
A History of Interactions between
Logic and Number Theory

Lecture 1

I concentrate on logic and number theory, and the evolution of this interaction.
The period under review is 1929-2003, beginning with Presburger’s work [89])
on the metamathematics of addition and order on Z.

Presburger’s work was published two years before the dramatic discoveries
of Gödel, which revealed the ubiquity of undecidability and incompleteness in
global arithmetic. Presburger showed that a certain core mathematical structure
is non-Gödelian, and it is to be stressed that even now, seventy five years later,
one is learning interesting new things about definitions in this structure [84]).
Moreover, we know now that the p-adic fields are uniformly non-Gödelian, and
we understand that this depends mainly on how their definable relations are
built over those of Presburger.

Since 1964 it has been evident that the local/global distinction in number
theory corresponds to a non-Gödelian/Gödelian distinction in definability the-
ory. Completing a structure tends to simplify definability theory, often changing
a Gödelian situation to a non-Gödelian one. (There is one perplexing counterex-
ample to this,the case of free groups and their profinite completions [14, 15]).

Heroic figures

Let us consider four heroic figures in logic,active around 1930, and their con-
nection to number theory: Gödel, Herbrand, Skolem, Tarski.

The latter two made significant contributions to number theory. Herbrand
made major contributions to number theory(ramification theory and cohomol-
ogy [30]. Skolem has a well-known p-adic analytic method [51] in the area of
finiteness of solutions to diophantine equations, and gave the first ultrapower
construction of a nonstandard model of arithmetic [50]. Tarski [33] laid the
foundations for model theory(now in need of redoing), and raised a beacon
of the subject, his wonderful quantifier-elimination for real-closed fields [57].
Gödel [22] used the Chinese Remainder Theorem, certainly fundamental in the
local/global perspective, to convert recursive definitions to closed arithmetical
ones, inspiring the hope(fulfilled in 1970) that recursively enumerable relations
on N or Z are exactly the diophantine ones (i.e,those definable existentially from
+ and ×.

Herbrand is credited with the definition of projective limit, now fundamental
in Galois theory and its model theory.

Skolem [125] did the analogue of Presburger’s work for multiplication, but
till now this has had no impact on the work to be discussed in these lectures.
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Perspective

I present the material from the point of view of someone who has been in the
subject for forty years and who has seen ideas come and go.I urge the younger
participants to ponder Lang’s statements from [85] (a propos algebraic number
theory):

”It seems that,over the years,everything that has been done has proved use-
ful,theoretically or as examples,for the further development of the theory.Old,
and seemingly isolated special cases have continuously acquired renewed signif-
icance, often after half a century or more” (from Foreword):

”If there is one moral which deserves emphasis, however, it is that no one
piece of insight which has been evolved since the beginnings of the subject
has ever been ”superseded” by subsequent pieces of insight. They may have
moved through various stages of fashionability, and various authors may have
claimed to give so-called ”modern” treatments . You should be warned that
acquaintance with only one of the approaches will deprive you of techniques and
understandings reflected by the other approaches, and you should not interpret
my choosing one method as anything but a means of making easily available an
exposition which had fallen out of fashion for twenty years” (page 176 ).

All the lecture course at this meeting are of great interest to me. I have
thought a lot,and more often daydreamed, over the years, about the ideas that
go into them. It would have been indeed optimistic, in the 1960’s, to imagine
that our subject would have flourished to the extent that such a range of lec-
tures is possible. My presentation must inevitably, for lack of time, marginalize
important ideas, whether algebraic, geometric, analytic or modeltheoretic. Any
distortion is likely to be compensated by a different emphasis in other lectures.

Core Structures

I regard certain mathematical structures (”core structures”) as being fundamen-
tal. Thus one would not expect general logical ideas to be decisive in organizing
research on those structures. But there are also analogies, and variations or
uniformities, and the general compactness of first-order logic has proved valu-
able in understanding those.An intriguing recent development is the renewed
relevance of such logics as Keisler’s Lω1,ω(Q) [132].

Among the core structures are:

• Z,Q, number fields and their rings of integers;

• finite characteristic analogues relating to curves;

• finite fields;

• R,C,Qp, and in general the locally compact fields;

• the ring of algebraic integers and relatives.
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This is a provisional list. One expects new structures to appear from time
to time, and some to come to be seen as fundamental(note that the Qp are
latecomers compared with the reals and the complexes).

A notable development is the emergence of new core theories, sometimes
with no natural models (though any finite subset of the axioms should have a
natural model).Examples are differentially closed fields, and existentially closed
difference fields.

Early History: Tarski, Mal’cev and Robinson.

Tarski
Tarski, in the 1930’s, contributed:

1) set-theoretic foundations of model theory, allowing precise definitions of
structures, their syntax and semantics(not at all confined to first-order
semantics);

2) the foundations of definability theory in the ordered field R;

3) (via Presburger) the foundations of definability theory in the ordered
group Z.

Later,in Berkeley, Tarski (and students) isolated the crucial morphisms (el-
ementary embeddings), the Limit Theorem,and the ultraproduct construction
(and more general products, several relevant to number theory). Szmielew made
a major contribution by a systematic analysis of the first-order theory of abelian
groups (though not yet going as far as an elimination theory).But here,as in most
of the ensuing work of the Tarski school, the emphasis turned to decidability.
In [40]a systematic investigation is made of undecidability, for both complete
and incomplete theories.The method of essential undecidability is prominent
here. There followed,a decade later, the still useful update from the Mal’cev
school [45]. Forty years later, almost all the open problems mentioned there
have been answered, or, more importantly, have been exported to the world of
definability. Regrettably, though, there is evidence that many of the important
interpretations given there are unfamiliar to the younger generations.

No doubt the deepest work done in Berkeley on logic and number theory
was that of Julia and Raphael Robinson. The former [56] gave a Π3 definition
of Z in the ring Q (never improved), and inspired the research that culminated
in 1970 in Matejasevic’s negative solution of Hilbert’s 10th Problem for Z. It
is noteworthy that Julia Robinson used local/global considerations in her work,
and that in (most variants of)Matejasevic’s proof one uses the norm forms of
quadratic extensions of Q.

Poonen’s lectures are of course devoted to Hilbert’s 10th Problem, and the
basic problem of the analogous result for Q and other global structures.

Mal’cev
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In 1936 he gave the method of diagrams, and the general completeness/compactness
theorem, and already gave some highly imaginative applications to group theory
[37].

The school he founded at Novosibirsk produced Eršov and Zilber among
many others.These two are singled out here because of their outstanding contri-
butions to the topic of our meeting (Ersov on p-adic and regularly closed fields,
inter alia, and Zilber on geometric model theory and diophantine geometry).

Abraham Robinson
He strove to open roads (both ways) between logic and algebra (and so num-

ber theory). For a very apt comment on this image, see [140].The emphasis on
model-complete theories, and Robinson’s Test, in the form almost of a Nullstel-
lensatz, initiated a development that has lasted fifty years (and flourishes still,
because of a symbiosis with the geometric model theory started by Morley in a
Tarskian setting).

