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Abstract

We give examples of abelian variety quotients of the modular jaco-
bian J0(N) with nontrivial visible Shafarevich-Tate groups. In computing
these examples we developed formulas for invariants of higher dimensional
modular abelian varieties.

Introduction

In [4] Cremona and Mazur studied visibility of Shafarevich-Tate groups of el-
liptic curves E ⊂ J0(N). This paper extends some of these computations to
higher dimensional A ⊂ J0(N). For each N ≤ 1001 and N = 1028, 1061, we
compute the analytic rank 0 new optimal A in J0(N) having nontrivial odd
visible Shafarevich-Tate group, visible in the new part of J0(N). A total of 19
such A were found having X of order the squares of: 3, 5, 7, 32, 11, 13, 151. Our
computations say little about invisible elements of X, however see [1]. The
algorithms developed for computing invariants of modular abelian varieties are
also of some interest.

Acknowledgment: It is a pleasure to thank Barry Mazur for his brilliant
lectures on visibility, Ken Ribet and Robert Coleman for explaining monodromy,
and John Cremona for explaining modular symbols. The author would also like
to thank Richard Taylor and Loic Merel for comments, and Amod Agashe for
many useful discussions and proving Theorem 2.7.

Notation

Let S2(N) = S2(Γ0(N),C) be the space of cusp forms of weight 2 for the
subgroup Γ0(N) ⊂ SL2(Z). Thus S2(N) can be identified with the differentials
on the modular curve X0(N). Let J0(N) denote the jacobian of X0(N). Denote
by H1(X0(N),Z) the integral homology of X0(N). The Hecke algebra T acts in
a compatible manner on S2(N), H1(X0(N),Z) and J0(N). The letters f and g

∗Amod Agashe will be a joint author of this paper as soon as he has had a chance to agree
with what it says.
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are reserved for newforms, i.e., normalized eigenforms for T in the complement
of the old subspace of S2(N). Let f1, . . . , fd denote the Galois conjugates of f ,
and If = Ann(f) the annihilator of f in T.

1 Optimal abelian varieties and newforms

An abelian variety quotient of J0(N) is called optimal if the kernel is connected.
We associate to f an optimal quotient Af of J0(N):

0 → IfJ0(N) → J0(N) → Af → 0.

Let H = H1(X0(N),Z), S2 = S2(N), and recall that integration defines a non-
degenerate pairing S2 ×H → C, hence a map H → HomC(S2,C). Composing
with restriction to S2[If ] defines a map Φf : H → Hom(S2[If ],C).

Theorem 1.1. Af is an abelian variety of dimension d with canonical L-series

L(Af , s) =
d∏

i=1

L(fi, s).

The complex uniformization of the tori Af (C) and A∨f (C) is described by the
following diagram

0 0 0
↓ ↓ ↓

H[If ] −→ H −→ Φf (H)
↓ ↓ ↓

Hom(S2,C)[If ] −→ Hom(S2,C) −→ Hom(S2[If ],C)
↓ ↓ ↓

A∨(C) −→ J0(N)(C) −→ A(C)
↓ ↓ ↓
0 0 0

in which the vertical columns are exact but the rows are not.

Proof. [16] and section 1.7 of [5].

1.1 The Birch and Swinnerton-Dyer Conjecture

Let A/Z be the Neron model of A = Af . The Tamagawa number cp

is the number of Fp-rational components of the special fiber AFp . A basis
h1, . . . , hd for the Neron differentials defines a measure µ on A(R) and we let
ΩA = µ(A(R)). Let w : H1(Q, A) → ∏

v H1(Qv, A) and set X = Ker(w). If
L(A, 1) 6= 0 it is known [9] that A(Q) and X(A) are both finite. One then has
the following fundamental and still open

Conjecture 1.2 (Birch, Swinnerton-Dyer, Tate).

L(A, 1) = ΩA ·
|X| ·∏p|N cp

|A(Q)| · |A∨(Q)| .
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1.2 The Manin Constant

Let Sf (C) ⊂ S2(N,C) denote the subspace of cusp forms spanned by the con-
jugates of f . There are two lattices in Sf (C). One is the lattice Sf (Z) of cusp
forms with integer Fourier expansion at infinity. The other Sf (A/Z) is got by
pulling back the Neron differentials defined above. The Manin constant is

cf = [Sf (Z) : Sf (A/Z)].

