betti(X

an,C).
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This is really two results bundled together. The first of these is that the Betti
cohomology of Xan is functorially isomorphic to the analytic de Rham cohomology
of Xan, i.e., what you get by using the definition of algebraic de Rham cohomology
but replacing the scheme with a complex analytic variety. This is a consequence of
de Rham’s theorem (which relates Betti cohomology to C∞ de Rham ccohomology)
and Dolbeaut’s theorem (which relates C∞ de Rham cohomology to analytic de
Rham cohomology).

The second result is that the natural map Hi
dR(X)→ Hi

dR(Xan) (i.e., view an
algebraic cocycle as an analytic one) is an bijection. Since both sides of the com-
parison satisfy excision (Remark 1.6.1), by induction on dimension (and the fact
that X can always be embedded into a smooth projective variety, by Hironaka’s
resolution of singularities) we may reduce Theorem 1.7.2 to the case of X smooth
and projective. In this case, the claim becomes an instance of Serre’s GAGA prin-
ciple. (GAGA is an acronym for “Géométrie algébrique et géométrie analytique”,
the title of Serre’s paper [40] introducing this principle.)

Theorem 1.7.3 (Complex-analytic GAGA). Let X be a proper variety over C.
(a) Any coherent sheaf on Xan is the analytification of a coherent sheaf on X.
(b) For any coherent sheaves E ,F on X, any morphism E an → F an is in-

duced by a morphism E → F .
(c) For any coherent sheaf E on X, with analytification E an, the natural maps

Hi(X,E )→ Hi(Xan,E an) are bijections.

Proof. For X projective, proceed directly to Serre’s original paper [40]. For
the general case (which reduces to the projective case using Chow’s lemma), see
SGA1 [21, Exposé XII]. �

1.8. Spectral sequences and the Hodge filtration. There is a useful extra
structure on de Rham cohomology given by the Hodge filtration. To explain how it
arises algebraically, we must introduce spectral sequences; these will appear again
later in the construction of Gauss-Manin connections.

Remark 1.8.1. The notion of a spectral sequence is a generalization of the
long exact sequence

· · · → Hi(C ·1)→ Hi(C ·)→ Hi(C ·2) δ→ Hi+1(C ·1)→ · · ·

associated to a short exact sequence of complexes

0→ C ·1 → C · → C ·2 → 0.

The relevance of spectral sequences is described aptly by [17, §3.5] (which see for
more details): “[to] someone who works with cohomology, they are essential in
the same way that the various integration techniques are essential to a student of
calculus.”

Definition 1.8.2. A filtered complex is a decreasing sequence of complexes

C · = F 0C · ⊇ F 1C · ⊇ · · · ⊇ FnC · ⊇ Fn+1C · = 0;

given a filtered complex, the associated graded complex is

GrC · = ⊕p≥0 Grp C ·, Grp C · =
F pC ·

F p+1C ·
.
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For instance, a short exact sequence as above gives a filtration with F 2C · = 0,
Gr1 C · ∼= F 1C · = C ·1, and Gr0 C · = C ·2. (Note that one could also talk about
infinite filtrations, but a few statements below would have to be modified.)

Example 1.8.3. For instance, if we start with a double complex Dp,q and
flatten it into a single complex Ci = ⊕p+q=iDp,q as in Remark 1.4.2, we can filter
this by taking

F pCi =
⊕

p′+q=i,p′≥p

Dp′,q,

yielding
Grp Ci = Dp,i−p.

We can also flip p and q to get a second filtration; these two filtrations will end up
giving two distinct spectral sequences related to the cohomology of C ·.

As payback for being easy to use, spectral sequences sacrifice the computation
of the entire cohomology of filtered complexes. Instead, they only compute the
graded pieces of a certain filtration on the cohomology.

Definition 1.8.4. Let Zq and Bq be the cocycles and coboundaries in a filtered
complex Cq. The filtered cohomology is

F pHq(C ·) =
F pZq

F pBq
= image(Hq(F pC ·)→ Hq(C ·));

note that the map Hq(F pC ·) → Hq(C ·) need not be injective. The associated
graded cohomology is

GrH ·(C ·) = ⊕p,q GrpHq(C ·), GrpHq(C ·) =
F pHq(C ·)
F p+1Hq(C ·)

.

Definition 1.8.5. A spectral sequence is a sequence {Er, dr}∞r=r0 , where each
Er is a bigraded group

Er = ⊕p,q≥0E
p,q
r

and
dr : Ep,qr → Ep+r,q−r+1

r , d2
r = 0

is a map (usually called a differential) such that

Ep,qr+1 = Hp,q(Er) =
ker(dr : Ep,qr → Ep+r,q−r+1

r )
image(dr : Ep−r,q+r−1

r → Ep,qr )
.

If at some point Er = Er+1 = · · · , we call this stable value the limit of the spectral
sequence, denoted E∞. One also says that the sequence degenerates at Er, and
that the sequence converges to E∞.

Remark 1.8.6. Pictures of spectral sequences speak louder than words. Here
are the first three differentials of a spectral sequence represented diagramatically:

E0,1
0 E1,1

0 E2,1
0

E0,0
0

d0

OO

E1,0
0

d0

OO

E2,0
0

d0

OO
E0,1

1

d1 // E1,1
1

d1 // E2,1
1

E0,0
1

d1 // E1,0
1

d1 // E2,0
1

E0,1
2

d2

((RRRRRRRRRRR E1,1
2 E2,1

2

E0,0
2 E1,0

2 E2,0
2
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Theorem 1.8.7. Let F pC · be a filtered complex. Then there is a spectral se-
quence {Er}∞r=0 with

Ep,q0 =
F pCp+q

F p+1Cp+q

Ep,q1 = Hp+q(Grp C ·)

Ep,q∞ = GrpHp+q(C ·).

Proof. See [17, §3.5] or [6, §14]. �

Terminology 1.8.8. In the previous theorem, one writes

Er ⇒ H ·(C ·)

and says that the spectral sequence abuts to H ·(C ·).

Example 1.8.9. For instance, in the example of a short exact sequence, we
have

E0q
1 = Hq(C ·2), E1q

1 = Hq+1(C ·1),
d1 : Hq(C ·2)→ Hq+1(C ·1) is the connecting homomorphism δ, and d2 = d3 = · · · = 0
because the arrows always have a zero at one or both endpoints. For a filtered
complex with Fn+1 = 0, we similarly have E∞ = En+1.