Among Robinson’s achievements, by these methods,[35] are:

1) very conceptual approach to real-closed fields and Hilberts’ 17th Problem
on sums of squares(with bounds);

2) definability theory for algebraically closed fields with valuation, important
thirty years later in a local/global setting [23];

3) bounds in polynomial ideals, a topic still developing because of the needs
of a logic of cohomology [38, 31];

4) functorial compactification in nonstandard analysis;

5) differentially closed fields, an entirely natural theory with no really nat-
ural models(its subsequent value is that it provides a rich ”geometrical”
completion for diophantine geometry over function fields);

6) generic structures by a variety of ”forcing” methods, and the emphasis on
finding axioms for those structures.

Saturated models and ultraproducts

These came from the Tarski school [124],and have proved, despite their set-
theoretic trappings, very useful in applied situations,as a setting for converting
quantifier-elimination results into results on extension of isomorphisms. In the
early days the method was bound up with the ultraproduct construction,both
in Keisler’s work and in Kochen’s paper [117] which remains a beautiful intro-
duction to model-theoretic algebra.
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Gödelian and non-Gödelian

Already in 1931 Gödel showed that the logical analysis of definitions in Z is
subject to severe limitations in principle.Only after the heroic foundational work
of the 1930’s [52] did the full austere picture stand forth. The essential facts
are:

1) arithmetic hierarchy-every quantifier-alternation increases the class of de-
finable relations ;

2) the recursively enumerable sets appear already as projections of algebraic
sets.

Note. Here too,there seems to be a risk of loss of folk memory, as logic becomes
more compartmentalized. The extreme pathology of recursively enumerable sets
(maximal or even more exotic) may actually be a tool in work on metamathe-
matics of number theory. Rabin and the author used such things thirty years
ago in connection with amalgamation property in full arithmetic, and there are
also prospects for using the fine structure of r.e sets to get undecidability of
Hilbert’s 10th Problem for Q without giving an existential definition of Z in Q.
Another aspect is that tricks from early work on Hilbert’s 10th Problem yield
striking results about polynomials ”enumerating ” the primes.

Tarski was the first to locate a rich core structure, R, which is non-Gödelian.Not
merely is it decidable, but there is no hierarchy theorem. All sets are exis-
tentially definable, indeed quantifier-free definable if one special existentially
definable relation, order, is taken as primitive. After 1964, and the work of Ax-
Kochen-Ershov (henceforward AKE) [42, 41, 115, 114, 113] one began to hope
that one might find other such structures, and one moved towards non-Gödelian
territory.

Lecture 2

p-adic fields.

After 1964, one had a web of analogies connecting the logics of the completions
of number fields. I give a revisionist account. I was beginning research in this
period, and was influenced by many forces, such as Morley [36, 46]. Forty
years on, there is general agreement that Morley’s ideas belong with those of
the Tarski-Robinson -Mal’cev tradition, though , literally, they do not apply
directly to the key theories.

Prior to 1964 one understood, initially via Tarski’s barehand methods, the
basic metamathematics of algebraically closed and real closed fields, and no
others. A variety of methods had , since Tarski, been deployed on the basic
theories (for example, those of Robinson, Kochen, and the Shoenfield criterion
using saturated models). I recommend that one remember all these possibilities.
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As of now, the essential feature is a uniform definability theory (based on a
uniform quantifier-elimination)for the local fields coming from classical number
theory. Those fields are all locally compact (see Weil’s book [129]for the unifying
nature of this idea alone), and, in all cases but that of C (a base for) the topology
is algebraically definable.So it is natural, first time round, to look at these fields
in the pure language of field theory.

Defining the topology

In the real field, the order (and hence a basis for the topology) is definable thus:

x ≥ y ⇐⇒ x− y is a square

In a finite extension of Qp, the valuation ring(and hence the topology, is
definable thus:

v(x) ≥ 0 ⇐⇒ 1 + πx2 is a square

where π is a uniformizing element, i.e an element whose value is minimal
positive in val(K). (Note that the use of pi can be eliminated by a standard
trick of quantifying over possible uniformizing parameters).

When p 6= 2, one has to modify the definition thus:

v(x) ≥ 0 ⇐⇒ 1 + πx8 is a square

Now is a good moment to introduce the power predicates Pn, with the
defining condition:

Pn(x) ⇐⇒ x is an n− th power.

So we have shown, uniformly for the real and the p-adic cases, that the topology
is quantifier-free definable in terms of the P2. The other power predicates
are needed in the p-adic cases for quantifier-elimination . Note their link to
Presburger arithmetic, since the valuation of an n-th power is divisible by n.
The quantifier-eliminations in the p-adic fields somehow reflect (among other
features) the quantifier-elimination in the value group.

It is often more natural to use modifications P∗n interpreted as the set of
nonzero n-th powers (for the same reason as it is more natural to use strict less
than rather than less than or equal in the real case).

That the topology of C is not field -theoretically definable comes from the
existence of discontinuous field automorphisms of the complex field(the sort of
phenomenon that distresses Deligne in [103]).

An important analogy between the three families of fields K (complex,real
and p-adic)is that Gal(K) is prosolvable, and topologically finitely generated.
Moreover, every finite extension of K is generated by an element of Qalg.

The fundamental result connecting the three definability theories, most il-
luminating, at least on first reading, if restricted to the cases of the complexes,
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the reals and the unramified extensions of Qp (the ramified case is a bit harder,
see [90]) is that every definable relation is in the Boolean algebra generated by
the algebraic sets and the sets defined by conditions

P∗n(f(x̄)

The main motivation behind my use of these predicates in the p-adic case was
that taking powers has a lot to do with constructing solvable extensions. For C
there are no algebraic extensions, and all the power predicates are redundant.For
R there is only a cyclic extension of order 2, extracting a square root of −1. For
the p-adics, all power predicates are needed.

An amusing,but not accidental,observation is that the unit ball in the reals
is definable by

P2(1− x2).

This shows a uniformity in definition with those for the p-adic unit balls,now
taking p = −1. In fact,it suggests construing the reals as the - 1 -adic numbers.

Galois Groups

A propos the Galois groups of p-adic fields, there is the truly beautiful result
of Neukirch [128], establishing another analogy with the real case. Gradually
Neukirch’s result is filtering into the modeltheoretic imagination, and I would
expect it to lead to some helpful shifts of emphasis (for example in connection
with elimination of imaginaries). Just as Artin and Schreier had shown that
real closed fields are characterized by having their absolute Galois groups finite
and nontrivial (and then necessarily cyclic of order 2), Neukirch inspired the
analogous result for the p-adics [70, 73], namely that a field having absolute
Galois group isomorphic to that of Qp is elementarily equivalent to Qp. No
doubt Pop will give full details on this result and the many others of this kind
recently obtained.I have deliberately stated this result in an anachronistic way,
looking to a future where one will interpret p-adic formulae in a more invariant
Galois-theoretic way. I will delay a little yet before presenting the basics about
axioms for the various completions, i.e Hensel’s lemma and all that. All this, and
more, will be needed before one can fully appreciate the uniformities underlying
the model theories of the completions.

Analogies

We have not yet succeeded in finding a truly suggestive formulation of the above
analogies, let us say in terms of the allegory [96] of definable sets and functions,
and indeed I am not convinced we have the right category in mind. There are
however some simple and useful observations that can be made now.
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Subsets of the affine line

For C ,definable subsets of the line are (exactly) finite or cofinite, and, in par-
ticular ,have interior for the Zariski topology if they are infinite.

For R, from Tarski’s famous paper of 1935 [33], definable subsets of the line
are finite unions of intervals (interpreted in the most liberal sense), or,equivalently,
are the sets with finite boundary. Again, if infinite they have interior.