We are aware of no examples of newforms f for which cf 6= 1. It is reasonable
to expect that one can extend methods known for elliptic curves (e.g., [11]) to
show that cf is at least coprime to 2N .

Later in this paper we give a formula for L(Af , 1)/Ωf where Ωf is computed
using the lattice Sf (Z). Thus our BSD special value is off by the Manin constant.
For the remainder of this paper we officially assume

Conjecture 1.3. cf = 1

1.3 Connecting Mordell-Weil and Shafarevich-Tate

Let f, g ∈ S2(N) be nonconjugate newforms and Af , Ag the corresponding
optimal quotients of J0(N). Let m ⊂ T be a maximal ideal such that A∨f [m] =
A∨g [m] ⊂ J0(N). Let p be the residue characteristic of m. Assume that p -
2N ·∏p|N cpc

′
p where c′p are the Tamagawa numbers of Ag.

Under hypothesis such as these we expect there to be a commutative diagram

0 → Af (Q)/mAf (Q) → X → X(Af )[m] → 0
||

0 → Ag(Q)/mAg(Q) → X → X(Ag)[m] → 0

with exact rows. Here X is an abelian group, H1(SpecZ, Af [m]). A precise
statement will not be given here as the purpose of this paper is merely to
present a few algorithms and computational results.

2 Algorithms

2.1 Modular Symbols

Modular symbols give a presentation of the homology of the modular curve
X0(N). Here we briefly review modular symbols for Γ0(N). More information
on how to actually compute with them can be found in [3], [7], and [12].

Define the space of modular symbolsM(N,Z) to be the free abelian group
generated by symbols {α, β} such that α, β ∈ P1(Q) = Q∪ {∞} subject to the
relations

0 = {α, β}+ {β, γ}+ {γ, α},
{α, β} = {g(α), g(β)}, all g ∈ Γ0(N).
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The space of boundary symbols B(N,Z) is the free abelian group generated
by symbols {α}, α ∈ P1(Q), modulo the relations

{α} = {g(α)}, all g ∈ Γ0(N).

The cuspidal symbols S(N,Z) are the kernel of the boundary map ∂({α, β}) =
{β} − {α}:

0 → S(N,Z) →M(N,Z) ∂−→ B(N,Z).

The Hecke algebra act onM(N,Z) and there is an involution ∗{α, β} = {−α,−β}.
Integration defines a pairing

S2(N)×M(N,Z) → C.

The Manin-Drinfeld theorem asserts that the image ofM(N,Z) in Hom(S2(N),C)
is a lattice. There is a natural isomorphism between S(N,Z) and H1(X0(N),Z).

2.2 The Method of Graphs

We briefly review the method of graphs, see [13] and [15] for more details. Let M
be a positive integer, p a prime not dividing M , and put N = pM . Let D be the
finitely generated free abelian group on the superingular points of X0(M)(Fp),
i.e., the enhanced elliptic curves E = (E, C) where E is a supersingular elliptic
curve defined over Fp and C is a cyclic subgroup of order M , and enhanced
curves are identified if they are isomorphic in the evident way. Let wE = |Aut(E)|

2

where Aut(E) is the group of Fp-automorphisms of E. We have wE ≤ 12 and
if p ≥ 5 then wE ≤ 3. The monodromy pairing on D is

〈E,E′〉 =

{
wE if E = E′

0 if E 6= E′

The Hecke operators act on D in a way compatible with this pairing. Define

XN,p = {
∑

aEE :
∑

aE = 0}

It is known that XN,p ⊗C is isomorphic as a Hecke module to the subspace of
S2(N,C) generated by newforms and oldforms of level pd for d|M .

David Kohel [8] has implimented an algorithm which computes the action
of the Hecke operators on XN,p using the arithmetic of quaternion algebras.

2.3 Enumerating quotients of J0(N)

It is necessary to list all newforms of a given level N . This can be done by
decomposing the new subspace of the modular symbols S(N,Q) using the Hecke
operators. The characteristic polynomial of T2 is computed, and then T2 is used
to break up the space. The process is applied recursively with T3, T5, . . . until
it terminates. After computing the decomposition we order the newforms as
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suggested by Cremona: First by dimension. Within each dimension, in binary
by the signs of the Atkin-Lehner involutions, e.g., +++, ++−, +−+, +−−,
−+ +, etc. When two forms have the same involutions, order by |Tr(ap)| with
ties broken by taking the positive trace first. For historical reasons this does
not always agree with the ordering in Cremona’s tables (page 5 of [3]). There
is only one case in our table in which the two ordering schemes disagree, our
446B is Cremona’s 446D.