Remark 1.8.10. A map between filtered complexes is a quasi-isomorphism if
the same is true at any single stage of the spectral sequence; the converse is also
true here because our filtrations are finite, so the spectral sequence must degenerate
at some stage. For instance, in the example of a short exact sequence, this is an
instance of the five lemma.

Example 1.8.11. We now apply the observation of Example 1.8.3 to the Čech
complex that computes the de Rham cohomology of X. In the notation of Defini-
tion 1.3.7, we start with the double complex

Dp,q = ⊕JΓ(UJ ,Ω
p
UJ/K

)

where J runs over all (q + 1)-element subsets of I.
Suppose we filter this complex as in Example 1.8.3 with the indices as written.

Using Theorem 1.8.7 gives a spectral sequence in which we first compute the sheaf
cohomology of ΩpX/K for each p, i.e.,

Epq1 = Hq(X,ΩpX/K);

this is the Hodge-de Rham spectral sequence, and the filtration it determines on
Hi

dR(X) is called the Hodge filtration (see Remark 1.8.12 for further discussion). It
is a deep theorem that for X smooth proper, the Hodge-de Rham spectral sequence
degenerates already at E1; this was originally established using analytic techniques,
but can also be proved algebraically [11].

Now filter as in Example 1.8.3 but with the indices reversed. Using Theo-
rem 1.8.7 now gives a spectral sequence with

Epq1 =
∏
J

Hq
dR(UJ),

where J runs over (p + 1)-element subsets of I. Keep in mind that the E∞ term
of the spectral sequence only computes the graded cohomology, whereas one must
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use the full Čech complex to compute the cohomology itself. Nonetheless, the
information provided is often quite useful (e.g., as in Remark 1.8.10).

Remark 1.8.12. For X smooth proper, the degeneration at E1 of the Hodge-de
Rham spectral sequence implies that

GrpHi
dR(X) ∼= Hi−p(X,ΩpX/K).

The Hodge numbers hp,q = dimK H
q(X,ΩpX/K) satisfy some additional nice prop-

erties, such as the Serre duality symmetry satisfy the symmetry relation

hq,p = hn−q,n−p (n = dim(X))

and the complex conjugation symmetry

hq,p = hp,q;

the latter is usually proved analytically (for compact Kähler manifolds) but can
also be proved algebraically [15].

As an example of the above, we point out the short exact sequence

0→ Gr1H1
dR(X) ∼= H0(X,Ω1

X/K)→ H1
dR(X)→ Gr0H1

dR(X) ∼= H1(X,OX)→ 0

where the two factors have equal dimension. In particular, if X is a geometrically
connected curve, then dimK H

1
dR(X) = 2g for g = dimK H

0(X,Ω1
X/K) the genus

of the curve.

1.9. Cohomology with logarithmic singularities. For various reasons (pri-
marily the finiteness of sheaf cohomology for coherent sheaves), one prefers to ma-
nipulate cohomology on proper schemes whenever possible. In order to detect the
cohomology of a nonproper scheme while doing calculations on a compactification,
we may use logarithmic differentials.

Definition 1.9.1. By a smooth (proper) pair over a base S, we will mean a
pair (X,Z) in which X is a smooth (proper) scheme over S and Z is a relative (to
S) strict normal crossings divisor. Over a field, this means each component of Z is
smooth (no self-intersections allowed; that’s the “strict” part), and the components
of Z always meet transversely.

Remark 1.9.2. If (X,Z) is a smooth pair, then étale locally, X should look
like an affine space over S and Z should look like an intersection of coordinate
hyperplanes. The converse is not quite true, but only because we chose to require
Z not to have self-intersections.

Example 1.9.3. For instance, if X is a smooth proper curve over Zp, then you
can form a smooth proper pair (X,Z) by taking Z to be the Zariski closure in X
of a set of closed points of XQp which have distinct images in XFp .

Definition 1.9.4. Let (X,Z) be a smooth pair over K. Put U = X \Z and let
j : U ↪→ X be the implied open immersion. The sheaf of logarithmic differentials
on X, denoted Ω(X,Z)/K , is the subsheaf of j∗ΩU/K generated by ΩX/K and by
sections of the form df/f , where f is a regular function on some open subset V
of X which only vanishes along components of Z. Again, we write Ωi(X,Z)/K for
the i-th exterior power of Ω1

(X,Z)/K over OX ; this yields a logarithmic de Rham
complex Ω·(X,Z)/K . We define the logarithmic de Rham cohomology Hi

dR(X,Z) as
the hypercohomology Hi(Ω·(X,Z)/K).
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Theorem 1.9.5. The evident map of complexes

Ω·(X,Z)/K → j∗Ω·U/K

is a quasi-isomorphism. Hence we obtain an isomorphism Hi
dR(X,Z) ∼= Hi

dR(U).

Proof. The first assertion was originally proved by Deligne [10] using GAGA
(Theorem 1.7.3). It is possible, and important for applications to p-adic cohomol-
ogy, to give a completely algebraic proof, e.g., [1, Theorem 2.2.5].

The second assertion follows by considering the spectral sequence that goes
from cohomology sheaves to hypercohomology (see §1.8). �

Exercise 1.9.6. Prove Theorem 1.9.5 directly for the example in Exercise 1.2.5.

Remark 1.9.7. One might be tempted to deduce from Theorem 1.9.5 that for
a smooth projective curve X and a point x ∈ X(K), for U = X \{x}, every class in
H1

dR(X) ∼= H1
dR(U) is represented by a 1-form on U with a logarithmic singularity

at x. This is false; for instance, in Example 1.5.1, you need to allow either a double
pole at one point (to pick up xω), or poles at two different points. (This is because
the sum of the residues of the poles of a 1-form is always zero; see Definition 1.5.2.)
A related observation is that Ω.(X,Z)/K is a sheaf on X, not on U , so that even if
U is affine one must use hypercohomology to compute Ω.(X,Z)/K .

1.10. Example: a smooth hypersurface in projective space. We close
this section by mentioning one higher-dimensional example due to Griffiths. We
first need the following fact.

Exercise 1.10.1. Prove that the space Hi
dR(PnK) is one-dimensional if i =

0, 2, . . . , 2n and zero otherwise. This uses the Hodge-de Rham spectral sequence
plus the calculation of the cohomology Hq(PnK ,Ω

p
PnK/K

), as partially given by [23,
Theorem III.5.1] (see also [20, §1.2.1]).