For Qp, and indeed for all the completions, definable subsets of the line
have interior, provided they are infinite. Moreover, once one makes the obvious
definition of the analogue of interval, they are finite unions of intervals.

These are all examples of what we now call minimality results (the original
minimality comes from a paper of W.Marsh,written in the wake of Morley’s
great paper [46]). What is most important for us is that each of the minimality
notions leads to a dimension theory for general definable sets, and a means of
analyzing sets by fibering arguments ,leading to so-called cell-decompositions.

There are issues of uniformity here, and they are subtle.Two particular issues
are:

• uniformity in K

• uniformity in p

The most direct uniformity is that in each case definable functions are piece-
wise algebraic. However, given a formula Φ(x̄, y) of field theory, it is not easy
to track the uniformity in the structure of the function it defines. This may
very well depend on p, as one ranges over p-adic fields. A full understanding
of what happens came only after Ax’s work on the elementary theory of finite
fields (the residue fields are finite). But in any case one readily proves for all K
in question algebraic boundedness, that is a uniform bound on the cardinalities
of the finite members of a definable family of sets(but this bound does depend
on p). This notion was first seen in various papers written in Morley’s after-
math, in particular the beautiful paper of Baldwin and Lachlan [39] In specific
algebraic examples it was first investigated by Winkler and me. But an illu-
minating general discussion had to wait a while, till van den Dries, who, with
Scowcroft, [26, 24] showed that it is the basis of a general theory of dimension
and cell-decomposition. The notion of dimension is definable within families, a
basic result in all that followed.

As regards the cell-decomposition, the basic sets proved to be those defined
via

Pj(f(x̄)).

In the case of the real field one needs only j=2.It is convenient to consider
modified predicates

Pj(f(x̄))
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corresponding to being locally on one side or other of a hypersurface. The
orientation takes values in

{±1}.
In the p-adic cases there are many more values for the ”orientation”. These

are taken in the projective limit of the groups

lim→ Z∗p
P ∗n

.

Denef [75] following Cohen, gave a thorough discussion of cell-decomposition
in the p-adic case, for a fixed p. On the way he gave explicit definable Skolem
functions (sections) for definable families of finite sets. His cell decomposition
made serious use of the fact that the p-adics have only finitely many extensions
of each dimension. The essential element in his induction involves working with
a finite family of polynomials in many variables and producing definable cells
on each of which the polynomials have uniform behaviour relative to the partial
orientations given by the modified power predicates.

The issue of uniformity of the cell-decompositions, both in families and in p,
has proved fertile.In the former, for fixed p, one gets uniformity of rationality
for p-adic integrals. In the latter, following Pas [87, 88] and Macintyre [98], one
gets uniformity across p for those integrals. But the really satisfying uniformity
took longer to reveal, in the work of Denef and Loeser [60] on motivic model
theory.

One uniformity across K, that has initiated a search for a general notion
of minimality in these cases, is that definable sets are locally closed, and so
measurable for the Haar measure of each K. Infinite definable subsets of the line
of K have interior, and in general nonzero measure is equivalent to nonempty
interior.

The issue of uniformity of measure across families, or across p, is delicate,and
will be discussed in the project associated to my lectures. The work of Denef
and Loeser certainly gives a beautiful uniformity across p, in terms of rational
functions of p−s. But for the real case one confronts rather serious problems
about integrals in o-minimal theories.In the special case under consideration,
work of Lion and Rolin [86] does give useful information.

In the analytic cases that came later, one does not yet have a satisfying
uniformity even in the p-adic case, but it seems likely, in view of recent work of
Cluckers [84], that this will be forthcoming.

For all the K in question, one has a category (in fact, allegory in the sense
of Freyd and Scedrov [96]) of definable relations, including functions, and one
can show that the model-theoretic dimension is preserved under isomorphisms.
What else is? Remarkably,

for R, the modeltheoretic Euler characteristic and nothing more ;
for p-adic fields, nothing more (a recent result of Cluckers).
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Note, however, that this result is not uniform in p. This suggests to me that
a small shift of emphasis is needed. I suspect that it is misguided to ignore that
for any given shape of definable set Cluckers’ result fails for almost all p.

What happens for C ? The matter,in terms of Grothendieck rings,is subtle
indeed [138].

I conclude this lecture with some miscellaneous remarks about language,
axioms, ultraproducts, types.

Language. For algebraically closed fields,the field language still seems ap-
propriate,and the right medium in which to express and derive the most simple
Lefshetz principle, the first case in which model theory treats the impulse of
letting p go to zero. Tarski [120] already dealt with this, and there is little
more to be said, at this level, than he did. It does seem, however, worthwhile
to make some comments on various topological spaces that appear in elemen-
tary modeltheoretic algebra. One has Tarski’s spaces of complete theories in a
first order language. These are Stone spaces, i.e compact, totally disconnected
spaces. The complete extensions of a particular theory form a closed subspace
of the Tarski space. For algebraically closed fields, the Tarski space has isolated
points corresponding to each prime p, and a unique limit point at (character-
istic) zero. This space is Hausdorff, in contrast to the more recent space Spec(
Z), consisting of the prime ideals of Z, with the spectral topology. The map
sending the theory of algebraically closed fields of characteristic p ( possibly 0)
to the corresponding ideal in the spectral space, is a continuous bijection,but
not a homeomorphism, and this is essentially the Lefshetz Principle.

As far as axioms are concerned,the obvious ones have no competitor. One
says, for each n, that monic polynomials of degree n over K have roots in K. It is
notable that for all the K so far discussed the standard axiomatization involves
similar axioms, but for a restricted class of one variable polynomials.

For the real closed fields, there is again no real competitor to the language
with order. But there is a bit of freedom in axiomatization. The standard thing
is to say that positive elements are squares, and odd degree monics have roots.
But there are alternatives here. One is to use the Sign Change Scheme, saying
that if a polynomial changes sign on an interval it has a root there. Yet another
possibility is to say that K(i) is algebraically closed. This points towards the
beautiful results initiated by Neukirch, and mentioned earlier.

For p-adic fields, there are more alternatives even as far as language is con-
cerned. As I pointed out, one can get by in the usual language of field theory,
since the valuation structure is algebraically definable. But the analogue is true
for the reals, and one is not thereby tempted to do without order. If one is
studying general valued fields (and the work of Ax-Kochen and Ershov made
this irresistible) one naturally used some many-sorted formalism (but note that
Tarski’s influence somehow inhibited this move). One possibility is a three sorted
set-up, using value group and residue field. Another is to use one of them. Yet
another option is to use the formalism of places. Another is to use a predicate
for the valuation ring. Most of these options are worthwhile, in appropriate
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contexts, particularly in definability theory. Somewhat different is the option
to use a cross-section, as was done in the first papers. Such a thing is never
definable (in contrast to the notions mentioned above), but exists on suitably
saturated models,and is a great convenience in proofs of completeness. There
is however a slight defect of beauty. Similar remarks apply to the undefinable
angular components use by Pas. But these have been used systematically in all
the subsequent deep results, including Denef-Loeser.