2.4 The Modular Polarization

A polarization of an abelian variety A is an isogeny between A and its dual
arising from a very amply invertible sheaf (see [14]). J0(N) is a Jacobian so
it possesses a canonical polarization arising from the θ-divisor and this induces
the modular polarization θf : A∨f → Af .

A∨f J0(N)

Af

??

@
@

@
@

@@R

-

θf

By ([14], Theorem 13.3) deg(θf ) is a perfect square so we may define the
modular degree δf =

√
deg(θf ). The kernel of θf is the intersection of A∨f

with IfJ0(N) so it measure intersections between A∨f and other factors of J0(N).

Proposition 2.1. With notation as in Theorem 1.1,

Ker(θf ) ∼= Coker(H[If ] → Φf (H))

Proof. Delete the middle column of the diagram in Theorem 1.1 and apply the
snake lemma.

Using Lemma 2.5, to be proved later, we see that the modular degree can
be computed as follows: Let ϕ1, . . . , ϕ2d be a basis for Hom(H,Z)[If ] and
a1, . . . , a2d a basis for H[If ]. Then δf is the square root of the absolute value
of the determinant of the matrix (ϕi(aj)).

2.5 Torsion

We can obtain both upper and lower bounds on Af (Q)tor and A∨f (Q)tor. For
the examples considered in our table these bounds were sufficient to determine
the odd parts of these groups. Let χp(X) ∈ Z[X] denote the characteristic
polynomial of Tp acting on Af . It is a polynomial having integer coefficients
and degree equal to dim Af .
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Proposition 2.2. Both |Af (Q)tor| and |A∨f (Q)tor| divide

gcd{χp(p + 1) : (p, 2N) = 1, p prime}.
Proof. Use the Eichler-Shimura relation and injectivity of rational torsion under
reduction modulo an odd prime p (since 1 = e < p− 1).

The difference of cusps α, β ∈ X0(N) define a point (α)− (β) ∈ J0(N)(C).

Proposition 2.3. The order of the image of (α) − (β) in Af (C) equals the
order of the image of the modular symbol {α, β} in

Φf (M(N,Z))
Φf (S(N,Z))

.

Proof. By the classical Abel-Jacobi theorem ([10], ch IV, Theorem 2.2), the
modular symbol {α, β} maps, via the period map, to the point (α) − (β) ∈
J0(N)(C). Now use Theorem 1.1.

In particular, the point (0) − (∞) ∈ J0(N)(Q) generates a cyclic subgroup of
Af (Q) and this gives a lower bound on Af (Q)tor.

2.6 Component Groups

Let p be a prime exactly dividing N and ΦA,p the component group of A = Af .
Thus we have the exact sequence

0 → A0
Fp
→ AFp → ΦA,p → 0

with A the Neron model of A and A0
Fp

connected. Let X[If ] be the submodule
of X = XN,p cut out by the annihilator of f . The monodromy pairing defines
a map X → Hom(X[If ],Z). Let δf be the modular degree and wp the sign of
the Atkin-Lehner involution Wp on f . The following will be proved in [18].

Theorem 2.4.

|ΦA,p(Fp)| = δf · |Coker(X → Hom(X[If ],Z))|2
Disc(X[If ]×X[If ] → Z)

,

|ΦA,p(Fp)| =

{
|ΦA,p(Fp)| wq = −1
|ΦA,p(Fp)[2]| wq = +1

2.7 Rational part of the special value

Let M(Q) = M(N,Q) and extend Φf to a map M(Q) → C. Then Φf has a
rational structure in the following sense.

Lemma 2.5. Let ϕ1, . . . , ϕn be a Q-basis for Hom(M(Q),Q)[If ] and set

Ψ = ϕ1 × · · · × ϕn : M(Q) → Qn.