Example 1.10.2. Let X be a smooth hypersurface in PnK , defined by the homo-
geneous polynomial P (x0, x1, . . . , xn). Then there are natural maps Hi

dR(PnK) →
Hi

dR(X) which by the Lefschetz hyperplane theorem [17, §1.2] are isomorphisms
for i < n − 1 and injective for i = n − 1. (That’s actually a fact about complex
manifolds, but by GAGA it transfers to the algebraic setting.) Since the cohomol-
ogy of projective space is simple (Exercise 1.10.1), the only interesting cohomology
group of X is Hn−1

dR (X).
There is a short exact sequence

0→ Ω·Pn/K → Ω·(Pn,X)/K
Res→ j∗Ω·+1

X/K → 0,

where j : X → Pn is the implied closed immersion. The map Res is a residue map,
which can be described as follows: locally on Pn, a section of Ω·(Pn,X)/K can be
written as df/f ∧ ω, where f is a dehomogenized form of P ; Res takes this section
to the restriction of ω to X. Taking cohomology and using Theorem 1.9.5 gives a
long exact sequence

· · · → Hi
dR(Pn)→ Hi

dR(U)→ Hi−1
dR (X)→ Hi+1

dR (Pn)→ · · · ,

where U = Pn \X.
The upshot of this is that if n is even, then Hn

dR(U) is isomorphic to Hn−1
dR (X).

If n is odd, then (using Poincaré duality) Hn
dR(U) is isomorphic to the quotient of



2. FROBENIUS ACTIONS ON DE RHAM COHOMOLOGY 15

Hn−1
dR (X) by the (one-dimensional) image of the map Hn−1

dR (Pn)→ Hn−1
dR (X), the

so-called primitive middle cohomology of X.
The point is that U is affine, so you can compute its de Rham cohomology on

global sections. For the recipe for doing this easily, see Griffiths [16, §4, 5].

Remark 1.10.3. All of the above extends easily to smooth hypersurfaces in
toric varieties, providing a rich source of examples for the study of mirror symme-
try. The analogue of the Griffiths recipe (attributed to Dwork-Griffiths-Katz) is
described in [9, §5.3].

2. Frobenius actions on de Rham cohomology

In this section, we explain how to define and compute a Frobenius action on
the algebraic de Rham cohomology of a smooth proper variety over a p-adic field
with good reduction.

Notation 2.0.1. Throughout this section, let q be a power of the prime p,
let Qq be the unramified extension of Qp with residue field Fq, and let Zq be the
integral closure of Zp in Qq.

Remark 2.0.2. One could in principle deal with ramified extensions of Qq also.
Our choice not to do so skirts a couple of complicating issues, including the choice
of a Frobenius lift, and failure of the integral comparison theorem between de Rham
and crystalline cohomology in case the absolute ramification index is greater than
p− 1.

2.1. de Rham and crystalline cohomology.

Definition 2.1.1. Let (X,Z) be a smooth pair over Zq. Put

XQ = X ×Spec Zq Spec Qq

ZQ = Z ×Spec Zq Spec Qq

X = X ×Spec Zq Spec Fq
Z = Z ×Spec Zq Spec Fq
U = X \ Z
UQ = XQ \ ZQ

U = X \ Z

Û = formal completion of U along U.

We define the relative logarithmic de Rham cohomology Hi
dR(X,Z) as the hy-

percohomology Hi(Ω·(X,Z)/Zq ) (where the logarithmic de Rham complex is de-
fined as in Definition 1.9.4 replacing K with Zq); by flat base change, the map
Hi

dR(X,Z)⊗Zq Qq → Hi
dR(XQ, ZQ) is an isomorphism.

One then has the following comparison theorem of Berthelot [4] in the non-
logarithmic case; the logarithmic generalization is similar. (We will not define
crystalline cohomology here; see [5] for the construction in the nonlogarithmic case
Z = ∅, and [27] for the logarithmic case.)

Theorem 2.1.2. There is a canonical isomorphism between Hi
dR(X,Z) and the

logarithmic crystalline cohomology Hi
crys(X,Z).



16 p-ADIC COHOMOLOGY: FROM THEORY TO PRACTICE

Remark 2.1.3. Even without the definition of crystalline cohomology, there is
still an essential piece of content that one should carry away from Theorem 2.1.2.
It is that the de Rham cohomology Hi

dR(X,Z) is functorial in the mod p reduction
(X,Z). In particular, if (X ′, Z ′) is a second smooth pair and f : X → X

′
is a

morphism carrying Z into Z
′

(i.e., f induces a morphism (X,Z) → (X
′
, Z
′
) of

smooth pairs), then f functorially induces a morphism Hi
dR(X ′, Z ′)→ Hi

dR(X,Z).
What is most surprising about this is that in order to obtain this functoriality, it
is not necessary for f to lift to a morphism f : X → X ′.

One crucial instance of Remark 2.1.3 is that the q-power Frobenius map Fq :
X → X induces maps Hi

dR(X,Z) → Hi
dR(X,Z). These satisfy the following Lef-

schetz trace formula.

Theorem 2.1.4. We have

#U(Fq) =
∑
i

(−1)i Trace(Fq, Hi
dR(XQ, ZQ)).

Proof. By Theorem 2.1.2, we may replace Hi
dR(XQ, ZQ) with Hi

crys(X,Z).
By excision, we may reduce to the case where Z = ∅. In this case, this is a result
of Katz and Messing [28]. �

Remark 2.1.5. In the usual manner (e.g., as in [23, Appendix C]), Theo-
rem 2.1.4 leads to a product formula for the zeta function

ζ(U, T ) = exp

( ∞∑
i=1

#U(Fqi)
T i

i

)
;

namely,

(2.1.6) ζ(U, T ) =
∏
i

det(1− FqT,Hi
dR(XQ, ZQ))(−1)i+1

.

However (as in the analogous `-adic situation), there is a key difference between
the case Z = ∅ and the general case. In case Z = ∅, the Riemann hypothesis
component of the Weil conjectures (now a theorem of Deligne) asserts that the
polynomial det(1 − FqT,Hi

dR(XQ, ZQ)) ∈ Z[T ] has roots in C of norm q−i/2. In
particular, since the roots for different i lie in disjoint subsets of C, (2.1.6) uniquely
determines the factors on the right side. This is no longer true for Z general,
though, because the roots can get mixed during the excision process.