The natural axiomatizations involve Hensel’s Lemma (which has many equiv-
alent forms, most worth knowing) , together with axioms for the value group
and the residue field. When the residue field has characteristic zero, or in finitely
ramified mixed characteristic cases, or in certain ”tame” characteristic p cases,
one thereby obtains a huge range of results on completeness, decidability, and
definability. However, there are major gaps in our knowledge in important
cases such as power series over finite fields. These relate to a limitation in the
essentially uniform proof, which uses immediate extensions and uniqueness of
maximal immediate extensions. The problem with Hensel’s Lemma is that it
may not be strong enough to prevent a field having an immediate algebraic ex-
tension, though it has this strength in the positive cases mentioned. Kuhlmann
[136, 144, 145, 4]has stressed the need for other axioms involving additive poly-
nomials ,but one seems far from understanding this situation.

There is, in certain cases, and notably in the p-adic cases ,the possibility
of using other much more subtle axiomatizations. Koenigmann’s Theorem, the
culmination of work of Neukirch and others, shows that the p-adic fields have
a Galois-theoretic axiomatization. From the work of Cherlin, Macintyre and
van den Dries [34](and indeed earlier folklore) it is known that the condition
on a field K, to have its absolute Galois group isomorphic to a fixed finitely
generated profinite group, is first order. There is very considerable uniformity
in the axiomatizations, as p varies, because of the beautiful shape of the p-adic
Galois groups. One may reasonably hope that this will be useful in advanced
definability theory. What I have in mind is a p-adic analogue, for Kochen’s
[111]work on integer-definite functions, of what Kreisel [155] did for sums of
squares by what is essentially a Galois-theoretic argument.

In the light of the above one sees a new Lefschetz Possibility.And it fits
well with the functoriality of ultraproducts. From a nonprincipal ultraproduct
on the primes one gets , from the family of p-adics, a new Henselian field,
with characteristic zero residue field. It was by no means obvious what axioms
the new residue field satisfied (for that one had to wait four years), but it
was routine from the general work of AKE that the new Henselian field was
elementarily equivalent to the corresponding ultraproduct of formal power series
over finite fields. From this, one could easily, using work of Lang, derive an
almost-everywhere version of the conjectured C2 property of the p-adics (and
this turned out to be optimal). That the ultraproducts were isomorphic under
CH had a certain drama at the time,and there are very difficult set-theoretic
issues arising (dealt with later by Shelah),but currently there is little interest in
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this aspect of the matter.
Though type spaces were beginning to be important in 1964, no attempt

was made to make any analysis, whether in a Lefshetz mode or any other, of
the spaces for the reals and p-adics. It should startle the young reader that
in 1964 logicians knew almost nothing about the structure of definable sets in
dimension more than one over the reals. Of course, the beautiful stability theory
then coming into fashion did not fit any of the above K, except the complexes.

Lecture 3

Model theory of finite fields

The decidability of the elementary theory of finite fields was a prominent prob-
lem around 1960, and the decidability of the corresponding problem for p-adics
was implicitly seen to reduce to this by the AKE analysis. Note that this
was before the negative solution of Hilbert’s 10th Problem. One of course knew
counterexamples to local/global principles for diophantine equations, and might
therefore suspect a vast difference between the universal theory of the p-adics
and the universal theory of the integers. In 1963 Nerode [116] proved the de-
cidability of the universal theory of the p-adics by using the compactness of the
ring of p-adics integers. His proof was for a single p-adic,and no generalization
to all p-adics simultaneously was apparent.

Ax considered the general ultraproduct of finite fields, with a view to under-
standing the almost all theory of finite fields. His most striking observation was
that Weil’s deep result, the Riemann Hypothesis for curves over finite fields (or,
rather, the ensuing Lang-Weil estimates) would provide the dominant axiom for
the nonprincipal ultraproducts. Eršov had detected some special cases of this,
too. The ensuing Weil Axiom Scheme, together with a Galois-theoretic scheme,
completely axiomatized the ultraproducts. While the Galois axiom is true for
all finite fields,the Weil Axiom is true for none, but comes true in the limits
provided by ultraproducts.

Uniformity across Finite Fields

Ax’s axiomatization depends on a nontrivial uniformity:
There exists a function F from N to N , whose exact form is irrelevant, at

least in elementary situations, such that if V is an absolutely irreducible affine
curve over Fq and q ≥ F (genus(V )) then V has an Fq-valued point.

Now, the essential point is that the genus of a curve is bounded above by a
simple function of the degree of polynomials defining the curve, independently
of the coefficients of these polynomials, and independent of the ambient field.
More generally and abstractly, if V belongs to a family of varieties (indexed, say,
by a constructible set) there is a function G of the family so that if q ≥ G((V ))
then V has a Fq-valued point. It follows easily by the Los Theorem that the
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nonprincipal ultraproducts satisfy the property now known as PAC, or (in my
opinion better) regularly closed. This is :

(PAC) Every absolutely irreducible variety has a point.
This was sharpened by Geyer [1], who saw that it is enough to demand that

every absolutely irreducible curve has a point.

Axioms

To establish the above as an elementary axiomatization, one needs to know that
the property absolutely irreducible is first order, that is has a definition not de-
pending on coefficients or ambient field.There are many ways to see this,equally
good unless one has constructive inclinations. For example, one can use the
result, from the Robinsonian theory of bounds in polynomial ideals, that prime
is elementary, combined with Tarski’s quantifier-elimination for algebraically
closed fields.

To complete the axiomatization for the nonprincipal ultraproducts, one im-
poses two other conditions. One is the obvious one, that the fields are perfect,
as finite fields are. The other axiom scheme is more significant. We know,by
counting, and using the Frobenius automorphism of finite fields, that each finite
field has exactly one extension of each finite dimension. Counting has no obvious
useful elementary version, but one can use old fashioned algebra (Tchirnhausen
transformations and the like) to show that the property of a field to have ex-
actly one extension of each dimension) (called quasifinite by Serre) is elementary
[1, 34].

Putting PAC, perfect, and quasifinite together one obtains a set of axioms
for what we now call pseudofinite fields. There is by now a rich theory of these
structures. One may have had reservations about the origins of those fields, in
the farout world of ultraproducts (Mumford) , but their appearance in so many
important results over the last 40 years has surely established their credentials.
They have appeared ”in nature” since, in several ways. Jarden showed that
a generic element of the Galois group of a countable Hilbertian field has fixed
field pseudofinite. Much later van den Dries observed that the fixed fields of an
existentially closed difference field is pseudofinite. Later still, Pop showed that
the field of totally real algebraic numbers is PAC.

Galois Aspects

What I like about regularly closed is that it reveals a model theory (of fields) for
the category of regular embeddings (which includes the category of elementary
maps).The regularly closed fields are just the (Robinsonian) existentially closed
structures for the category of regular maps.

The model theory of regular maps is rather rich, because it has a dual model
theory of Galois groups [34].Regular maps of fields induce (contravariantly)
epimorphisms of absolute Galois groups. The model theory of profinite groups
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is a thoroughly many-sorted affair, with no quantification over group elements,
but rather a whole range of ”bounded ” quantifications over finite quotients.
Its utility depends largely on Herbrand’s inverse limit construction. Finitely
generated profinite groups play the role of finite groups in the comodel theory,
and the Iwasawa or Frobenius groups behave like homogeneous models.

The Galois group of a regularly closed field is subject to a fundamental
cohomological limitation, namely that it is projective. The richness of the theory
depends on the fact that this notion is first-order (for the field), and has many
equivalent formulations. The pseudofinite fields have Galois group Ẑ and this
group is finitely generated.