Then n = 2d and Ker(Ψ) = Ker(Φf ).
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Proof. This result is due to Shimura ([17]), but we sketch a proof. To compute
dimHom(M(Q),Q)[If ] we may first tensor with C. Let S2 denote the weight
2 anti-holomorphic cusp forms and E2 the weight 2 Eisenstein series for Γ0(N).
Then M(C) is isomorphic as a T-module to S2 ⊕ S2 ⊕ E2 (prop. 9 of [12] and
the Eichler-Shimura embedding). Because of the Peterson inner product, the
dual Hom(M(C),C) is also isomorphic as a T-module to S2 ⊕ S2 ⊕ E2. Since
f is new, by the Atkin-Lehner multiplicity one theory,

(S2 ⊕ S2 ⊕ E2)[If ] = S2[If ]⊕ S2[If ]

has complex dimension 2d, which gives the first assertion.
Next note that Ker(Φf ) ⊗ C ⊂ Ker(Ψ) ⊗ C because each map x 7→ 〈fi, x〉

lies in Hom(M(Q),C)[If ] and Ker(Ψ)⊗C is the intersection of the kernels of
all maps in Hom(M(Q),C)[If ]. By Theorem 1.1 the image of Φf is a lattice,
so dimQ Ker(Φf ) = dimQM(Q)− 2d. Since Ψ is the intersection of the kernels
of n = 2d independent linear functionals ϕ1, . . . , ϕn, Ker(Ψ) also has dimension
dimM(Q)−2d. Since the dimensions are the same and there is an inclusion, we
have an equality Ker(Φf )⊗C = Ker(Ψ)⊗C which forces Ker(Φf ) = Ker(Ψ).

Let V be a finite dimensional vector space over R. A lattice L ⊂ V is
a free abelian group of rank = dimV such that RL = V . If L,M ⊂ V are
lattices, the lattice index [L : M ] is the absolute value of the determinant of
an automorphism of V taking L isomorphically onto M . Extend the definition
to the case when M has rank strictly smaller than dim V by defining [L : M ] = 0.

Lemma 2.6. Suppose τi : V → Wi, i = 1, 2 are surjective linear maps such
that Ker(τ1) = Ker(τ2). Then

[τ1(L) : τ1(M)] = [τ2(L) : τ2(M)].

Proof. Surjectivety and equality of kernels insures that there is a unique iso-
morphism ι : W1 → W2 such that ιτ1 = τ2. Let σ be an automorphism of W1

such that σ(τ1(L)) = τ1(M). Then

ισι−1(τ2(L)) = ιστ1(L) = ιτ1(M) = τ2(M).

Since conjugation doesn’t change the determinant,

[τ2(L) : τ2(M)] = | det(ισι−1)| = |det(σ)| = [τ1(L) : τ1(M)].

Let S2(N,Z) be the space of cusp forms whose q-expansion at infinity hass
integer coefficients. Let Ω0

f be the measure of the identity component of Af (R)
with respect to an integral basis for Sf (Z) = S2(N,Z)[If ]. Let e = {0,∞} ∈
M(N,Z) denote the winding element.

Theorem 2.7. Let Ψ be as in Lemma 2.5. Then

±L(Af , 1)
Ω0

f

= [Ψ(S(N,Z)+) : Ψ(Te)]
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Proof. Let Φ = Φf be the period map defined by a basis f1, . . . , fd of conjugate
newforms. The image of Φ, which we identify with Cd, is an algebra with unit
element 1 = (1, . . . , 1) equipped with an action of the Hecke operators: Tp acts
as (a(1)

p , . . . , a
(d)
p ) where the components are the Galois conjugates of ap. Let

Zd ⊂ Rd ⊂ Cd be the usual submodules. Let Vol(S+) be the volume of the
image of S+ = S(N,Z)+ under Φ. Observe that Vol(S+) = [Zd : Φ(S+)] and
|L(Af , 1)| = [Zd : Φ(e)Zd]. Let W ⊂ Cd be the Z-module spanned by the
columns of a basis for Sf (Z). Because Ω0

f is computed with respect to a basis
for Sf (Z),

Vol(S+) = [W : T1] · Ω0
f .

Because S2(N,Z) is saturated, [Zd : W ] = 1 so [Zd : T1] = [W : T1]. The
following calculation involves lattices in Rd:

[Φ(S+) : Φ(Te)] = [Φ(S+) : Zd] · [Zd : Φ(Te)]

=
1

[Zd : Φ(S+)]
· [Zd : Φ(Te)]

=
1

Vol(S+)
· [Zd : Φ(e)Zd] · [Φ(e)Zd : Φ(Te)]

=
|L(Af , 1)|
Vol(S+)

· [Φ(e)Zd : Φ(Te)]

=
|L(Af , 1)|
Vol(S+)

· [Φ(e)Zd : Φ(e)T1]

=
|L(Af , 1)|

Ω0
f · [W : T1]

· [Zd : T1]

=
|L(Af , 1)|

Ω0
f

.

