Outline of the lectures “ Motivic and p-adic integration” by Francois Loeser

My goal is to explain the basics of p-adic integration and motivic integration and to
discuss some connections with Model Theory.

Lecture 1: p-adic integration. We will explain the basics of p-adic integration on
smooth varieties, its relation with number of points of reductions modulo p™ (Oesterlé’s
Theorem) and applications to rationality of Poincaré series (work of Igusa and Denef). We
shall conclude by presenting Denef’s results on the measure of definable sets.

Lecture 2 : Motivic integration. Arc spaces. Grothendieck rings of varieties.
Construction of motivic measures and basic properties. Change of variable formula. Ap-
plications to rationality results.

Lecture 3 : Assigning virtual motives to definable sets. We shall explain first Chow
motives, Galois stratifications and quantifier elimination for pseudo finite fields. Then we
will be able to assign a virtual motive to definable sets. We shall explain how it relates to
counting points.

Lecture 4: Arithmetic motivic integration. Using results from the previous lecture,
we shall round the loop by explaining how one can construct motivic integrals that spe-
cialize to p-adic ones. If time allows we shall show how this fits in a much more general
framework.

Prerequisites : Familiarity with the language of Algebraic Geometry (as developed in
Hartshorne’s book) and with the most elementary part of Model Theory.
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Project 1) The quantifier elimination Theorem of Fried and Sacerdote plays a basic role in
Lecture 3. The proof presented in the book [5] (Proposition 25.9 of [5]) is given in a very
algebraic language and could be translated in more geometric terms using basic knowledge
of Algebraic Geometry such as Galois Theory for coverings of schemes, The project has 2
steps:

- the first is to present a neat self-contained geometric proof of Proposition 25.9 of [5].

- the second is to find (and to prove) a generalization of that result over a more general
base than the spectrum of a field.

Suggested readings for the project: Familiarity with the relevant chapters of [5] and
learning about geometric aspects Galois covers in [13].

Project 2) The complete proof of Theorem 6.4.1 in [9] (the main result in lecture 3)
is scattered between 3 places ([6], [8] and [9]). The project would be to rearrange the
arguments given or sketched in these papers to be able to write down a self contained
direct proof of the Theorem.

Suggested readings for the project:
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