Ax showed that every pseudofinite field is elementarily equivalent to an ul-
traproduct of finite fields. For this, in characteristic zero, Cebotarev’s Theorem
is used.

Ax uses the conventional isomorphism approach to elementary equivalence,
and his proof yields that two pseudofinite fields are elementarily equivalent if
and only if they have the same characteristic and the same ”absolute numbers”,
i.e the same monic polynomials, in one variable over R, are solvable in each. It
is suggestive to give this a more invariant, less syntactic, formulation. Until one
fixes an algebraic closure of the prime field, the notion of algebraic numbers has
little sense. In fact, what Ax is attaching to a theory of pseudofinite fields ,say in
characteristic zero, is a conjugacy class of closed procyclic subgroups in Gal(Q).
Moreover, his analysis shows that this assignment defines a homeomorphism
form the Tarski space of complete theories of pseudofinite fields of characteristic
zero to the Vietoris space of conjugacy classes of closed procyclic subgroups of
the compact group Gal(Q). James Gray has elaborated this considerably to
fit the entire Tarski space, with no restriction on characteristic, into a Vietoris
space attached to Gal(Q).

From these considerations (but with less abstraction than employed above)
Ax [112] readily proves decidability of the theory of pseudofinite fields, and then,
by attention to the form of his axioms, decidability of the theory of finite fields.

Elimination and the Solvability Predicates

Ax’s student,Katerina Kiefe [34], made the natural extension of the above to
give a quantifier elimination for the theory of pseudofinite fields, in terms of
predicates that Robinson had already used, namely the solvability predicates

Soln(x̄)

where Soln(x0, . . . , xn−1) means that x0 +x1y + . . .+xn−1y
n−1 +yn has a root.

In terms of our emphasis on regular maps, all this is natural. In fact the ba-
sic fact underlying the elimination is that any regular embedding of pseudofinite
fields is elementary, giving a Robinson’s test in the language with the solvabil-
ity predicates. This point of view was first stressed by Eršov, and discovered
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by me later and independently.Note that the solvability predicates include the
power predicates, but only in special cases of pseudofinite fields will the power
predicates give quantifier elimination.

It seems to me worthwhile to go on to give a Galois theoretic interpretation
of the type spaces, along the lines of what was said above for the Tarski space
of complete theories. Indeed, I favour looking for an interpretation in terms of
etale fundamental groups. The currently most atractive version of quantifier
elimination is the Galois stratification devised by Mike Fried (a beautiful and
important idea, naturally linked to cell decompositions and stratifications) and
developed by him, Jarden and Haran [1].Recently it has been used systematically
by Denef and Loeser, and in his Beijing talk Denef makes some progress in
giving this an invariant formulation. At issue is the extent to which the Galois
stratification formalism goes beyond first-order logic.

Jarden led the effort to detach the study of PAC fields from the special case
of pseudofinite fields, and the book of Fried and Jarden conveys how much can
be achieved. The projectivity of the Galois groups allows the comodel theory to
flourish over a huge range. However,I think it fair to say that till now the general
case has had little relevance for number theory. An exception can perhaps be
made for the efforts of Fried and others on the inverse Galois problem.No doubt
Pop will discuss these matters.

Separably Closed Fields

Eršov [42] early on dealt with the special case of separably closed fields,before
any of the work on regularly closed fields.The metamathematical analysis is by
no means as easy that that for algebraically closed fields,and on the other hand
has special features not shared by all regularly closed fields.Such notions as p-
basis and separable transcendence basis are crucial to his analysis.Moreover,he
was aware of a link to differential algebra,as was I when I lectured at Yale in the
early 1970’s.Carol Wood [147]was for a long time the only author except Eršov to
write on these matters.One odd twist is that the interesting result that separably
closed fields are stable (and they are widely believed to be the only stable fields)
came somewhat indirectly during audience participation at a Shelah lecture
at Yale in 1975.Shelah had proved stability for differentially closed fields in
characteristic p,without remarking that this showed that separably closed fields
are stable. It is remarkable that the model theory of those fields,so long regarded
as of little interest,is now of central importance,because of Hrushovski’s use of
it in applications to diophantine geometry (see the Pillay-Scanlon lectures).For
the modern theory of separably closed fields,see [139, 141, 143, 119, 123].

Making Frobenius Explicit

I have stressed that Ax’s work is inspired by Weil’s, but it uses only the most
superficial aspects of Weil’s vision .One has gradually come to see how to bring
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more of it into the logical understanding. Firstly, Chatzidakis, Macintyre and
van den Dries [20] brought into the definability the rudiments of the numerol-
ogy of the Riemann Hypothesis for curves, assigning to definable relations di-
mensions,and counting definable sets over finite fields. In particular one again
encounters the phenomenon of algebraic boundedness.

An important effect of this paper was to inspire Hrushovski to observe that
pseudofinite fields are simple, in the sense of a partially forgotten notion of
Shelah. This restarted the study of simple theories, and led to a series of
impressive papers. Chatzidakis [118, 121]went on to characterize simplicity, for
PAC fields, in terms of smallness of the Galois group. In addition, she made a
deep study of the notion of forking in the setting of PAC fields.

Note that as in the earlier cases definable maps are piecewise algebraic.
Moreover, definable sets may not be quantifier-free definable, but they have
etale covers by quantifier-free definable sets, an observation suggestive if one
wants to make this area more geometric.

But the most obvious feature of the Weil analysis not yet made model the-
ory is the role of the Frobenius map, with its action on cohomology, and its
associated eigenvalues, whose sums count points on varieties. We do not, even
now, have all this under logical control, but the ongoing attempt has produced
much of value.

If we think of the origins of pseudofinite fields, we are tempted to carry
along more structure. Thus, the field Fq is the fixed field of the Frobenius au-
tomorphism on the algebraic closure of the prime field. The inevitable question
is:

What is the theory of the ultraproduct of the automorphisms?
This question includes the one Ax answered, since the pseudofinite field is

the fixed field of the ultraproduct of the Frobenii (by functoriality of ultra-
product). So it must be difficult, and indeed it is. The two known solutions
involve at a minimum detailed information from Deligne’s [103] work on the
Weil Conjectures for affine varieties.

I posed essentially this problem in the 1980’s in the context of structures
consisting of algebraically closed fields carrying a Frobenius automorphism, at
the outset the basic Frobenius map of exponentiation to power p. The point
of view was that of the Lefshetz Principle. What happens if we let not merely
the characteristic, but also the Frobenius, vary? The difference from the classic
case of algebraically closed fields is that there is no Frobenius in characteristic
zero. But of course the ultraproduct creates one.

I began by thinking that the theory of the Frobenius, as p varies, might be
undecidable.Later I stepped back, and asked the more fruitful question :

Is the class of existentially closed fields-with-automorphism elementary?
The question, once asked, was not so hard to answer. Robinson’s work,for

example on differentially closed fields, provided a strategy. One looks to see
how much one would need to know about systems of equations in the extended
language in order for Robinson’s Test to give one model-completeness. The ax-
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iomatization is definitely harder to find than Robinson’s, but it could have been
found in Robinson’s time, and by Robinson’s methods. Once I saw the axiomati-
zation [94],now known as ACFA (which would later be put in a more suggestive
form by Hrushovski) I asked myself if this might in fact be the axiomatization
for Frobenius as well. Early,but slight, grounds for optimism came from van
den Dries’ observation that the fixed field of such a generic automorphism is
pseudofinite.So ACFA enriches the theory of pseudofinite fields.