The theorem now follows from lemmas 2.5, 2.6, and the fact that f has real
Fourier coefficients so L(Af , 1) ∈ R hence |L(Af , 1)| = ±L(Af , 1).

Corollary 2.8. Let nf be the order of the image in Af (Q) of the point (0) −
(∞) ∈ J0(N)(Q). Then

L(Af , 1)
Ω0

f

∈ 1
nf

Z.

Proof. Let x denote the image of (0)− (∞) ∈ Af (Q) and set I = Ann(x) ⊂ T.
Since f is a newform the Hecke operators Tp for p|N act as 0 or ±1 on Af (Q)
(end of section 6 of [6]). If p - N a standard calculation (section 2.8 of [3])
combined with the Abel-Jacobi theorem shows that Tp(x) = (p + 1)x. Let C =
Zx denote the (finite, by Manin-Drinfeld) cyclic subgroup of Af (Q) generated
by x, so nf is the order of C. There is an injection T/I ↪→ C sending Tp to
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Tp(x). By the theorem, we have

±L(Af , 1)/Ω0
f = [Ψ(S+) : Ψ(Te)]

= [Ψ(S+) : Ψ(Ie)] · [Ψ(Ie) : Ψ(Te)]
= [Ψ(S+) : IΨ(e)] · [IΨ(e) : TΨ(e)]

=
[Ψ(S+) : IΨ(e)]
[TΨ(e) : IΨ(e)]

∈ 1
nf

Z.

The final inclusion follows from two observations. By Abel-Jacobi, I is exactly
those elements of T which send Ψ(e) into Ψ(S+), so [Ψ(S+) : IΨ(e)] ∈ Z.
Second, there is a surjective map

T/I → TΨ(e)
IΨ(e)

sending t to tΨ(e), so [TΨ(e) : IΨ(e)] divides nf = |C| = |T/I|.

2.8 Intersections

Let f, g be nonconjugate newforms and H = H1(X0(N),Z).

Proposition 2.9. (A∨f ∩ A∨g )[p] 6= 0 iff the mod p rank of H[If ] + H[Ig] is
strictly less than rankH[If ] + rank H[Ig].

Proof. By (1.1) Λf = H[If ] (resp., Λg = H[Ig]) is the submodule of H which
defines Af (resp., Ag). By reduction mod p we mean the map H → H ⊗ Fp.
Suppose

rank(Λf + Λg)mod p < rank Λf + rankΛg.

Since Λf (resp., Λg) is a kernel, it is saturated, so rank Λf mod p = rank Λf

(resp., for Λg). We conclude that the mod p linear dependence must involve
vectors from both Λf and Λg; there is v ∈ Λf and w ∈ Λg so that v, w 6≡ 0mod p
but v + w ≡ 0 mod p. Thus v+w

p ∈ H is integral, i.e., in J0(N)(C) we have
1
pv − (− 1

pw) = 0. But 1
pv 6∈ Λf and 1

pw 6∈ Λg (otherwise v and w would
be 0 mod p), so 1

pv and − 1
pw are both nontrivial p-torsion in A∨f , A∨g , resp.

Conclusion: 0 6= 1
pv = − 1

pw ∈ (A∨f ∩A∨g )[p].
Conversely, suppose 0 6= x ∈ (A∨f ∩ A∨g )[p]. Choose lifts modulo H to

xf ∈ 1
pΛf and xg ∈ 1

pΛg. Then pxf ∈ Λf (resp., pxg ∈ Λg), but pxf 6∈ pH (resp.,
pxg 6∈ pH) because x 6= 0. Since xf−xg ∈ H, pxf−pxg = p(xf−xg) ≡ 0mod p.
This is a nontrivial linear relation between Λf and Λg.

Corollary 2.10. If p > 2 and the sign of some Atkin-Lehner involution for f
is different than that for g then (A∨f ∩A∨g )[p] = 0.