2.2. Rigid cohomology. The definition of crystalline cohomology is not suit-
able for explicit calculations. Fortunately, there is a related construction that, at
the expense of involving some auxiliary choices, is much more computable; it is
Berthelot’s rigid cohomology. The new book [35] provides a comprehensive devel-
opment; here are the salient points for our purposes. (The strategy described below
is essentially that of [31].)

Definition 2.2.1. Suppose that Z is the inverse image of the infinity section
under the morphism f : X → P1

Zq . For η ∈ (1,∞], put

Uη = {x ∈ Xan
Q : |f(x)| < η};

note that U∞ = Uan
Q , whereas

∩η>1Uη = {x ∈ Xan
Q : |f(x)| ≤ 1}
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is the generic fibre of the formal scheme Û . Using the formalism of algebraic
de Rham cohomology, we can define the de Rham cohomology Hi

dR(Uη) as the
hypercohomology Hi(Uη,Ω·Uη/Qq ).

Example 2.2.2. For instance, if X = P1
Zq and f is the identity map, then U∞

is the whole affine line over Qq, whereas ∩η∈(1,∞)Uη is only the closed unit disc.

By Berthelot’s fibration theorem, we have the following.

Theorem 2.2.3. For 1 < η ≤ η′ ≤ ∞, the inclusion Uη′ ↪→ Uη induces an
isomorphism Hi

dR(Uη′) ∼= Hi
dR(Uη). In particular, we have Hi

dR(Uη) ∼= Hi
dR(U∞) ∼=

Hi
dR(XQ, ZQ).

Remark 2.2.4. The isomorphism Hi
dR(U∞) ∼= Hi

dR(XQ, ZQ) in Theorem 2.2.3
amounts to a rigid analytic version of the corresponding complex analytic result,
which is the combination of Theorems 1.7.2 and 1.9.5. In particular, it relies on an
analogue of GAGA for formal schemes [20, §5] or rigid analytic spaces [33].

Remark 2.2.5. Without the extra hypothesis on the existence of f , we would
have to replace the Uη in Theorem 2.2.3 with a cofinal system of strict neighbor-
hoods of the generic fibre of Û . Moreover, for best results, we would have to work
not with the individual Hi

dR(Uη) but with their direct limit as η → 1+.

More to the point, one has a comparison theorem with crystalline cohomology,
which manifests as follows.

Theorem 2.2.6. Let (X ′, Z ′) be a second smooth pair over Zq such that Z ′ is
the inverse image of the infinity section under f ′ : X ′ → P1

Zq . Suppose that g :

Û → Û ′ is a morphism of formal schemes which induces a map Uη → U ′η′ for some

η, η′ ∈ (1,∞), and which induces a map (X,Z)→ (X
′
, Z
′
). Using Theorem 2.2.3,

obtain from this a map Hi
dR(X ′Q, Z

′
Q)→ Hi

dR(XQ, ZQ). Then this map corresponds,
via Theorem 2.1.2, to the map Hi

crys(X
′
, Z
′
)→ Hi

crys(X,Z).

Remark 2.2.7. The reader familiar with Dwork’s proof of the rationality of
zeta functions of varieties over finite fields [13], which also uses p-adic analytic
methods, may wonder how those methods relate to rigid cohomology. The short
answer is that there is a sort of duality between the two approaches; for more precise
answers, see [2].

Remark 2.2.8. The cohomology Hi
dR(Uη) in Theorem 2.2.3, or more properly

its direct limit as η → 1+, may be interpreted as an instance of the “formal coho-
mology” of Monsky and Washnitzer [39, 37, 38]. See [42] for a useful overview of
that construction.

2.3. Example: an elliptic curve. It is time to make the previous construc-
tion explicit in an example, and once again we opt to consider an elliptic curve.
This amounts to a paraphrase of [30]. (See also Edixhoven’s course notes [14]. For
p = 2, one needs a different approach, given by Denef and Vercauteren [12].)

Example 2.3.1. Assume p 6= 2. Let P (x) = x3 + ax + b ∈ Zq[x] be such that
the reduction P (x) = x3 + ax+ b ∈ Fq[x] has no repeated roots. Put

X = Proj Zq[W,X, Y ]/(Y 2W −X3 − aXW 2 − bW 3)

Z = Proj Zq[W,X, Y ]/(Y 2W −X3 − aXW 2 − bW 3,WY ),
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so that

UQ = SpecR, R = Qq[x, y, z]/(y2 − x3 − ax− b, yz − 1).

(Note that (X,Z) form a smooth pair over Zq as in Example 1.9.3.) We may obtain
a map f as in Definition 2.2.1 by taking f(x, y) = y + y−1.

In Example 1.2.4, we computed that H1
dR(UQ) admits a basis over Qq given by

dx

y
,
x dx

y
,
dx

y2
,
x dx

y2
,
x2 dx

y2
.

We now know that the q-power Frobenius on U induces a Qq-linear action on
H1

dR(UQ), and we wish to compute the matrix of this action.
To this end, we define a Qq-linear map Fq : Û → Û as follows:

Fq(x) = xq

Fq(y) = yq(1 + (x3q + axq + b− (x3 + ax+ b)q)z2q)1/2

Fq(z) = zq(1 + (x3q + axq + b− (x3 + ax+ b)q)z2q)−1/2.

This then extends to a map Uη → Uη′ for some η, η′ > 1, so we may apply Theo-
rem 2.2.6 to deduce that this indeed induces the desired action on H1

dR(UQ). Better
yet, Fq commutes with the hyperelliptic involution y 7→ −y, so we may compute its
action separately on the plus and minus eigenspaces of H1

dR(UQ).
In short, we may use Fq to compute the Frobenius action on the minus eigenspace

of H1
dR(UQ), which is equal to H1

dR(XQ). To do this, we must rewrite the pullback
F ∗q (dx/y) = xq−1Fq(z) dx as a Qq-linear combinations of dx/y, x dx/y and an ex-
act 1-form (and likewise for F ∗q (x dx/y)). This calculation in general cannot be
made exactly; for purposes of machine computation, one can only expect to work
to a prescribed level of p-adic accuracy. So modulo some power of p, we write for
instance

F ∗q (dx/y) ≡
N∑
i=0

Qi(x) dx
y2i+1

for some Qi(x) ∈ Qq[x], then uses the rules from Example 1.2.4 to rewrite this
as a Qq-linear combination of dx/y, x dx/y plus an exact 1-form. If one has some
information about the p-adic size of the reductions of the neglected terms in the
expansion of F ∗q (dx/y) (e.g., as in [30, Lemma 2]), one can then compute the matrix
of action of Fq on the basis dx/y, x dx/y to any desired p-adic accuracy.