The axioms were better aligned with Robinson’s when one made the es-
sentially trivial observation that these axioms were the axioms for a generic
difference field. Later this would have unexpected consequences for a very
deep problem of Jacobi [140] in difference algebra.(Later work,by more con-
ventional ideas,succeeded in mastering the metamathematics of the lifting of
Frobenius to the Witt vectors over an algebraically closed field.This was done
by Belair,Macintyre and Scanlon.The full version is not yet accepted for publica-
tion,but a short version is available [92].It is of definite interest that the analysis
is given partially in terms of the p-derivation associated to the Frobenius,thus
giving a link to the logic of differential algebra).

My axioms were formulated in terms of iterations of the automorphism.
This keeps the formal dimension of the problem down, but it conceals a feature
which Hrushovski brought out, namely that the axiom scheme (now called H)
crucial for generic automorphisms has the same shape as the main diagram one
meets in one of Weil’s formulations for the Riemann Hypothesis for curves. It
differs in that it considers conjugate varieties, whereas Weil need only consider
varieties over the fixed field. Once one sees this formulation,one sees what one
will need to prove about Lang-Weil estimates in the difference algebra situation.
Unfortunately,the literature was silent on this at the beginning of my work on
the problem. Eventually I learned that related issues are involved in the work
of Pink and Fujiwara on a Conjecture of Deligne (used more recently by Taylor
and Harris in connection with the local Langlands Conjecture for general linear
groups). From these papers I eventually found my way to the proof that the
axioms for Frobenius are the axioms for a generic automorphism. Hrushovski
found an essentially different proof independently.

The complete extensions of ACFA are classified ,say in characteristic zero,
by conjugacy classes of elements in Gal(Q). They are simple, and no doubt the
most interesting simple theories which are not stable.Because of the presence of
the automorphism, one cannot hope to have the definable functions piecewise
algebraic, but they admit an obvious analogous description [94]. There is a
quantifier-elimination involving an obvious elaboration of the solvability predi-
cates. In general the metamathematical analysis, at Robinsonian level, follows
the lines of Ax’s for pseudofinite fields. For example, one easily gets decidability.
However,by the time ACFA appeared one was ready to apply to it analogues
of notions from Morley theory [62, 63] and this has proved surprisingly power-
ful in Hrushovski’s [64] application to the Manin-Mumford Conjecture (see the
lectures of Pillay and Scanlon).
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For me personally, the main surprise arising from the discovery of ACFA
was how much there was to be done in terms of a model-theoretic reaction
to the development of etale cohomology and its relatives. Ultraproducts of
Weil cohomology theories [91] make some small contribution to the motivic
vision, and bring out some uniformities connected to the Standard Conjectures
(but unnoticed by the experts). This particular development is directly in the
line of Robinson’s early work on bounds in polynomial ideals. Independently,
Schoutens has carried on significant investigations in this line, for advanced
commutative algebra.

Again, in a different direction, one begins to see cohomological ideas coming
up all over applied model theory, for example in o-minimality.They are certainly
present in the work of Denef and Loeser, currently a high point of the subject.
However, they are not so obvious in p-adic settings. There seems no obstruc-
tion in principle now in making an analysis of crystalline cohomology from a
modeltheoretic perspective.

Lecture 4

p-adic integrals

A great advance was made here, initiated by Denef. Hensel’s Lemma is the main
axiom scheme underlying p-adic fields, but there is more that can and should
be said. In trying to find out if equations are solvable in the p-adic integers, one
succeeds if there are nonsingular solutions modulo p, but otherwise one has to
keep on trying. By compactness of the p-adic integers, there is a global solution
if one has solutions modulo all powers of p. But what is the uniformity in how
far one has to go? Indeed it is not obvious there is any bound or uniformity.
Before AKE, Greenberg and others had uncovered uniformities, and Igusa and
others had considered various generating functions coding the numerology of
solutions modulo powers of p. Though Hensel’s Lemma is not always directly
applicable, there are strong regularities suggesting that the generating functions
(Poincare series) should be rational. Such conjectures were made by Borevich
and Shafarevich, as well as Serre and others.

Denef used a known device for converting such sums over the p-adics to
integrals against the Haar measure, and then exploited the cell-decomposition
to calculate the integrals by systematic use of Fubini’s theorem. For a model
theorist, the beauty of the method is that it works for arbitrary integrals coming
from definable functions on definable sets, and so reveals, albeit in a slightly
compressed way, a measure of how truth or satisfaction in the p-adic integers
relates to truth in the residue rings (an idea already prominent in Cohen’s
paper).

The method had an immediate impact on group theory,when it was real-
ized that certain generating functions attached to nilpotent groups are of the
form calculated by Denef. When,rather later, Denef’s method was extended
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to an analytic setting, there were deeper applications to p-adic analytic groups
[148, 149]. And when Denef and Loeser made the uniformities transparent in a
motivic setting, the group theory profited. Indeed,there is hope that the method
will allow the solution of some old, and fundamental, problems of Higman on
counting p-groups.

Denef inevitably turned his attention to uniformities in his result. First he
considered, as usual, uniformities in parameters, in terms of how the rational
function varies. The ideas for this are essentially in his cell decomposition.
However, when one turns to uniformity in p, i.e how rationality (in the complex
power of p) as p varies, the matter is more complicated. This led to the papers
of Pas [87, 88] and me [98]. Pas’ paper uses the undefinable primitive , angular
component, and has been the source of choice for later applications. I used
a many sorted formalism which took account of the residue rings as p varied,
and ultimately was to take account of the Weil numbers and the like.B ut my
formalism is not very suggestive. The ultimate uniformity is revealed by motivic
methods, and Pas’s formalism is used.

As p goes to infinity, one converges in the Tarski topology from the p-adics
to power series over pseudofinite fields, and the uniformities are ultimately to
be explained in terms of these objects and their motives.

Real and p-adic exponentiation

From the mid 1970s onward some people in the area of applied model theory
began to confront Tarski’s notorious problem about the decidability of the real
field enriched by the exponential function. Tarski had known that the complex
field with its exponential is Gödelian, because one can define 2piZ and thereby
Z .( However, at the end of these lectures I will discuss a refinement of this
judgement due to Zilber).In any case there was no evident definition of Z in
real exponentiation, and people began to rediscover the result of Hardy that
real exponential polynomials (iterations of exp allowed) in one variable have
only finitely many zeros on the real line, with a uniformity in terms of the
complexity of the exponential polynomial. One was also aware of Strassmann’s
theorem (used long before by Skolem!) about finiteness of zero sets of convergent
power series on the p-adic integers, which of course gives an analogue of Hardy’s
result.

Van den Dries and I, and the group at the Humboldt University [95, 100, 150,
153, 156, 151, 152, 154] used power series methods, and ideas from Rosenlicht’s
work, to make some progress on the nature of definitions in real exponentiation.
Little did we suspect that we were already dealing with a formal nonstandard
model of real exponentiation!(See [83, 5]. But it seems fair to say that our secure
understanding of the model theory of valuations was useful for us then, and for
the subject in future developments.