Proof. Suppose wq(f) 6= wq(g) and let G = (A∨f ∩ A∨g )[p]. Observe that Wq

acts as wq(f)mod p on A∨f [p] and as wq(g) mod p on A∨g [p]. Hence Wq acts as
both wq(f)mod p and wq(g)mod p on G. Since p > 2, this is not possible when
G 6= 0.
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3 Results

This section contains tables computed using the above algorithms as impliment-
ed in the author’s program HECKE (a C++ program using LiDIA and NTL), David
Kohel’s Magma software, and PARI. Each factor Af of J0(N) is denoted as follows:

N isogeny-class dimension

The dimension frequently determines the factor, so it is included in the notation.
We consider only the odd part of X so we only computed the odd parts of the
arithmetic invariants of Af . Thus at this point we make the

WARNING: ONLY ODD PARTS OF INVARIANTS ARE GIVEN!

Tables 1-3: New Visible X
Let nf be the largest odd square dividing the numerator of L(Af , 1)/Ωf . Table
1 lists those Af such that, for p|nf there exists a new factor Bg of J0(N), of
positive analytic rank, and such that (A∨f ∩B∨

g )[p] 6= 0. This is necessary (and
usually sufficient) for the p-torsion in the new visible part of X to be nonzero. In
many cases it could be seen that there were no other appropriate new factors by
looking at the signs of the Atkin-Lehner involutions. Up to level 1001 our search
was systematic. The two examples after level 1001 were not found by systematic
search (i.e., there may be a gap). In those cases for which 4|N , we put c2 = a,
as we don’t know how to compute c2 exactly when the reduction is additive.
Table 2 contains further arithmetic information about each explanatory factor.

The explanatory factors of level ≤ 1028 are exactly the set of rank 2 elliptic
curves of level ≤ 1028. By [2], the explanatory factor at level 1061 is the first
surface of rank 4 (and prime level).
Table 4: Component groups
Table 4 gives the quantities involved in the formula for Tamagawa numbers, for
each of the Af from table 1.
Table 5: Odd square numerator
In order to find the Af , we first enumerated those Af for which the numerator
of L(Af , 1)/Ωf is divisible by an odd square nf . For N < 1000, these are given
in table 5. Any odd visible X coprime to primes dividing torsion and cp must
show up as a divisor of the numerator, and given BSD, it must show up as a
square divisor because the Mordell-Weil rank of the explanatory factor is even.
It would be interesting to compute the conjectural order of X for each abelian
variety in this table, but not in table 1, and show (when possible) that the
visible X is old.
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Af nf wq cp T TL(1)/Ωf δA Bg

389E20 52 − 97 97 52 5 389A1
433D16 72 − 32 32 72 3 · 7 · 37 433A1
446F8 112 +− 1, 3 3 112 11 · 359353 446B1
563E31 132 − 281 281 132 13 563A1
571D2 32 − 1 1 32 32 · 127 571B1
655D13 34 +− 1, 1 1 34 32 · 19 · 515741 655A1
664F8 52 −+ a, 1 1 52 5 664A1
681B1 32 +− 1, 1 1 32 3 · 53 681C1
707G15 132 +− 1, 1 1 132 13 · 800077 707A1
709C30 112 − 59 59 112 11 709A1
718F7 72 +− 1, 1 1 72 7 · 151 · 35573 718B1
794G14 112 +− 3, 1 3 112 3 · 7 · 11 · 47 · 35447 794A1
817E15 72 +− 1, 5 5 72 7 · 79 817A1
916G9 112 −+ a, 1 1 112 39 · 11 · 17 · 239 916C1
944O6 72 +− a, 1 1 72 7 944E1
997H42 34 − 83 83 34 32 997B1,C1
1001L7 72 +−+ 1, 1, 1 1 72 7 · 19 · 47 · 2273 1001C1
1028E14 32 · 112 −+ a, 1 3 34 · 112 313 · 11 1028A1
1061D46 1512 − 5 · 53 5 · 53 1512 61 · 151 · 179 1061B1

Table 1: New visible X

Bg rank wq cp T δB Comments
389A1 2 − 1 1 5 first curve of rank 2
433A1 2 − 1 1 7
446B1 2 +− 1, 1 1 11 this is 446D in [3]
563A1 2 − 1 1 13
571B1 2 − 1 1 3
655A1 2 +− 1, 1 1 32

664A1 2 −+ 1, 1 1 5
681C1 2 +− 1, 1 1 3
707A1 2 +− 1, 1 1 13
709A1 2 − 1 1 11
718B1 2 +− 1, 1 1 7
794A1 2 +− 1, 1 1 11
817A1 2 +− 1, 1 1 7
916C1 2 −+ 3, 1 1 3 · 11
944E1 2 +− 1, 1 1 7
997B1 2 − 1 1 3
997C1 2 − 1 1 3
1001C1 2 +−+ 1, 3, 1 1 32 · 7
1028A1 2 −+ 3, 1 1 3 · 11 intersects 1028E mod 11
1061B2 4 − 1 1 151 first surface of rank 4 [2]