Remark 2.3.2. For the purposes of computing the zeta function of X, one
ultimately wants to compute the characteristic polynomial of the matrix of action
of Fq to a certain amount of p-adic accuracy, which one can specify in advance.
Namely, one is trying to compute some integer whose archimedean norm can be
limited, so one needs only enough p-adic accuracy to pin down the integer uniquely
in the archimedean range. (Put briefly, if one is trying to compute some n ∈ Z with
|n| ≤ N , it suffices to compute n (mod pk) for any k > logp(2N).)

Remark 2.3.3. If q 6= p, one does not typically compute the action of Fq
directly. Instead, one starts with a map Fp : Û → Û which is Qq-semilinear for the
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Frobenius automorphism σ of Qq, and acts on x, y, z as follows:

Fp(x) = xp

Fp(y) = yp(1 + (x3p + σ(a)xp + σ(b)− (x3 + ax+ b)p)z2p)1/2

Fp(z) = zp(1 + (x3p + σ(a)xp + σ(b)− (x3 + ax+ b)p)z2p)−1/2.

One then computes the matrix of action of Fp on dx/y, x dx/y, and takes an
appropriate norm of this matrix to recover the action of Fq. The fact that one can
do this makes the use of p-adic cohomology particularly advantageous for computing
zeta functions over fields of small characteristic; for example, the computer algebra
system Magma uses p-adic cohomology to compute zeta functions of hyperelliptic
curves in small characteristic. (In the elliptic case, there exist faster alternatives.)

Remark 2.3.4. By contrast, if one wants to use p-adic cohomology to compute
zeta functions over Fp, one is forced to take p not too large. The complexity
estimates for the above procedure include a factor of p; however, it has been shown
recently by David Harvey [24] that one can restructure the algorithm to improve
the dependence on p to a factor of p1/2 times a power of log p. This makes it
conceivable to work with p as big as 264.

Remark 2.3.5. The matrix of action of Frobenius has some uses beyond simply
determining the zeta function; here is an interesting example due to Mazur, Stein,
and Tate [36]. Following a suggestion of Katz, they give a formula for the p-adic
(cyclotomic) canonical height of an elliptic curve over Q in terms of the Frobenius
action on the de Rham cohomology over Qp. (This height is not the Néron local
height; it is a global height with p-adic values, which computes the regulator term
in Mazur-Tate-Teitelbaum’s p-adic analogue of the Birch-Swinnerton-Dyer conjec-
ture.) Using this formula, one can then compute p-adic canonical heights much
more rapidly than any other known method; this was carried out in 2006 by a
group of students (Jennifer Balakrishnan, Robert Bradshaw, David Harvey, Liang
Xiao) and is implemented in the computer algebra system Sage.

3. Gauss-Manin connections

In this section, we introduce the notion of a Gauss-Manin connection for a
smooth proper morphism (of algebraic, complex analytic, or rigid analytic varieties).
We then describe how in some cases, such a connection carries a Frobenius action
which can be used to compute zeta functions.

3.1. Connections in geometry and algebra.

Definition 3.1.1. Let X be any of the following:
• a C∞ real manifold;
• a complex analytic manifold;
• a smooth algebraic variety over a field of characteristic zero;
• a smooth rigid analytic variety over a field of characteristic zero.

Let ΩX be the corresponding sheaf of differentials. Let V be a vector bundle
(coherent locally free sheaf) on X. A connection on V is a bundle map ∇ : V →
V ⊗ Ω1

X which is additive and satisfies the Leibniz rule: for any open set U ⊆ X,
any f ∈ Γ(U,OU ) and s ∈ Γ(U, V ),

∇(fs) = f∇(s) + s⊗ df.
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A section s is called horizontal if ∇(s) = 0.

Definition 3.1.2. Let ∇1 : V ⊗ Ω1
X → V ⊗ Ω2

X be the map

s⊗ ω 7→ ∇(s) ∧ ω + s⊗ dω,

where ∧ : (V ⊗Ω1
X)⊗Ω1

X → V ⊗Ω2
X denotes the map given by wedging the second

and third factors. The curvature is the map ∇1 ◦ ∇ : V → V ⊗ Ω2
X ; if it vanishes,

we say ∇ is integrable. (This is automatic if dim(X) = 1.)

Remark 3.1.3. Here is another way to think about integrability of a connection
∇. Let z1, . . . , zn be local coordinates for X at a point x. Then dz1, . . . , dzn form a
basis of ΩX in some neighborhood of x. Form the dual basis ∂

∂z1
, . . . , ∂

∂zn
of tangent

vector fields; we can contract ∇ with the vector field ∂
∂zi

to obtain a map V → V

satisfying the Leibniz rule with respect to ∂
∂zi

. If you think of this as an action of
∂
∂zi

on sections of V , then ∇ is integrable if and only if the ∂
∂zi

commute with each
other.

Remark 3.1.4. Here is the original differential-geometric interpretation of cur-
vature. In real geometry, you can use a connection ∇ to tell you how to move
between fibres of the bundle in a “horizontal” fashion, i.e., parallel to the base.
Even in a small neighborhood of a point, moving parallel to different paths on the
base leading to the same endpoint can give different results. But if the curvature
vanishes, then this discrepancy does not arise; this means that on any contractible
neighborhood of x ∈ X, we can write down a basis of V consisting of horizontal
sections s1, . . . , sn, and the connection is given in terms of this basis by

∇(f1s1 + · · ·+ fnsn) = s1 ⊗ df1 + · · ·+ sn ⊗ dfn.

It also means that given x ∈ X, parallel transport (the process of moving from
one fibre to another via a horizontal path) gives a well-defined homomorphism
ρ : π1(X,x) → GL(Vx), called the monodromy. (Differential geometers refer to
integrable connections as flat connections, but for algebraic geometers this adjective
is otherwise occupied.)