From the early 1980’s I was aware of the possibility that one could use
the commutative algebra around Weierstrass Preparation to reduce analytic
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problems to algebraic ones,and perhaps make inroads on the real and/or p-
adic exponential. For the p-adic case this is explicitly spelled out in a paper
given at a computer science meeting in 1983 [101]. What I knew was missing
was a uniformity in noetherianity around the Weierstrass theory. I could not
prove this, and people I asked gave me little encouragement. But in fact it was
the right way to go, and it was taken in splendid style in 1986 by Denef and
van den Dries [27]. They used a uniformity of the kind I had sought to lift
the elimination theory for the p-adics, in terms of the power predicates, to the
setting of the p-adic integers equipped with a vast array of functions defined by
suitably convergent power series.

The consequences were dramatic. Van den Dries had been well aware of
Gabrielov’s work on subanalytic sets [133], and, indeed,it was its analogy with
Tarski’s real theory that led van den Dries to the basic insights about o-minimal
theories [16, 9].Now one had a p-adic analogue, not merely of Gabrielov’s no-
tions, but of most of the main results, due to him, Hironaka and Lojasiewicz,
about subanalytic subsets of real compacta. And, to cap a lovely achievement,
they used the p-adic analogue to give a new treatment of the real case, entirely
parallel to the p-adic.

The consequencs for the logic of exponentiation were many. On the one
hand,one now hoped that the real exponential was o-minimal, a hope realized
by Wilkie in 1991. For the p-adic exponential, I was able to prove a model
completeness result in a language enriched by p-adic trigonometric functions
(this owed a lot to ideas of van den Dries). I made essential use of the fact that
the Galois group of the p-adics is small.

Some natural possibilities were not explored. The analytic functions from the
p-adic case are defined also on the maximal unramified extension of the p-adics,
but no one seems to know exactly what goes on with their elementary theory.The
difference with the p-adics is that one has given up local compactness. Another
issue only partially explored is the uniformity in p of the results. Yet another,
only now sorted out, is the issue of cell decomposition in the p-adic analytic
setting [84].For o-minimal theories, cell decomposition, and more refined results,
are part of the general theory.

As van den Dries and Denef observed, their results do nevertheless give
rationality results for p-adic integrals based on analytic data. This proved very
important for group theory, notably in the work of du Sautoy. . But as far as I
know, one has not yet mastered uniformity in p for the analytic situations.

What was done, and it is very hard, and arguably as important as the p-
adic case, was a metamathematical analysis of rigid analytic problems. Here one
works on the completion of the algebraic closure of the p-adics, in the sophisti-
cated world first understood by Tate.The key players were the respective pairs
Lipshitz-Robinson and Gardiner-Schoutens. I do not have time to say more.
Fortunately there is a detailed account in the Asterisque volume of the first pair
[77, 78, 80, 81, 79] .We still await applications of this beautiful work.Note that
there is an important paper [8] where one uses elementary results from the rigid
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case to get uniformity in ”minimality” for the p− adic analytic case.

Schanuel’s Conjecture

Schanuel formulated his conjecture in 1960 in a complex setting.It says:

If λ1, . . . , λn ∈ C, and are linearly independent over Q, then

Q(λ1, . . . , λn, exp(λ1), . . . , exp(λn))

has transcendence degree ≥ n

It seems to explain all transcendence results about exp known or hoped for.
The reader new to it should try to derive the transcendence of e, pi and so on.

I was aware for a long time that some aspects of this had to be faced in the
setting of Tarski’s problem on the decidability of real exponentiation. After all,
if exp(e) is algebraic, there will be a sentence of Tarski’s language expressing
the particular equation it satisfies over Q. If one is confronted with a statement
that exp(e) is a root of a particular equation, how does one settle this? Easily,if
exp(e) is transcendental. But otherwise,how? There is a p-adic Schanuel’s
Conjecture too, relevant to the decidability of the p-adic exponential.

Since Ax is already marked as a hero of our subject, it seems reasonable
to draw attention to his beautiful proof, using differential algebra, of a power
series analogue of Schanuel’s conjecture [106, 107, 108, 109, 110].

Van den Dries and I, in the early days of work on exponentiation, considered
various universal algebraic issues around E-rings, that is, rings equipped with
a map E satisfying

E(0) = 1, E(x + y) = E(x)E(y).

We proved various completeness theorems for identities, in complex, real, and
p-adic settings.I showed,with more effort, that Schanuel’s Conjecture implies
that the E-subring of the reals generated by 0 is free on no generators [97]. And
I proved the p-adic analogue. This gives a decision procedure for testing if two
exponential constants are equal, something not known unconditionally. In any
case, it is a tiny contribution to the original Tarski problem.

In 1980 Hovanskii [126] raised our hopes by giving uniform bounds, across
families, for the number of connected components of quantifier-free definable
sets in the real exponential field. The methods were ultimately Morse-theoretic.
Over the next decade Wilkie worked patiently to make this yield the o-minimality
of real exponentiation. He first proved a series of model completeness results
for restricted Pfaffian fragments of the real field [25]. Curiously,it turned out
that Gabrielov [122] could remove the Pfaffian assumptions here, but in fact
the details of Wilkie’s proof were to be crucial in the denouement of the Tarski
problem. One striking thing he discovered was that , as in the original real case,
and in the p-adic case, definable sets,though not quantifier-free definable, have
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etale covers which are defined by exponential equations. And it is this feature
which brings Schanuels’s Conjecture into the denouement.

The final push by Wilkie, to deal with unrestricted exponentiation, used the
accumulated wisdom of o-minimality and some valuation theory not very far
from the classical ideas on immediate extensions. The conclusion was model
completeness,and thereby o-minimality , for the real exponential field [7] show-
ing in particular that it is nonGödelian. In effect this was the solution of the
Tarski Problem, in the terms that now dominated the subject. But it certainly
did not yield decidability, and for this Schanuel’s Conjecture proved crucial.

Decidability

Wilkie’s final proof depended on his earlier one for restricted exponentiation.
In neither proof is there an explicit axiomatization of the theory that is proved
model complete. Even more surprisingly, once one had an axiomatization one
did not see directly that it was equivalent to a universal-existential axiomati-
zation (as it is, since it is modelcomplete). Wilkie and I [3] looked carefully at
what axioms are being used, first for the restricted case. The logic of the sit-
uation is particularly interesting. We found, unconditionally, a recursive set of
axioms which is modelcomplete. These axioms schemata involve natural prin-
ciples, but their syntactic complexity is daunting. For the unrestricted case ,we
do not directly find a recursive set of modelcomplete axioms. The point is that
to get such we need first to have a complete set of axioms for the restricted
case, and for this we need the universal theory of the restricted case to be de-
cidable. Schanuel’s Conjecture gives us that. We put solvability questions into
the special etale form alluded to above;

∃ x1, . . . , xn [F1 (x1, . . . , xn, exp(x1), . . . , exp(xn)) = 0
. . .

Fn (x1, . . . , xn, exp(x1), . . . , exp(xn)) = 0

∧ Jacobian of (F1, . . . , Fn) at x̄ is 6= 0 ]

where the Fi’s are polynomials over Q in x1, . . . , xn, y1, . . . , yn.
Note that we are asking about the presence on an algebraic set in affine 2n

space of a point on the (multidimensional) graph of exponentiation. Note the
close formal similarity to the axioms for generic automorphisms. The nonsin-
gularity assumption, coming from the etale condition, forces the graph point to
have dimension no more than n over Q. But Schanuel forces the dimension to
be no less than n. So we get a direct dimension estimate for the point sought.
After that, fairly routine considerations involving our Newton Approximation
Scheme (Hensel’s Lemma in effect!) allow us to decide if there is a point or not.
In this way we end with a complete, recursive, model complete set of axioms
for the restricted case. Then we readily find a recursive model complete set of
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axioms for the unrestricted case, and use work of Wilkie/Ressayre to show this
complete, giving decidability.