Table 2: Explanatory factors

446 = 2 · 223 655 = 5 · 131 664 = 23 · 83 681 = 3 · 227
707 = 7 · 101 718 = 2 · 359 794 = 2 · 397 817 = 19 · 43
916 = 22 · 229 944 = 24 · 59 1001 = 7 · 11 · 13 1028 = 22 · 257

Table 3: Factorizations
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Af p wp |Coker | |Disc(X[If ])| |Φ(Fp)|
389E20 389 − 97 5 · 97 97
433D16 433 − 32 33 · 7 · 37 32

446F8 223 − 3 3 · 11 · 359353 3
2 + 3 3 · 11 3 · 359353

563E31 563 − 281 13 · 281 281
571D2 571 − 1 32 · 127 1
655D13 131 − 1 32 · 19 · 515741 1

5 + 1 32 19 · 515741
664F8 83 + 1 5 1
681B1 227 − 1 3 · 53 1

3 + 1 3 · 52 5
707G15 101 − 1 13 · 800077 1

7 + 1 13 800077
709C30 709 − 59 11 · 59 59
718F7 359 − 1 7 · 151 · 35573 1

2 + 1 7 151 · 35573
794G14 397 − 3 32 · 7 · 11 · 47 · 35447 3

2 + 3 3 · 11 32 · 7 · 47 · 35447
817E15 43 − 5 5 · 7 · 79 5

19 + 1 7 79
916G9 229 + 1 39 · 11 · 17 · 239 1
944O6 59 − 1 7 1
997H42 997 − 83 32 · 83 83
1001L7 13 + 1 7 · 19 · 47 · 2273 1

11 − 1 7 · 19 · 47 · 2273 1
7 + 1 7 · 19 · 47 2273

1028E14 257 + 1 313 · 11 1
1061D46 1061 − 5 · 53 5 · 53 · 61 · 151 · 179 5 · 53

Table 4: Component groups

305D7 : 3 309D8 : 5 335E11 : 32 389E20 : 5 394A2 : 5 399G5 : 34

433D16 : 7 435G2 : 3 436C4 : 3 446E7 : 3 446F8 : 11 455D4 : 3
473F9 : 3 500C4 : 3 502E6 : 11 506I4 : 5 524D4 : 3 530G4 : 7
538E7 : 3 551H18 : 3 553D13 : 3 555E2 : 3 556C7 : 3 563E31 : 13
564C3 : 3 571D2 : 3 579G13 : 3 · 5 597E14 : 19 602G3 : 3 604C6 : 3
615F6 : 5 615G8 : 7 620D3 : 3 620E4 : 3 626F12 : 5 629G15 : 3
642D2 : 3 644C5 : 3 644D5 : 3 655D13 : 32 660F2 : 3 662E10 : 43
664F8 : 5 668B5 : 3 678I2 : 3 681B1 : 3 681I10 : 3 682I6 : 11
707G15 : 13 709C30 : 11 718F7 : 7 721F14 : 32 724C8 : 3 756G2 : 3
764A8 : 3 765M4 : 3 766B4 : 3 772C9 : 3 790H6 : 3 794G12 : 11
794H14 : 52 796C8 : 3 817E15 : 7 820C4 : 3 825E2 : 3 844C10 : 32

855M4 : 3 860D4 : 3 868E5 : 3 876E5 : 3 878C2 : 3 884D6 : 3
885L9 : 32 894H2 : 3 902I5 : 3 913G17 : 3 916G9 : 11 918O2 : 5
918P2 : 3 925K7 : 3 932B13 : 32 933E14 : 19 934I12 : 7 944O6 : 7
946K7 : 3 949B2 : 3 951D19 : 3 959D24 : 3 964C12 : 32 966J1 : 3
970I5 : 3 980F1 : 3 980J2 : 3 986J7 : 5 989E22 : 5 993B3 : 32

996E4 : 3 997H42 : 32 998A2 : 3 998H9 : 3 999J10 : 3

Table 5: Odd square numerator
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[1] A. Agashé, On invisible elements of the Tate-Shafarevich group, Théorie
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