One can take the relationship between integrable connections and monodromy
a step further.

Definition 3.1.5. Let X be a connected complex manifold, and choose a point
x ∈ X. A local system on X is a homomorphism ρ : π1(X,x)→ GLn(C). As noted
above, there is a natural functor from vector bundles equipped with integrable
connections to local systems; it turns out to be an equivalence of categories.

3.2. Connections and differential equations. It is worth pointing out that
for purposes of explicit calculations, it is common to work with differential equations
instead of connections. This discussion is formal, so it works in any of the categories
we allowed when defining connections.

Definition 3.2.1. Suppose that we are given a trivial vector bundle V of rank
n over a subspace S of the t-line, together with a connection on V , or equivalently,
with an action of d

dt . A cyclic vector is a section s of V such that

s,
d

dt
s, . . . ,

dn−1

dtn−1
s
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form a basis of V . Given a cyclic vector, we can describe horizontal sections as
follows. We can write

dn

dtn
s = a0s+ a1

d

dt
s+ · · ·+ an−1

dn−1

dtn−1
s

for certain functions a0, . . . , an−1 on S. Consider an undetermined section v of V ,
which must be given by

v = f0s+ f1
d

dt
s+ · · ·+ fn−1

dn−1

dtn−1
s

for certain functions f0, . . . , fn−1 on t. For v to be horizontal, we need

0 = f ′0 + fn−1a0

0 = f ′1 + f0 + fn−1a1

...

0 = f ′n−1 + fn−2 + fn−1an−1.

Eliminating f0, . . . , fn−2 leaves a differential equation of the form

f
(n)
n−1 + b1f

(n−1)
n−1 + · · ·+ bn−2f

′
n−1 + bn−1fn−1 = 0.

Conversely, one can turn the differential equation into a first-order differential sys-
tem in the usual fashion, and thus reconstruct ∇.

Remark 3.2.2. One might imagine the above construction as being a differen-
tial analogue of the passage from a matrix to its characteristic polynomial, which
can be reversed (up to similarity) by forming the companion matrix of a polynomial.

3.3. Gauss-Manin connections.

Definition 3.3.1. Let π : X → S be a smooth proper morphism between
objects in one of the categories we considered in Definition 3.1.1. Let Z ⊂ X be a
relative strict normal crossings divisor over S. Let Ω(X,Z)/S = Ω(X,Z)/K/π

∗ΩS/K
be the sheaf of relative logarithmic differentials. Then the functor taking an open
affine U ⊆ S to the hypercohomology Hi(Ω·(π−1(U),π−1(U)∩Z)/U ) turns out to be a
sheaf; we call this sheaf the relative de Rham cohomology Hi

dR((X,Z)/S). It is a
vector bundle on S whose fibre at a point b can be identified with Hi

dR(Xb, Zb),
where Xb = π−1(b) and Zb = Xb ∩ Z.

Remark 3.3.2. The formation of the relative de Rham cohomology throws
away some information: it only uses the “vertical” part of the differential operator
d. What this means is that given a relative i-form ω ∈ Ωi(X,Z)/S , if one lifts ω
to an absolute i-form ω̃ ∈ Ωi(X,Z)/K and differentiates the result, you may get
something nonzero even if ω was a relative cocycle. If one projects the result into
Ωi(X,Z)/S⊗Ω1

S/K , you have essentially constructed the Gauss-Manin connection. We
will give a more formal construction below, but the procedure just described is how
one really computes the Gauss-Manin connection in practice; see Example 3.4.1.

Definition 3.3.3. Equip the de Rham complex Ω·(X,Z)/K with the decreasing
filtration

F i = image[Ω·−i(X,Z)/K ⊗OX π
∗(ΩiS/K)→ Ω.(X,Z)/K ],
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then form the corresponding spectral sequence (as in Theorem 1.8.7). The E1 term
of the result has

Ep,q1 = ΩpS/K ⊗OS H
q
dR((X,Z)/S);

the algebraic Gauss-Manin connection is the differential d1 : E0,q
1 → E1,q

1 . This
construction was introduced by Katz and Oda [29], who showed that this is an
integrable connection, and also that it agrees with the more traditional analytic
description for a real or complex manifold.

Definition 3.3.4. Suppose we are working with real or complex manifolds,
and that S is contractible. Then the fibrations X → S and Z → S are trivial in
the category of real manifolds, so we get a notion of horizontality for sections of
Hi

dR((X,Z)/S). For general S, this gives a connection on Hi
dR((X,Z)/S); this is

the usual Gauss-Manin connection, and Katz and Oda showed that it agrees with
their algebraic construction.

Remark 3.3.5. The differential equations corresponding to Gauss-Manin con-
nections (via the transformation in §3.2) were introduced long before anyone had
defined a connection, and so they have their own name. They are known as Picard-
Fuchs equations; they arise by taking a homology class across different fibres and
integrating against a fixed differential form on the total space. A number of classical
differential equations (e.g., hypergeometric equations) arise in this fashion.

3.4. Example: a family of elliptic curves.

Example 3.4.1. Consider the family of smooth projective curves π : X → S
with

X = Proj OS [X,Y,W ]/(Y 2W −X3 − a(t)XW 2 − b(t)W 3),

and S equal to the subscheme of the affine t-line on which ∆(t) = 4a2 + 27b3 does
not vanish. Then there exist A,B ∈ Γ(S,OS)[x] such that

AP +BPx = 1,

using subscripted x and t for the partial derivatives in x and t, respectively. Put

ω = Ay dx+ 2B dy,

so that a basis for H1
dR(X/S) is given by

ω, xω.

On the other hand, if we let Z be the infinity section, then H1
dR((X,Z)/S) =

H1
dR(X,S), and it will be easier to compute the Gauss-Manin connection on the

affine U = X \ Z.
In the relative module of differentials Ω1

U/S , i.e., modulo dt, we have as before
the relation

2y dy = Px dx,

and again

dx = yω, dy =
1
2
Pxω.

But in the full module Ω1
U/K , the relation lifts to

2y dy = Px dx+ Pt dt,
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and it is this discrepancy that gives rise to the connection. It follows that

dx ∧ dt = yω ∧ dt

dy ∧ dt =
1
2
Pxω ∧ dt

dx ∧ dy =
1
2
Ptω ∧ dt.