Real exponential-algebraic numbers

There is an idea implicit in our thinking [3] concerning the notion of algebraic
in a real exponential setting. Since we do not make it explicit there, and no one
has done so in print subsequently, it makes sense to make a digression on this
matter.

Hardy had shown that exponential polynomials in one variable have only
finitely many real roots. Note that this is a real phenomenon, failing in the
complex situation. This might tempt one to define exponential-algebraic reals
as being roots of such exponential polynomials over Q. But this appears not to
be the right notion, because we are not able to show that the points of trans-
verse intersection of two 2-variable exponential polynomials (Hovanskii proved
that there are only finitely many such points) have their coordinates exponen-
tial algebraic in the proposed sense. On reflection the right notion is to define
exponentially algebraic tuples to be tuples solving a Hovanskii system,and then
define exponentially algebraic elements to be coordinates of such tuples. Us-
ing the fine detail of Wilkie’s 1991 work,one can show that the exponentially
algebraic elements form the prime model of the theory of real exponentiation.
Moreover, Schanuel’s Conjecture implies that this prime model is a computable
exponential field. And finally, using Schanuel’s Conjecture one shows that pi is
not in this field! One certainly does not know how to prove this unconditionally.

The p-adic case

We have not got nearly so far in our analysis of the p-adic exponential. In
1990 I gave a model-completeness proof using p-adic trigonometric functions as
extra primitives. But one does not know axioms, nor has one identified any
analogue of the etale phenomenon. I was able to give effective upper bounds
for the number of roots of unary polynomials, and one knows from Denef-van
den Dries that there is a theorem of Hovanskii type, but no effective bounds are
known. Maybe one should turn to the rigid case at this point.

Zilber’s ideas on the complex exponential

My final topic, unfortunately to be described only briefly, is Zilber’s programme
[157, 158, 159, 160] concerning the complex exponential. This begins with the
observation that Schanuel’s Conjecture for the complexes is of the following
form:

δ(x̄) ≥ 0,

where

δ(x̄) = t. d. Q (x1, . . . , xn, exp(x1), . . . , exp(xn))− l. d. < x1, . . . , xn >,
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t.d. is the transcendence degree and l.d. is the linear dimension.
One had seen things like this quite often since the mid 1980’s, in connection

with stable and simple theories originally. Hrushovski [10, 12, 17]had used
such ”predimensions” δ to construct exotic models by an ingenious variation
on the classical Fraisse method. The method is really a natural extension of
various forcing methods used by the Robinson school in the 1970’s. Using
the predimension on small (usually finite) relational structures one develops a
notion of strong morphism. This is not quite a first-order notion, but it has
good limit properties. In fact it has, like many other forcing notions, a simple
definition in a fragment of infinitary logic (Keisler’s book on this,and related
later papers [130, 131] will give a good idea of what I mean). But really all
that is involved is a poset condition, and one gets generics, etc, more or less
routinely. There are differences, of course. For example, the method does not
construct existentially closed models in the old Robinsonian sense, but rather
an analogue relative to the category of strong embeddings. It turns out that
the role of universal-existential formulas is take over by Boolean combinations
of existential formulas.

There are a number of very striking examples where the method leads to
omega-stable elementary classes, notably in the area of generic curves and
generic functions, which even have analytic models [66].

Zilber considered certain fields with exponential (just the obvious axioms)
and considered the class of Hrushovski generics for the Schanuel predimension.
In fact, for technical reasons he considers various sorted variants of exponential
fields, but this is not really the point.

The essential point is that he considers models of the Schanuel infinitary
axiom,which is in effect an omitting-types axiom,together with an infinitary
axiom forcing the kernal of exp to be standard(this is the only way to avoid
Gödelian phenomena) and then constructs existentially closed models by the
Hrushovski method. One then identifies Lω1,ω axioms, formally related to those
for ACFA,specifying which systems of equations are solvable.Essentially the ax-
ioms,very close to first-order,say that systems of exponential equations have
solutions unless they formally conflict with the functional equation for exp.

The final restriction is to impose an Lω1,ω(Q) condition,corresponding to the
fundamental analytic property of the complexes,that zero-dimensional analytic
varieties in affine space are countable.This condition has the effect of forcing
a tight structure theory for prime models in the now restricted category of
models.What is most striking is that this is model theory of Shelah type for ab-
stract elementary classes [135, 127](with origins in work of Keisler from around
1970).Such infinitary model theory has had little impact till now on algebra or
geometry,though of course Shelah’s work on prime models for stable theories
was very important for differentially closed fields.

What is most interesting is not that one gets the existence of models in
all cardinalities, but that one has a prime model technology, and in particular
one has uniqueness of prime models over independent sets. Further, one has
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a minimality phenomenon for the class of prime models over independent sets,
showing in particular that definable sets are either countable or of maximal
cardinality.

Zilber speculates that in particular one gets the complex structure in this
way,as the canonical model in power continuum. Of course this will be hard
to prove, as it implies the Schanuel Conjecture(we are forcing the Schanuel
condition to hold).In fact,it implies much more that one would love to have,for
example the so-called Conjecture on Intersection with Tori (and it all relates
to Ax’s work).It is an inspiring picture,and it is also salutary from a more
philosophical view,showing a way through a Gödelian world towards deep results
in definability.

Zilber’s (latest) conjecture implies that the set of reals is not definable in
the complex exponential field.This is not known unconditionally.It also implies
that the complex exponential field has automorphisms other than the identity
or complex conjugation,an issue raised long ago by Schanuel and Mycielski.

A Final remark about Axioms

It is instructive to see how the shape of the core axiom systems has changed
over 40 years.Robinson’s axioms were always formulated in terms of solving
equations in a single variable,and this kind of formulation prevailed through the
AKE revolution.For regularly closed fields,one was obliged to use axioms about
higher-dimensional varieties, though Geyer allowed one to restrict to planar
curves. At various times in the 70’s I looked at extensions of the theory of
differentially closed fields to other theories of fields with derivation, and I found
it natural to formulate corresponding axioms in terms of varieties of higher
dimension and their ”transforms” under the derivation. A more elegant version
of this was presented by Pierce and Pillay in [142].

The axioms for ACFA are of this form too,giving consistency conditions for
the multidimensional graph of the automorphism sigma to meet a subvariety
of the product of a variety and its ”transform”. And Zilber’s axioms are of this
form too, for exp, but with a mildly infinitary flavour.

There are other cases where one has given detailed metamathematical anal-
yses without using such formulations,but where it may well be valuable to con-
tinue to search for such axioms. Obvious examples are the real exponential
field,and the Witt Frobenius [92].

Finally,I did not have time to consider important examples such as the ring
of algebraic integers,where one has a local/global principle as axiom [23, 146],or
the ring of adeles, which I hope to treat with the students on my project.
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[128] Neukirch, Jürgen . Über die absoluten Galoisgruppen algebraischer
Zahlkörper. (German) Journées Arithmétiques de Caen (Univ. Caen,
Caen, 1976), pp. 67–79. Asterisque, No. 41-42, Soc. Math. France, Paris,
1977.
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