To compute the connection, we are supposed to lift the basis of relative coho-
mology to a set of forms on the total space, then differentiate, then project onto
H1

dR((X,Z)/S)⊗ Ω1
S/K . First,

∇(ω) = Ady ∧ dx+Aty dt ∧ dx+ 2Bx dx ∧ dy + 2Bt dt ∧ dy

= (BxPt −
1
2
APt −AtP −BtPx)ω ∧ dt.

Second,

∇(xω) = Axdy ∧ dx+Atxy dt ∧ dx+ 2(xBx +B) dx ∧ dy + 2xBt dt ∧ dy

= (xBxPt +BPt −
1
2
xAPt − xAtP − xBtPx)ω ∧ dt.

We then rewrite the quantities being wedged with dt as exact relative differentials
plus a linear combination of ω, xω as in Example 2.3.1.

If you prefer, here is another way of describing essentially the same calculation.

Example 3.4.2. Consider the same situation as in Example 3.4.1, but now let
us redefine

ω =
dx

y
.

(Remember that this agrees with Ay dx+ 2B dy only modulo dt.) Again, use ω, xω
as the basis of relative differentials. These have poles along y = 0, but never mind
that; we can still compute

∇(ω) = d

(
dx

y

)
= −dy ∧ dx

y2

=
Pt
2y2

dx

y
∧ dt.

To eliminate the pole, find the unique C,D,E, F,G ∈ Γ(S,OS) (so these are func-
tions of t alone) such that

Pt = atx+ bt = (Cx+D)P + (Ex2 + Fx+G)Px.

Then in relative de Rham cohomology,

Pt dx

2y3
=

(Cx+D) dx
2y

+
(Ex2 + Fx+G)Px dx

2y3

≡ (Cx+D) dx
2y

+
(2Ex+ F ) dx

y
.



24 p-ADIC COHOMOLOGY: FROM THEORY TO PRACTICE

Similarly,

∇(xω) = d

(
x dx

y

)
=
xPt
2y2

dx

y
∧ dt

and writing
xPt = (Hx+ I)P + (Jx2 +Kx+ L)Px,

we get
xPt dx

2y3
≡ (Hx+ I) dx

2y
+

(2Jx+K) dx
y

.

3.5. Gauss-Manin connections and Frobenius. The reason why Gauss-
Manin connections are relevant in rigid cohomology is that they can be used to
compute Frobenius actions en masse.

Exercise 3.5.1. Let SpecA be a smooth affine Zq-scheme. Let Â be the p-adic
completion of A, and put A = A/pA. Let φ : Â→ Â be a q-power Frobenius lift on
Â; that is, φ acts on A by the q-power map. Prove that for each x ∈ (SpecA)(Fq),
there is a unique x ∈ (Spec Â)(Zq) which specializes to x, such that φ(x) = x.

Definition 3.5.2. With notation as in Exercise 3.5.1, we call x the Teichmüller
lift of x with respect to φ. If x is a Teichmüller lift of a point not specified, we say
x is a Teichmüller point.

Exercise 3.5.3. State and prove a generalization of Exercise 3.5.1 to the case
where the residue field is perfect but not necessarily finite, and/or the p-adic field
is not necessarily unramified.

Theorem 3.5.4 (Berthelot). Let S = SpecA be a smooth affine Zq-scheme. Let
φ be a q-power Frobenius lift on Â. Let π : X → S be a smooth proper morphism,
and put E = Hi

dR(XQ/SQ) as a vector bundle equipped with the Gauss-Manin con-
nection. Then there exists an isomorphism F : φ∗E ∼= E of vector bundles with
integrable connection on the affinoid space Ŝan (the generic fibre of Ŝ = Spf Â),
such that for any positive integer a, and any Teichmüller point x ∈ Ŝan(Qqa),
F a : (φa)∗E ∼= E induces the qa-power Frobenius action on Hi

dR(Xx).

Remark 3.5.5. The key feature of Theorem 3.5.4 is that the Frobenius action
commutes with the action of the connection; this constraint can be interpreted as
a differential equation on the Frobenius action. Let’s see what this looks like for
S a subscheme of the affine t-line and E admitting a basis s1, . . . , sn. Define the
matrices A,N by

Fsj =
∑
i

Aijsi

d

dt
sj =

∑
i

Nijsi.

Then the compatibility between Frobenius and the connection is equivalent to the
equation

(3.5.6) NA+
d

dt
A =

(
dφ(t)
dt

)
Aφ(N);
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given N , this constitutes a system of linear differential equations on the entries of
A.

Remark 3.5.7. Theorem 3.5.4 forms the basis of another method for using
p-adic cohomology to compute zeta functions, originally proposed by Lauder [34].
Let us explain how this works in the example of a family of elliptic curves, as in
Example 3.4.1. (A version of this has been worked out in detail by Hubrechts [25],
and is implemented in Magma.)

In order to start this method, we must already have the Frobenius matrix on
Hi

dR(Xx) for a single Teichmüller point x, to use as an initial condition. Say for
simplicity that this point is at t = 0. In (3.5.6), we now have the value of A(0).
We then compute the unique matrix U ∈ Mn×n(QqJtK) with U(0) = In such that
NU + d

dt (U) = 0; we then obtain a solution of (3.5.6) given by

N = − d

dt
(U)U−1, A = UA(0)φ(U)−1.

Although U only converges on the open unit disc (by a result of Dwork), the matrix
A has better convergence properties: it has bounded coefficients, and modulo any
power of p its entries are the power series representing certain rational functions
with no poles in S. If one can control the number of zeroes and poles of these
rational functions, one can reconstruct a p-adic approximation to A, and then
evaluate at any other Teichmüller point.

Remark 3.5.8. One way to gain control of the degrees of the rational functions
appearing in Remark 3.5.7 is to understand how the Frobenius structure behaves
in discs over which the fibration has one or more singular fibres. We will discuss a
particularly simple instance of this in the next section.

4. Beyond good reduction

So far, we have only allowed consideration of varieties over Qq with good re-
duction. In this section, we explore what happens when we relax ths restriction
slightly.

4.1. Semistable reduction and logarithmic connections. To keep things
simple, we will work only over one-dimensional base spaces.

Definition 4.1.1. Let (X,Z) be a smooth pair with X one-dimensional. A
logarithmic connection on X is a bundle map ∇ : V → V ⊗ Ω(X,Z) that satisfies
the Leibniz rule.

Definition 4.1.2. Let ∇ be a logarithmic connection on (X,Z). For each
z ∈ Z, ∇ induces a linear map Vz → Vz, called the residue of ∇ at z, as follows.
For a section s specializing to a given point s ∈ Vz, write ds = f dtt for f a section
of V and t a local parameter for z. Then the residue map carries s to f , the
specialization of f to Vz.

Definition 4.1.3. Let π : X → S be a proper, flat, generically smooth mor-
phism (in any of the categories from Definition 3.1.1) with S one-dimensional. We
say π is semistable at z ∈ S if the fibre Xz is a reduced divisor with simple (but
not necessarily strict) normal crossings. That is, étale locally, S looks like Spec k[t]
and X looks like Spec k[x1, . . . , xn]/(x1 · · ·xm − t) for some m,n (where m varies
from point to point).
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Example 4.1.4. For example, the Legendre family of elliptic curves

y2 = x(x− 1)(x− λ)

is smooth over λ /∈ {0, 1,∞}, and semistable at λ = 0 and λ = 1. To check at ∞,
we reparametrize µ = λ−1, x = X/µ, y = Y/µ2 to get

Y 2 = µX(X − µ)(X − 1),

which means that the fibre at λ =∞ is not reduced.
If we instead consider the family

y2 = x(x− 1)(x− λ2),

this family is indeed semistable everywhere.

By a suitable variation of the Katz-Oda arguments [29], one obtains the fol-
lowing.

Theorem 4.1.5. Let π : X → S be a semistable morphism, smooth over U ⊆ S.
Then the Gauss-Manin connection on Hi

dR(π−1(U)/U) extends to a logarithmic
connection on S with nilpotent residue maps.

Exercise 4.1.6. Check that the Gauss-Manin connection for the Legendre fam-
ily extends to a logarithmic connection on all of P1, but the residue map at infinity
cannot be made nilpotent. (Hint: you can cheat by looking up this calculation in
[42, §7].)

4.2. Frobenius actions on singular connections. Berthelot gave the fol-
lowing refinement of Theorem 3.5.4.

Theorem 4.2.1 (Berthelot). Let S = SpecA be a smooth affine Zq-scheme.
Let φ be a q-power Frobenius lift on Â. Let π : X → S be a proper morphism
smooth over an open dense subscheme U ⊆ S. Put E = Hi

dR(π−1(UQ)/UQ) as a
vector bundle equipped with the Gauss-Manin connection. Then the isomorphism
F : φ∗E ∼= E over Ûan given by Theorem 3.5.4 extends to a space of the form

{x ∈ Uan
Q : |f(x)| ≥ η}

for some f ∈ A and some η ∈ (0, 1).

Remark 4.2.2. To clarify, let us suppose S = A1
Zq and let us consider the open

unit disc in San. Then Theorem 4.2.1 gives us an isomorphism φ∗E ∼= E on some
annulus Aη = {t ∈ A1

Qq : η < |t| < 1}. For applications to machine computations,
one would like to be able to predict the value of η. This is complicated in general,
but there is a particular case in which it is comparatively easy; see below.

Lemma 4.2.3. Let E be a vector bundle on the open unit t-disc over Qq, equipped
with a logarithmic connection with nilpotent residue at t = 0 and no other poles.
Suppose there exists an isomorphism φ∗E → E on some Aη, where φ : Γ(Aη′ ,O)→
Γ(Aη,O) for some η′ < η ∈ (0, 1) satisfies φ(t) − tq ∈ pẐq((t)). (Note that φ
does not have to be defined on the entire open unit disc.) Then E is a successive
extension of copies of the trivial bundle with connection (i.e., the bundle is O and
the connection is just the exterior derivative).

Proof. The existence of the Frobenius structure ensures that the differential
module E is solvable at 1, so that we may deduce the claim from [32, Lemma 3.6.2].

�
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Remark 4.2.4. Resuming now Remark 4.2.2, now suppose that π is semistable
and that its only singular fibre over the open unit disc is at t = 0. Define the matri-
ces N,A as in Remark 3.5.5. Then there is a unique matrix U ∈Mn×n(QqJtK[log t])
with U ≡ In (mod (t, log t)) such that NU + d

dt (U) = 0. From Lemma 4.2.3, one
may deduce that each power series appearing in U and U−1 converges in the entire
open unit disc. Define

φ(log t) = q log t+
∞∑
i=1

(−1)i−1

i
(φ(t)/tq − 1)i

and put B = U−1Aφ(U). Then (3.5.6) implies d
dt (B) = 0, so B ∈Mn×n(Qq).

By writing A = UBφ(U−1), we deduce the following. Suppose that η ∈ [0, 1)
has the property that |φ(t)/tq − 1|η < 1; note that this implies |φ(t)|η = ηq < 1.
(Here | · |η is the η-Gauss norm, i.e., |

∑
i cit

i|η = supi{|ci|ηi}.) Then A converges
on η ≤ |t| < 1.

For explicit computations, one needs effective convergence bounds in the above
argument. These are provided by results of Christol and Dwork [7].

Remark 4.2.5. Continuing as in Remark 4.2.4, we obtain on Hi
dR(X0) a Frobe-

nius action Φ as well as a nilpotent operator N . It is natural to ask for a geometric
interpretation of these; one expects them to coincide with the corresponding oper-
ators (Frobenius and monodromy) on the Hyodo-Kato cohomology Hi

HK(X0) via
the comparison isomorphism

Hi
dR(X0) ∼= Hi

HK(X0).

(These notions are introduced in [26]; a similar construction in topology is the
“Milnor fibre”.) We do not have a proof of this coincidence, though it is strongly
suggested by results of Coleman and Iovita [8] and Grosse-Klönne [18].

Note that if we wish to transfer the Frobenius action fromX0 to another fibreXt

with |t| < 1, we must at some point evaluate log(t), which requires choosing a branch
of the p-adic logarithm. This is consistent with the fact that for t 6= 0, the Hyodo-
Kato isomorphism Hi

dR(Xt) ∼= Hi
HK(X0) depends on such a branch choice; the

monodromy operator transfers canonically to Hi
dR(Xt), but the Frobenius operator

on Hi
dR(Xt) does depend on the branch choice.
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[4] P. Berthelot, Géométrie rigide et cohomologie des variétés algébriques de caractéristique
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